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Abstract The recently published theory named Granular
Solid Hydrodynamics (GSH) is outlined, supported and
quantified with arguments from physics as well as soil
mechanics. Seismodynamic equilibria serve to introduce a
granular temperature Tg and a related entropy sg , both with
gradients. The evolution equations of GSH are first presented
without gradients, parameters are proposed as functions of
Tg and estimated. Constant stretching leads to nearly hypo-
plastic relations for a certain range of Tg . Cyclic deforma-
tions lead to pulsating Tg and to asymptotic cycles of stress
and density. State cycles are also attained with additionally
imposed isochoric deformations (ratcheting). Similar attrac-
tors can be obtained with elastoplastic or hypoplastic rela-
tions with hidden variables. GSH is then presented with
gradients and boundary conditions. Consequences for sta-
bilization and destabilization are outlined by means of the
total energy and with driven attractors. Conclusions and an
outlook indicate that GSH is going to become a powerful
unified concept.
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1 Introduction

In TA �Y�IKA, the first ever book on physics, Aristoteles
defined the difference of continuous and granular matter by
the response to ενέργ εια (noticed by Th. Triantafyllidis).
This was not energy in a modern sense, but action, probably
seismic (i.e. shaking). The micro-seismicity of deformed or
shaken granular solids (in the sense of [1]) resembles thermal
oscillations, but its energy is not stored like heat, as granu-
lar interaction is not conservative. The word seismodynamics
was coined for the counterpart of thermodynamics which is
needed in addition for granular solids.

Maxwell remarked that sand has a “historical element,”
therefore it eludes mathematical treatment in the opinion of
Darwin [2]. The mechanical behaviour of hard-grained soils
is in fact astonishingly complex. Engineers tried to catch it
by means of stiffness and strength, but rather in vain. Elasto-
plastic and hypoplastic constitutive relations work for certain
deformations, but with repeated reversals anelastic effects
are thus grossly under- or overestimated, respectively. Mod-
els of both kinds can be more realistic with hidden variables,
but they are then intricate and physically obscure. Viscous
effects are usually neglected for hard grains although they
were observed [3]. Such models were applied in boundary
value problems, but the partial validation by observations is
not clear and the energetics is not captured explicitly.

One of us (G.G.) proposed to escape from “a morass of
equations and a jungle of data” in a forthcoming book (Phys-
ical Soil Mechanics, 2010, PSM in the sequel) by means
of attractors. These are first meant experimentally for uni-
form so-called elements as the asymptotic response to cer-
tain deformations, and theoretically for constitutive models
which can thus be validated and calibrated. Constant stretch-
ing, i.e. proportional deformation, causes a gradual determi-
nation of hidden states by stress, this was called swept-out of
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memory (SOM, [4]). With continued monotonous stretching
elements approach state limits, for which the void ratio e is
determined by the mean pressure p and the ratio tanψs of
mean shear stress τ̄ and p. Among these attractors so-called
critical states are distinguished by stationary e = ec(p) and
tanψs = tanψc. Contractant stretching leads to e > ec with
tanψs < tanψc up to grain crushing, dilatant stretching leads
to e < ec with tanψs > tanψc up to decay. The desired uni-
formity of elements gets lost with the approach to state limits.

As far as grain crushing and decay can be avoided cyclic
deformations lead to state cycles asymptotically, with higher
harmonics in case of harmonic stretching. State cycles are
also obtained with superimposed isochoric stretching (rat-
cheting). Observed asymptotic stress cycles are fairly well
reproduced by certain elastoplastic and hypoplastic relations
with hidden variables (PSM). The latter could represent the
force-roughness of the grain contacts, with more marked
force chains in case of bigger amplitudes. Cyclic deforma-
tions with minute amplitude can lead to an almost hypoelastic
(i.e. stress-dependent elastic) response, whereas ratcheting
implies more dissipation due to the average stretching.

To a certain extent validations and calibrations can be
achieved with these attractors, but there are limitations.
Localized shearing and collapse confine the desired unifor-
mity of ‘elements’ , strange attractors for such granular phase
conditions are not yet at hand. They can be avoided with
smaller amplitudes between reversals, but with many of them
numerical simulations get uncertain and expensive. So-called
seismo-hypoplastic relations were proposed for cumulative
anelastic effects [5] with a heuristic granular temperature Tg

instead of the temperature T which matters (PSM) in Niemu-
nis’ [6] visco-hypoplasticity. Tg can get stationary for monot-
onous average deformations, and can pulsate otherwise with
an imposed frequency. Some experimental results could thus
be matched, but the energetics remained obscure.

Attempts of this kind are not new in geotechnical engineer-
ing. Barkan [7] proposed a ‘vibro-viscosity’ and a reduced
strength of shaken dry sand. Triantafyllidis (unpublished)
estimated the vibration-induced granular flow towards an
excavation with a Tg-dependent viscosity. More recently he
proposed the field equation

Tg = s∇2
i Tg (1)

by means of Valanis’ et al. [8] granular entropy Sg . One of
us (G.G) derived (1) from the balance of seismic relaxation
and diffusion. Equation (1) is thought for stationary shaking
with stationary average state and shape. It was not possible
to validate attempts with athermal Tg and Sg as proposed by
Valanis et al. [8], Herrmann [9], Edwards and Oakeshott [10]
and Kondic and Behringer [11]. Tg causes heat production
so that T can only get stationary for continuous shaking, and
exhibits gradients ∇i T . More generally speaking, seismody-
namics requires thermodynamics.

There is now a thermodynamically based, general and
rigorous approach to macroscopic description. The result-
ing theories are usually referred to as hydrodynamic by con-
densed matter physicists. This attribute will also be employed
here, with the needed clarification (and some trepidation, as it
may lead to misunderstanding among engineers). The hydro-
dynamic approach was developed over the years by many
people, but one may probably take it to have been proposed
and developed by see Landau and Lifshitz [12,13] and Kha-
latnikov [14] to understand superfluid He4, see also de Groot
and Masur [15] and de Gennes and Prost [16]. One of us
employed this approach to account for ferrofluids [17,18]
and polymers [19,20]. This was carried over, together with
a second of us, to granular matter, in spite of some obvious
difficulties constructing a hydrodynamic theory for granular
media [21]: At first, static granular matter was considered
employing a “stress-elastic strain relation,” derived from an
appropriate elastic energy [22–24]. Extending the hydrody-
namic approach with a granular entropy sg and the associated
temperature Tg , hypoplastic relations were then obtained for
monotonous deformations with a stationary Tg [25]. Finally,
this approach was generalized to GSH (for Granular Solid
Hydrodynamics) [26,27]. Compared with other matter, GSH,
especially the specification of its parameters, is fairly intri-
cate, though we do hope that the arguments presented here
will help the reader to understand its essence and realize its
potential.

Section 2 starts with thermodynamic equilibria and goes
on with seismodynamic ones. Tg and sg are related via the
seismic energy, and (1), employed in a well-defined sense,
is given a more complete form. GSH-equations without gra-
dients are introduced in Sect. 3, parameters are specified as
functions of Tg . The attractors indicated further above can
thus be reproduced. GSH with gradients is the topic of Sect. 4,
which deals also with boundary conditions and the gain or
loss of stability. Notations are taken over from GSH, and
water is first left aside. The paper ends with stating in Sect. 5
what has been and what could further be achieved.

An “Appendix” is provided at the end of this paper that
contains all GSH equations, made dimensionless and appro-
priate for numerical simulations of triaxial tests.

2 Equilibria

2.1 Thermodynamic equilibria

Assemblies of hard grains with gravity can stay at rest,
enabling an elastic solution. Being jammed, the grains trans-
fer normal and shear stresses as in a solid, with elastic defor-
mation and energy. They can be differently packed, but there
are upper and lower bounds for the void ratio e. Similar to an
elastic solid, the stress field is determined by equilibrium and
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boundary conditions, though with the difference that the den-
sity is an independent variable in granular media and needs
to be specified. When Maxwell stated that ‘sand when put
together in different ways would exercise different thrusts’
[2], he referred to the observation that granular stresses are
not determined by the strain alone. A granular system sus-
taining a static elastic solution is in a stable thermodynamic
equilibrium.

Leaving aside polar effects, average grain contact forces
can be represented by the field of negative Cauchy stress
σi j (sign convention of soil mechanics). In equilibrium, this
equals the elastic stress πi j . With constant grain density ρs

the overall density is ρ = ρs/(1 + e). The void ratio e
ranges between bounds which depend on the mean pressure
p = πi i/3. This can be scaled by a granulate hardness hs

(PSM). e-bounds decrease with p near p = 0 by a power
law [28],

e0 − e ∝
(

p

hs

)n

. (2)

Often, n ≈ 1/2 suffices. e → 0 is thus not obtained
for p → ∞, and also impossible due to grain crushing.
An upper bound ei is approached by isotropic compression
of loose grain skeletons which tend to collapse. Elastic solu-
tions remain static only for e< ei , they are unstable for higher
porosity, when grains necessarily flow. A lower bound ed is
approached by cyclic deformations with constant p. For crit-
ical states e = ec lies somewhere between ed and ei .

Limit void ratios for a given p can be related with the
stress obliquity tanψs = τ̄ /p for state limits (spatially aver-
aged shear stress τ̄ ). Uniform state limits are not attainable
as they are unstable, but monotonous deformations can lead
close to them (PSM). Near the upper bound ei grain skele-
tons collapse under isotropic pressure, this means a loss of
energetic stability by the elastic solution, possibly via a chain
reaction. Conventional critical states have a p-dependent ec

and a critical obliquity tanψsc which can be substituted by a
critical friction angle ϕc. They are defined as steady states for
stationary isochoric stretching (constant volume), but typi-
cally cannot be attained uniformly with elements.

So-called peak states with overcritical obliquities (tanψs

>tanψsc) can be approached with e < ec and dilatant stretch-
ing, in particular with p = const (isobaric). Samples with
such states can be kept at rest by means of fixed plates, but
observed patterns of shear bands indicate that the uniformity
desired for elements is no more given (PSM). This means
that uniform elements are unstable for given pressure and
overcritical mean shear stress, and dilate along shear bands
the more marked the lower e < ec is. Critical states and shear
bands are being actively considered at the moment employ-
ing GSH. The results will be reported elsewhere.

The elastic deformations of jammed hard grains sum up
to a small elastic strain ui j (extension positive). The specific

elastic energy we is a function of ui j and density ρ (or e).
Its total differential for neighbored states is dwe = −πi j dui j

for constant ρ, this means

πi j = − ∂we(uk�, ρ)

∂ui j

∣∣∣∣
ρ

(3)

as for solids. This is thermodynamically correct for spatial
averages of grain ensembles although actual strains of gran-
ular solids are never purely elastic. Other than with an elas-
tic solid the density ρ is an independent variable. The total
differential of we is therefore dwe =μdρ − πi j dui j , with a
chemical potential

μ = ∂we/∂ρ|ui j (4)

that, with ||ui j ||< 10−3 for hard grains, may often be
neglected, μ � π��/ρ.
we vanishes for p = 0 and increases with p by a power law

near p = 0. It must be a locally convex function of ui j and ρ,
otherwise energy would be released by suitable dui j and dρ.
A stability limit with respect to πi j is given by dry friction
independently of ρ. This can be seen with a thin granular
layer between an inclined rough plate and a movable plate
with weight. It cannot stand with any ρ if the slope angle β is
more than critical, i.e. with tan β = τ/p> tan ϕc. Grain skel-
etons are also unstable at the upper e-bound with isotropic
pressure, i.e. for e = ei and πi j = pδi j , then a collapse indi-
cates another verge of convexity of the energy function (i.e.
its differential is just no more a positive definite quadratic
form). As outlined with a thin layer uniform grain skele-
tons cannot stay at rest with overcritical obliquities tanψs as
then we is no more stable with respect to ui j . Shear bands
observed with overcritical tanψs and fixed boundaries are
often considered including polar quantities (PSM). This may
not be necessary within the framework of GSH, and will be
considered in a forthcoming publication.

Jiang and Liu [22, 23] proposed the representation

we = B
√
�

(
2�2

5
+ u2

s

ξ

)
(5)

where B = B(ρ), � ≡ −ull , u2
s = u0

i j u
0
i j and u0

i j = ui j −
ullδi j/3. Equation (5) with (3) yields

πi j = √
�

(
B�δi j − 2Au0

i j

)
+ Au2

s δi j

2
√
�

(6)

with A = B/ξ and a friction coefficient ξ . A third invariant
of ui j is of higher than the given order in the strain field, and
omitted in (5) for simplicity. But we do expect it to be sig-
nificant, especially for turning the yield surface from Druc-
ker-Prager to a Mohr-Coulomb-type one. we by (5) is no
more stable (i.e. convex) for us/�≥√

2ξ , i.e. with (6) if the
friction condition
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π0
i jπ

0
i j

p2 = 2

ξ
(7)

holds. The chosen ξ ≈ 5/3 corresponds to a rather small
critical friction angle ϕc ≈ 280. A third invariant would
influence ϕc (PSM). Factor B replaces hs in (2) for scal-
ing of pressures, it can likewise reach almost 10 GPa for
round quartz grains. With these quantities the elastic energy
we ≈ (2/5)B(p/B)5/3 is about 20 Nm−2 for a mean pressure
p = 100 kPa and a volumetric strain� ≈ (p/B)2/3 ≈ 10−3.
One could include a density dependence of ξ such that the
friction angle vanishes approaching the loosest possible den-
sity.

A dependence of B on density ρ was chosen so that the
hypoelastic stiffness by (3) suits to observations [25]. A more
elaborate representation of we was proposed by Jiang and
Liu [26,27] such that the expression of Eq. (5) turns concave
and unstable with respect to ρ for isotropic pressures. We
leave aside the algebraic expressions in favor of a discus-
sion with physical arguments. A verge of convexity of we

means that its second-order change vanishes for a certain set
of elastic strain ui j and density ρ and differentials of both.
The latter constitute an eigenvector which is not elastic in
general as elastic changes of ρ can be much smaller than
density changes by rearrangement. A change of state in this
direction at the verge of convexity would lead to localization
with new degrees of freedom.

At the verge of stability, the system enters a state limit as
described in PSM. State limits imply a unique dependence of
void ratio e (which is equivalent toρ) on mean pressure p and
stress obliquity tanψs . This can also be considered employ-
ing GSH, results will be reported soon. For the moment, we
note that state limits can be approached but not reached by
GSH describing monotonous deformations. In the vicinity
of state limits, GSH properly accounts for an e-dependent
tanψs and a related direction of stretching, with appropriate
eigenvector u̇i j and ρ̇ (Sect. 3.4).

Uniform states of rest as in perfect granular samples are
stable if they do not release seismic energy spontaneously
with growing fluctuations. Otherwise samples exhibit an
increase of the granular temperature Tg until they find a new
thermodynamic equilibrium with Tg = 0. Such a loss of
equilibrium depends on boundary conditions and is accom-
panied by a loss of uniformity: deformations localize into
narrow bands which dilate for lower than critical e and con-
tract otherwise (compaction bands).

2.2 Seismodynamic equilibria

Imagine a vessel filled with dry sand and shaken continu-
ously so that the grains are never at rest. After a transition,
which takes longer for weaker shaking, the sand has a
horizontal free surface and does not flow any more on aver-

age, its pressure p is hydrostatic and its density is close to
the upper bound ρd (except for granular boiling which is
treated further below) [29]. Such seismodynamic equilibria
are attractors, i.e. the state field for a given mass of sand,
shape of vessel and kind of stationary shaking is attained
with any initial shape and state and not changed with station-
ary boundary conditions. Similar states are attained in the
near-field of vibrators, they are no more influenced by the
far-field. The attained hydrostatic pressure enhances driving
or floating of solid bodies and can break silos designed for
lower Janssen-pressures.

The grains get unjammed in the transition so that the elas-
tic energy we vanishes at seismodynamic equilibria. The
granular matter still has specific seismic energy ws , ther-
mal energy wt and gravitational energy wg , and the energy
density wtot = ws + wg + wt is integrated minimal with
respect to other shapes and states. The heat-like seismicity is
captured in GSH by a granular temperature Tg . The ordinary
temperature T tends to a stationary field which is determined
by the balance of thermal energy (Sect. 4.1). Formally speak-
ing, same as T and s for thermodynamic equilibria, Tg is the
conjugate variable to sg , the granular entropy, i.e.,

T ≡ ∂ws

∂s

∣∣∣∣
ρ,Tg

, Tg ≡ ∂ws

∂sg

∣∣∣∣
ρ,T

, (8)

where the specific seismic energy ws depends also on the
density ρ. The change of heat and heat-like seismic energy
is therefore written as

T ds + Tgdsg. (9)

During a relaxation of Tg , energy is transferred from Tgdsg

to T ds. The granular temperature can easily attain values sim-
ilar to the Sun’s internal temperature, Tg � T . But we also
have dsg � ds, as there are far more molecular than granular
degrees of freedom. The loss of seismic energy is equal to
the gain in thermal energy in case of seismodynamic equi-
librium: Tgdsg + T ds = 0.

Tg and sg vanish in states of rest as both are seismic. This
is achieved with ws ∝ s2

g ∝ T 2
g being a minimum with

respect to sg or Tg at Tg, sg = 0. This way, stable systems,
when unperturbed, automatically return to Tg = 0. A linear
dependencews ∝ Tg , is only appropriate for the rarefied and
high Tg range, not the high density and low Tg limit under
consideration here. Assuming thatws—a kinetic-like energy
including fluctuating elastic fractions—is proportional to ρ,
one can write

ws = s2
g

2bρ
= bρ

T 2
g

2
(10)

with a factor b which depends on the relative density ρ/ρd

with an upper bound ρd (more below). Equation (8) and (10)
imply

123



Seismo- and thermodynamics of granular solids 323

sg = bρTg. (11)

ws ∝ s2
g by (10) is also needed for the stability of seismo-

dynamic equilibria with Tg near 0 [26,27]. Only when the
density is much lower, in the granular gas state, does the
dependence become ws ∝ Tg [30].

Seismic energy is continuously transformed into heat at
the grain contacts, this is expressed in the simplest possible
way by a relaxation term

∂sg

∂t
≡ ṡg = −γ sg

bρ
, (12)

with a quiescence factor γ which depends on Tg (as will be
outlined in Sect. 3.1), a factor b as in (10) and the density
ρ. If this relaxation of seismicity is counter-balanced by the
diffusive flow of granular entropy,

ti ≡ χ2∇i
sg

bρ
= χ2∇i Tg (13)

with a diffusion factor χ2, we have

Tg − ∇i ti = Tg − χ2∇2
i Tg = 0, (14)

which agrees formally with (1) and may likewise be inter-
preted as the balance of seismic power at seismodynamic
equilibrium. It means stationary gradients of Tg and requires
a specification of Tg along boundaries, which may be called
seismostats in analogy to thermostats with given T . Seismic
energy enters a granular body from shaking boundaries at the
same rate as it is transformed into heat at grain contacts and
radiated off into neighbored bodies.

The factor b in (10) depends on the density ρ as [26, 27]

b = b0(1 − ρ/ρd)
a, (15)

with a constant b0, an exponent a ≈ 0.1 and the upper bound
ρd as introduced above, in Sect. 2.1. The seismic pressure is
thus

pT = − ∂ws/ρ

∂(1/ρ)
= ρ

2ρd

aρb0T 2
g

(1 − ρ/ρd)1−a
. (16)

as the seismic energy ws for seismodynamic equilibria
decreases uniquely by a density increase due to a higher pres-
sure with constant Tg . The small exponent a expresses the
known minute pressure-dependence of density by shaking.
The factor b0 is so small that pT compensates gravity only
with ρ very near ρd for the range of Tg where one may speak
of granular solids.

Granular boiling serves for estimating two parameters and
for illustrating a limitation of GSH by transition to a granular
fluid. For instance, dry fine sand in a vessel upon a vibrator
boils up with convection cells by means of about 100 s−1 fre-
quency and ca. 1 mm amplitude at the base. At this transition
the seismic energyws is proportional to Tg , thus the granular
temperature Tg is Tb ≈ 109 K from mv2 = kB Tg (grain mass

m, grain velocity v, Boltzmann constant kB) for the base of
our vessel. The interpolation

ws ∝ Tg

Tb

(
1 − exp

(
−c

Tg

Tb

))
(17)

gets almost linear for Tg ≈ Tb (fluid-like) with c ≈ 7, and
agrees with (10) for Tg � Tb (solid-like). This leads to b0 ≈
10−19 m2/( s2K2) for the investigated sand, which suffices
in the sequel to neglectws and pT against other energies and
pressures, respectively. Thus the granular entropy sg by (11)
with (15) is far lower than the thermal one, as proposed with
(9). Other interpolations than (17) lead to similarws and pT ,
a more precise value of b0 is not yet needed. The diffusion
factor χ in (14) can be estimated from the indifference of
the specific energy ws + wg above the shaking base: as a
diffusive reduction of seismic energy ws is compensated by
a gain of gravitational energy wg a boiling sand has no more
a single configuration with a minimal free energy. This leads
to χ ≈ 0.1m for dry fine sand, an estimate which suffices in
the sequel.

It is important to realize that the above estimates, although
the best we have, are far from rigorous. The energy in the
granular solid phase being w ∼ b0T 2

g , we may approxi-
mately equate it with the kinetic energy of the grains in a
unit volume, but would still not know what Tg is, as b0 is
unknown. There is always the freedom to make b0 larger and
T 2

g smaller, or vice versa. The above estimate of b0 makes the
assumption that the energy of a grain in the gaseous phase is
kB Tg , with the known coefficient kB . Interpolating between
these two limits, one can estimate b0 over kB .

There are two problems with this approach. First, thermo-
dynamics prescribes an energy that is a function of entropy
density, w=w(sg), with the temperature given as a deriv-
ative. Then, the seismic energy in the gaseous phase is
w ∼ t0 ln sg , containing an unknown coefficient t0. An inter-
polation would relate b0 to t0, but cannot deliver its value.
Second, if granular boiling has any similarity to a phase tran-
sition, it will display discontinuities in the state variables,
forbidding a smooth interpolation.

The partition of seismic energies ws can as yet only be
guessed. It is stationary for seismodynamic equilibria like
other state variables as long as the granular wear may be
neglected. Except for grains along harmonically shaken sol-
ids no translational granular degree of freedom is preferred,
otherwise seismostats could not produce a temperature-like
Tg . With ongoing dissipation of granular excitation, perfect
equipartition, including rotational and elastic degrees of free-
dom, is rarely reached in cases considered below. Fortunately,
neither does the validity of GSH hinge on it, as GSH treats
sg as a macroscopic and slowly relaxing variable, not neces-
sarily in perfect analogy to the true temperature. What GSH
does is only to assume a two-step irreversibility – first in
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producing sg from mechanical energy, then in converting sg

into s, the true heat.

3 Uniform evolutions

3.1 Evolution equations

We confine ourselves in this section to uniform “elements”
with hard grains. The thermal entropy production in GSH, ṡ,
is given with the rate of dissipation R [cf. (9)] by

T ṡ = R = γ T 2
g + βπ0

i jπ
0
i j + β1π

2
i i (18)

with γ as in (12). For specifying β and β1, two relaxation
times τ and τ1 are defined by

1

τ
= 2βA

√
�,

1

τ1
= 3β1

√
�

(
B − A

u2
s

2�2

)
, (19)

which are assumed to be proportional to Tg , with two den-
sity-dependent proportionality coefficients λ, lambda1,

1

τ
= λTg,

1

τ1
= λ1Tg, (20)

with the unjamming factors λ > 0 and λ > λ1 > 0 (speci-
fied below). Equation (19) with (6) means

π0
i j = −u0

i j

βτ
, πi i = − uii

β1τ1
,

thus (18) can be substituted with (20) by

T ṡ = R

= γ T 2
g + BTg

√
�

[
2λ

ξ
u0

i j u
0
i j + λ1�

2
(

1 + u2
s

2ξ�2

)]
.

(21)

The rate of dissipation is thus a positive definite quadratic
form in Tg and πi j (or ui j ) for Tg ≥ 0 and (6). γ T 2

g is the
rate of dissipation by (10), (11) and (12) due to the loss of
seismic energy into heat. The quadratic terms in πi j or ui j

stem from the seismic relaxation of elastic stress, or strain
equivalently, due to the granular temperature. One can show
that this term is given simply by σi jvi j for the steady state.
The rate of this relaxation is thus proportional to πi j and ui j ,
respectively, and to Tg by

u̇0
i j

u0
i j

= −λTg,
u̇i i

uii
= −λ1Tg. (22)

() This means an exponential loss of ui j with time in case
of constant Tg up to a seismodynamic equilibrium with neg-
ligible ui j (except for ρ close to ρd , Sect. 2.2). It implies
that Tg has the same effect whether it stems from shaking
or other deformations. Similar expressions are obtained with
more elaborate representations for we, they imply again that

there is no relaxation for Tg = 0 and hard grains. The ratio
of volumetric and deviatoric relaxation times is taken as con-
stant,

τ1

τ
= λ

λ1
≈ 10, (23)

which means that the volumetric relaxation is weaker than
the deviatoric one. Simulations with GSH indicate λ ≈
10−6/(sK), i.e. a half-life by (22) from about 10–104 s for Tg

between 105 and 102 K, respectively. These estimates cannot
substitute calibrations which will be discussed in Sects. 3.2
and 3.3.

The seismic entropy production in GSH without gradients
is given with the rate of seismic dissipation Rg (cf. again (9))
by

Tgṡg = bρ
dT 2

g

2dt
= Rg = −γ T 2

g + ζgv
2
i i + ηgv

0
i jv

0
i j . (24)

The first term denotes the loss of seismic energy into thermal
energy, this part of dissipation equals therefore the one in (18)
except for the sign. It is proportional to the seismic energyws

by (10), this suits to the radiation of kinetic energy wk in an
elastic solid with a rate in proportion to wk . The other terms
in (24) are positive definite in the stretching vi j (ie. the gra-
dient of the velocity, see Sect. 4.1) as this feeds the seismic
(granular) entropy by the stick-slip of intergranular disloca-
tions. Equation (24) describes the balance of seismic power
which is produced by rerrangement with a granular viscosity
and consumed into heat. Jiang and Liu [26, 27] expand the
three coefficients in Tg ,

γ = γ0 + γ1Tg, ηg = η0 + η1Tg, ζg = η0 + ζ1Tg. (25)

To ensure (in Sects. 3.2 and 3.3) that the system is
hypoplastic at elevated Tg , but becomes hypoelastic as
Tg→0, η0, ζ0 were set to zero by Jiang and Liu [26, 27], but
will be retained here, see the discussion below, after Eq. (38).

The first of (25) combined with (12) means an exponential
decay of seismicity for Tg near 0 by

ṡg/sg = Ṫg/Tg = −γ0/bρ (26)

after a sudden stop of stretching. The observed acoustic
emission [31] indicates half-life well below τg = 0.1 s, which
cannot be measured as testing devices delay the drop of seis-
micity after a stop of deformation. Imagine a uniform grain
skeleton with heat-like seismicity. Erratic seismic pulses
travel through chains of grains and are absorbed at grain con-
tacts. A survival length of say 100 grain diameters dg and a
wave velocity cs ≈ 102 m/s (say) means τg ≈ 100 dg/cs ,
e.g. 102.10−4/102 = 10−4 s for fine sand. With ρ ≈
2 kN s2/m4 and b ≈ b0 as given in Sect. 2.2 this leads to
γ0 ≈ b0ρ/τg ≈ 10−11 N/(sK2m2).

The relaxation of seismicity after a stop of deformation is
faster than by (26) for higher Tg: then the survival lengths
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of seismic pulses are shorter as more excited grain contacts
absorb more kinetic energy. This justifies the faster than expo-
nential decay by (12) with (25) and a sufficient γ1, but the
latter cannot be observed directly. γ1 ≈ 10−13 N/(m2sK3)
may serve as a preliminary guess, more in Sects. 3.2 and 3.3.

The granular viscosity ηg cannot be observed directly at
low Tg , but there are qualitative arguments for its specifica-
tion by (25), so the parameters therein have to be calibrated
indirectly. ηg ≈ η0 near seismic rest is being successfully
employed to capture unlimited monotonous and very slow
shear rates and the observed response to minute vibrations
near Tg = 0 (Sect. 3.1). The increase of ηg with Tg by (25)
can be justified for a deformation with constant stretching vi j

from Tg = 0: the response is first hypoelastic without seis-
micity, and gets hypoplastic with Tg ∝ | vi j | after a transition
(Sect. 3.2). γ ≈ γ1Tg holds for the hypoplastic regime so that
ηg/γ ≈ η1/γ1 is obtained as needed for rate-independence.

The GSH-parameters introduced above can be determined
separately only in dedicated experiments. And a combined
calibration was not yet achieved, but orders of magnitude
can be estimated. Without seismometers for Tg up to almost
106 K like thermometers in a wide range of T one can only
guess Tg by matching. It appears that Tg reaches about 102 K
in the nearly hypoelastic regime (Sect. 3.3) and can attain
about 105 K in the hypoplastic regime (Sect. 3.2). Other than
with granular fluids the viscosity factor η1 by (25) cannot
be determined by rheological measurements, an indirect esti-
mate for the hypoplastic regime yields η1 ≈ 10−2 Ns/(m2K)
(Sect. 3.2). These quantities are admittedly uncommon and
preliminary.

The elastic strain rate by GSH without gradients is

u̇i j = (1 − α)vi j − u0
i j/τ − u��δi j/τ1 (27)

with a transmission factor α to be specified below. With τ
and τ1 by (20) this can be written

u̇i j = (1 − α)vi j − Tg

(
λu0

i j + λ1u��δi j

)
. (28)

The first term with 0 ≤ α < 1 captures the gain of elastic
strain by the average rearrangement, the further terms repre-
sent the loss by seismic relaxation. α = 0 holds for Tg = 0
as then the response is hypoelastic. α saturates at a constant
αh if Tg exceeds a threshold Th . This can be expressed by

α = αh tanh
T 2

g

T 2
h

(29)

with αh ≈ 0.8 and Th ≈ 102K. The saturation for Tg > Th

is needed for the hypoplastic range (Sect. 3.2), the quadratic
onset enables a nearly hypoelastic response (Sect. 3.3) and
rate-independent collapse modes (Sect. 3.4).

As by (22), the second term in (28) means that the rate
of seismic relaxation is proportional to Tg . The unjamming

factors λ ≈ 10−6/(sK) and λ1/λ ≈ 10 may be assumed pro-
visionally as indicated further above. The order of magnitude
of λ results from observed rates of seismic creep compared
with those by (28) and estimated Tg . λ could be calibrated by
means of experiments with cyclic deformations, which could
also serve to calibrate parameters for γ and ηg (Sect. 3.3).

The pressure tensor by GSH without gradients is

σi j = pT δi j + (1 − α)πi j − ηgv
0
i j − ζgv��δi j (30)

for hard grains. Therein the elastic pressure πi j is given by
(3), the seismic pressure pT by (16), the transmission factor
α by (29), and the granular viscosity by (25). The seismic
and viscous parts are negligible for small enough shear rates,
so that

σi j = (1 − α)πi j (31)

holds for slow rearrangements off free surfaces. With α by
(29) this means that the Cauchy stress is determined by the
elastic stress and the granular temperature. This equation of
state is evident for states of rest with Tg = 0 (Sect. 2.1),
but uncommon otherwise. It means that the seismicity soft-
ens the grain contacts so that they do not transmit the elastic
stress related with the average elastic deformation, while the
seismic pressure pT is negligible. Imagine a sample of para-
magnetic hard grains jammed in a stiff cage that indicates
σi j , and an oscillating electromagnetic field that produces Tg

in a short time and maintains it. The grains get first more
jammed by shaking with confinement, i.e. πi j rises without
immediate rearrangement, so that the observable stress by
(31) need not change much although the factor (1 − α) can
drop to ca. 0.2. The subsequent relaxation with constant Tg

via (22) by rearrangement without average deformation takes
longer with times in proportion to Tg , which could be used
to calibrate λ, and ends at a pressure pT which is negligibly
low except for ρ very near ρd .

The thought experiment for explaining (31) may also help
to justify the entropy production by (21). The term with T 2

g
was explained already further above. The one with Tg for the
heat production by seismic relaxation is due to intergranular
pressure and erratic oscillations without average rearrange-
ment (only the latter produces seismicity). The ratio of both
parts, roughly Bλ�5/3/γ Tg , could principally be estimated
by granular-dynamic simulations, whereas λ and γ can only
be indirectly calibrated.

In the range wherein (31) holds the thermal energy exceeds
the seismic one by far, ws � we < wt , so how can the seis-
mic activation matter more then the thermal one? ws goes
over into heat and mobilizes thus a minute fraction of the
grain molecules. Luong [32] observed that grain contacts of
dry sand get hot temporarily during slow skeleton deforma-
tions. This means an activation of contact dislocations by
seismic kinks, whereas the average thermal energy is too
small to activate dislocations in the bulk of hard grains.
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The rate of elastic stress by (3) is

π̇i j = Mi jkl u̇kl =
(

∂2we

∂ui j∂ukl

)
u̇kl (32)

with the elastic energy we by (5) or a better substitute. The
rate of the Cauchy stress by (31) is

σ̇i j = (1 − α)π̇i j − α̇πi j . (33)

The evolution equations for elements are completed by

ρ̇

ρ
= −vi i (34)

in case of isochoric grains.
The terms with α in (27) and (31) cancel each other in

the entropy production, so the transmission factor α does not
appear in the dissipation by (21). The latter is triggered by
the balance of seismic power (24), this dissipative detour via
heat-like seismicity is a key feature of GSH. Imagine a bicy-
cle with a gear shift. A bigger α implies more pedaling at
reduced torque, both with the same factor. The micro-seis-
micity reduces the transmission by the same factor as the
intergranular forces.

The coefficient α is a common example of an off-diago-
nal element in a Onsager force-flux relation, while those with
β, β1 of Eq. (18) are diagonal ones. Depending on the time
reversal properties, the off-diagonal elements are either sym-
metric or antisymmetric, in either case giving rise to the same
magnitude for the coefficients in two evolution equations.
This symmetry derives from the reversibility of the under-
lying, microscopic dynamics and is frequently referred to as
the Onsager Reciprocity Relation: Starting with the stress
and the evolution of shape, written as σi j = πi j − σ D

i j and

u̇i j − vi j = Xi j , where σ D
i j is the dissipative stress fraction

and Xi j the anelastic stretching rate, the entropy production
is

R = σ D
i j vi j + Xi jπi j + · · · , (35)

in addition to other terms that need not be specified here, see
[26]. Expanding the fluxes σ D

i j , Xi j in the forces vi j , πi j , the
Onsager force-flux relations are

σ D
i j = ζv��δi j + ηv0

i j + αi jk�πk�, (36)

Xi j = βπ0
i j + β1δi jπ�� + ᾱi jk�vk�, (37)

where the Onsager Reciprocity relation prescribes ᾱi jk� =
−αk�i j . As a result, the α-tensors do not contribute to R,
as one can verify by inserting (36, 37) into (35). Taking for
simplicity αi jk� = αk�i j = αδikδk�, we arrive at the relevant
terms of (28, 31).

Note that the viscosities η, ζ are different from ηg, ζg of
Eq. (30) and need to be added to them. These here account for
the conversion of macroscopic kinetic energy directly into
heat and were neglected above for simplicity. Since these

would be the only viscosities that exist in a solid or liquid,
we may refer to them as the solid viscosity.

Taking

η0 = 0, ζ0 = 0, (38)

in the expansion of ηg and ζg , see Eq. (25) [and having α→0
for Tg→0 such as given by Eq. (29)] would yield hypoelastic-
ity for vanishing shear rate. To see this, consider the station-
ary case of (24), ṡg = 0, implying γ T 2

g = ζgv
2
i i + ηgv

0
i jv

0
i j .

With Eq. (38), this results in a granular temperature that is
quasi-linear in the shear rate for γ1Tg � γ0,

Tg =
√
(ζ1v

2
i i + η1v

0
i jv

0
i j )/γ1, (39)

and quadratically small for γ1Tg � γ0,

Tg = (ζ1v
2
i i + η1v

0
i jv

0
i j )/γ0. (40)

The ratio of volumetric and deviatoric granular viscosities is,
for γ1Tg � γ0, taken as

ζg/ηg = ζ1/η1 = 1/3, (41)

implying

Tg = v̄s
√
η1/γ1, (42)

with the intensity of stretching given as

v̄s ≡
√
v0

i jv
0
i j + (ζ1/η1)v

2
kk ≈

√
v0

i jv
0
i j + v2

kk/3. (43)

In conjunction with Eq. (28), the first limit, Eq. (39), leads
to a rate-independent, hypoplastic regime, see Eq. (44). The
second limit ensures that the relaxation rate in (28) is of sec-
ond order, hence tiny, for very slow stretching. Neglecting it,
the system becomes hypoelastic for Tg→0, sustaining sta-
ble granular structures and propagation of elastic waves. In
addition, including only η1, ζ1 keep the results longer rate-
independent, because they contribute to terms in the stress
that are of second order in the strain rate, and hence negligi-
ble for the strain rates typical of soil mechanical experiments,
while including η0, ζ0 would lead to contributions that are of
first order, and more noticeable.

Retaining η0, ζ0 implies a return to hypoplastic behav-
ior in the limit of Tg → 0, with Tg given as T 2

g = (ζ0v
2
i i

+ η0v
0
i jv

0
i j )/γ0, formally identical to Eq. (39) for η0 �

η1Tg, ζ0 � ζ1Tg, γ0 � γ1Tg . Taking ζ0/γ0 � ζ1/γ1 and
η0/γ0 � η1/γ1, one can capture the observed, rather more
elastic response to minute vibrations near Tg = 0, more
below and in Sect. 3.3, where the attractors were possibly
better reproduced with η0, ζ0.

3.2 Monotonous deformations

Starting at rest (Tg = 0) a granular ‘element’ may be
deformed with constant stretching vi j . It starts with any
σi j = πi j andρ in the range allowed for equilibria (Sect. 2.1).
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Neglecting the quadratically small terms: pT ∼ T 2
g , ηgv

0
i j =

η1Tgv
0
i j , ζgvkk = ζ1Tgvkk = (η1/3)Tgvkk , and with α ≈ 0

by (29) for Tg → 0, the initial stress rate is σ̇i j = π̇i j =
Mi jklvkl by (31), (33) and (29) with (27) and (20), i.e. it
is hypoelastic. Gradually, the granular temperature increases
and saturates at the value given by Eq. (42).

Equation (42) is confirmed by the crackling noise of
sheared thin layers, this increases with the rate of shear-
ing and does not depend on the pressure. α increases up
to αh by (29) independently of v̄s if this suffices for getting
Th < Tg � Tb. For Tg � Tb the seismic and viscous terms
are negligible in (31), then (32) and (27) yield, with (33) and
α̇ = 0 by (42),

σ̇i j = (1 − αh)π̇i j = (1 − αh)Mi jkl

×
[
(1 − αh)vkl − v̄sλ

√
η1

γ1

(
u0

kl + λ1

λ
u��δkl

)]
. (44)

This relation is essentially hypoplastic (PSM): it is rate-
independent, Mi jkl and ukl are known functions of σi j =
(1 − αh)πi j by (31) and (32), the response polars by (44)
are eccentric ellipses with two components in case of cylin-
drical symmetry and ellipsoids otherwise, see the articles
by Kolymbas and Wu and Wu and Bauer in the book,
Modern Approaches to Plasticity [33,34]. As for hypoplas-
ticity the polars get bigger with more pressure p = σi i/3
and higher density, and are more eccentric with higher obliq-

uity
√
σ 0

i jσ
0
i j/p [25]. They steer the stress path for constant

stretching (i.e. proportional strain paths) towards a propor-
tional one, thus the SOM-attractor (Sect. 1) is visibly attained.
A promising quantitative agreement was achieved with the
dimensionless factor

λ
√
η1/γ1 ≈ 102, (45)

the parameters for the elastic energy named in Sect. 2.1,αh =
0.8 and λ1/λ = 0.1 as indicated in Sect. 3.1. As hypoplastic
relations have been amply validated for monotonous defor-
mations (PSM) this is a support of GSH, which in turn pro-
vides a physical base for hypoplasticity.

A closer look reveals some differences. The rate-indepen-
dence assumed for hypoplasticity does not hold by GSH for
transitions, and is restricted to the temperature range Th <

Tg � Tb. During a transition by GSH for a new constant
stretching the initial stress is swept out and a new stress path is
determined by the new deformation, and the density is grad-
ually changed except for isochoric deformations (vi i = 0).
Stress σi j , elastic stress πi j and seismicity Tg are related by
(31) throughout their evolution due to the imposed stretching.
This resembles a SOM-transition in the observable response,
but a gradual adaption of the hidden force-roughness to the
observable stress (PSM) is not assumed in GSH. The increas-
ing mechanical roughness is captured instead by the growth
of the scalar and less hidden Tg .

Equation (44) may also be applied to uniform stretching
with constant pressure σi i/3 and constant deviatoric stretch-
ing v0

i j which leads to Tg > Th , this comes close to usual tests.
With σ̇i i = 0 it yields the dilatancy ratio

vi i/v̄s = fd(σi j , ρ) (46)

with a function fd of stress and density which is determined
by the elastic energy we. A modified fd is obtained by keep-
ing one pressure component constant, e.g. σ3 in a triaxial test.
Equation (46) engulfs ample experience with sand and is also
obtained with hypoplasticity (PSM), it could be used to cal-
ibrate GSH-parameters appearing in (44). This is legitimate
although vi j is not precisely constant for constant pressure
σi i/3 and deviatoric stretching v0

i j as the slight deviation of
stretching vi j does not matter for Tg by (42) and for vi i/v̄s .
This argument may be extended to other monotonous defor-
mations with nearly constant vi j so that many observations
can be used for validation and calibration. A profound test
still awaits GSH: steady state and shear banding. This is being
worked out at the moment, and will be published soon.

Turning to monotonous deformations with strong changes
of stretching intensity v̄s , we need further GSH-parameters
and have to drop the rate-independence assumed with hyp-
oplasticity. Hypoplasticity works empirically for v̄s from
about 10−6 to 10−3 s−1. Combining (45) with the γ given
in Sect. 3.1 leads to η1 ≈ 10−2 Ns/(m2K) in (25). With it the
viscous stress fraction by (30) is negligible so that (31) suf-
fices in the indicated range of Tg . These estimates are crude,
but may suffice for the time being. A rise of

√
η1/γ1 by a

factor ε (1 < ε < 100, say) would replace Tg and Th by εTg

and εTh from (24) and (29), and λ by λ/ε from (45). Thus
the arbitrariness of ε does not matter for σ̇i j with Tg > Th

as long as pT and ηg v̄s are so small that (31) holds. A fur-
ther calibration will be needed and possible if impeccable
experiments with a wide range and jumps of v̄s are available.

If a monotonous evolution in the hypoplastic regime is
suddenly stopped the seismicity should decay within a time
of at most tg ≈ 10−3 s (Sect. 3.1). This would cause creep or
relaxation by (27) in the order of magnitude λTg�tg < 10−6

with legitimate initial Tg and elastic compression �. This
small amount suits to the experience with hard-grained sam-
ples that creep and relaxation do not arise after a sudden stop
(except near state limits were the seismicity increases with
unchanged boundary conditions). The stronger creep and
relaxation observed with quartz sand by Matsuhita et al. [3]
can be attributed to the grease between membranes and sam-
ples and to the servo-control (PSM). Tests with saturated
undrained samples in a stiff device without grease could bet-
ter confirm that changes from a stable state after a sudden
stop are negligibly small.

If a monotonous deformation in the hypoplastic range is
continued with the same deviatoric direction v0

i j/v̄s , but a
suddenly higher stretching intensity v̄s , the response by (44)
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just after the jump of v̄s is rather hypoelastic as the term with
(1 − α) dominates first, and gets hypoplastic by (32) after a
transition. This was similarly observed in isobaric shear tests
without membrane and grease by Tatsuoka et al. [35], such
experiments could serve for the calibration of η1 and γ1.

One of us (G.G.) produced stationary shearing of a thin
sand layer between rough plates with constant pressure and
a shaken base. The applied Tg from about 105 to 107 K was
nearly uniform as the diffusion factor χ exceeds by far the
layer thickness (Sect. 2.2), and the contribution of shearing
to Tg by (24) is rather uniform. The viscous part of stress
by (30) with (25) can be substantial with the high Tg and
v̄s ≈ 1 s−1, the entropic pressure pT by (16) is no more neg-
ligible and the seismic energy by (17) is no more quadratic
in Tg . Steady states could be captured with the generaliza-
tion of (32) (Sect. 4.1) for validation and calibration. They
could support (25) beyond the argument that (contrary to
thermally activated viscosity) more seismicity causes more
seismo-viscous resistance for a given v̄s .

3.3 Non-monotonous deformations

Deformations with reversals can occur in many variants, only
a few cases are considered here to show that GSH is realis-
tic also in that respect and that the parameters can be cal-
ibrated. We begin with isobaric cyclic shearing with small
amplitudes, go over to bigger amplitudes and consider also
seismically activated relaxation and creep. As before only
orders of magnitude are given for a qualitative validation by
means of attractors, and it is indicated how a more precise
calibration could be achieved.

Usual resonant column tests produce isobaric cyclic shear-
ing with pressure p ≈ 100 kPa, frequency f ≈ 102/s and
shear amplitutes ψ0 from about 10−7 to 10−4. The observed
response of sand is nearly rate-independent, about 1/100 to
1/10 of the pulsating part of the elastic energy is dissipated in
one shear cycle, and the densification towards a lower bound
ed is faster for higher amplitudes [36]. The half-life of seis-
micity τg by (12) and (25) is τg ≈ bρ/γ0 for small Tg . About
the same time is needed by (24) to attain a stationary Tg with
a constant v̄s . With the proposed parameters the time τg is
much shorter than the period 1/ f , thus the sand attains almost
seismic rest with Tg ≈ 0 periodically.

For sufficiently small amplitudes, Tg is small enough that
ηg ≈ η0 and γ ≈ γ0. Assuming a uniform harmonic shear-
ing ψ = ψ0sin(2π f t), the balance of seismic power (24)
yields the biharmonic granular temperature

Tg ≈ 2π fψ0
√
η0/γ0 [1 + cos(2π f t)]. (47)

This is an interpolation between solutions of (24) near rever-
sals and for extremal ψ̇ with τg � 1/ f . The rates of elastic
shearing ψe and volumetric strain � by (28) are thus rate-
independent. The stress rate by (33) with (29) is σ̇i j ≈ π̇i j

for small Tg . Thus its relation with stretching vi j is also rate-
independent by (47). A constant mean pressure, i.e. π̇i i = 0,
leads to biharmonic rates of volume change vi i as observed
[36]. The assumed element dilates shortly before a rever-
sal and contracts shortly afterwards. The observed damping
ratios for small amplitudes could be reproduced with

λ
√
η0/γ0 ≈ 1, (48)

but this is no more than a crude estimate. Quantifications
could be obtained with numerical simulations, therein the rise
of λ

√
ηg/γ with growing Tg should be taken into account.

Proper calibrations require tests with hollow cylindrical sam-
ples for better uniformity, and with observation of volume
changes for different small amplitudes. The cumulative den-
sification with constant pressure may serve to calibrateλwith
suitably scaled Tg .

As in the hypoplastic range (Sect. 3.2) a rise of η0/γ0 by
a factor ε, (1 < ε < 100, say) would increase Tg and Th

to εTg and εTh and would reduce λ to λ/ε. Thus a rather
arbitrary scaling of the granular temperature does not matter
as long as rate-independence is justified.

The argument may be extended to small harmonic oscilla-
tions with anisotropic mean stresses in the stable range. With
suitable

√
η0/γ0 the response is almost hypoelastic and the

anleastic part is nearly rate-independent. Biharmonic frac-
tions and non-linearity require again numerical simulations.
Cumulative changes of shape (ratcheting) are obtaimed with
GSH for anisotropic mean stresses. They could be observed
with twisted hollow cylindrical samples under anisotropic
mean stress, and used for calibration. Cylindrical samples
of usual resonant column tests get gradually non-uniform so
that evaluations get difficult (Sect. 4.3).

With bigger amplitudes Tg rises so that (47) and (48) are
not even crude estimates. They would yield more than 103K
for v̄s > 10−3/s, which is higher than in the hypoplastic range
with v̄s ≤ 10−5/s. This overlap is less embarrassing by intu-
ition than by theory. GSH yields again a nearly hypoelastic
response in the vicinity of periodic minute intervals with Tg

near 0. Pulsation between nearly hypoelastic and hypoplastic
behavior, rate-independent nearly also in between. Otherwise
Tg gets so big that ηg ≈ η0 and γ ≈ γ0 are no more justi-
fied, and the stress rate fraction by α̇ comes into play. This
causes rate-dependence except for monotonous sections in
the hypoplastic range. The uniformity of samples gets lost so
markedly that a periodic response can no more be obtained.
Therefore resonant column tests with big amplitudes (say
ψ0 > 10−4) can hardly be controlled.

Youd [37] imposed big shear cycles with constant pressure
p to drained saturated sand. A nearly p-independent low void
ratio e was reached with different initial e by shear strains
from ca. 10−3 to almost 10−1 with ca. 10 to 102 cycles per
minute. The plot of e versus shear strain tended to a double
loop with stronger contraction just after each reversal than
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Fig. 1 GSH simulation of a triaxial version of Youd’s experiments
(see text), with the pressure kept constant, e denoting the void ratio, and
γ ≡ εzz − εxx the total shear strain. The curves are obtained taking the
maximum and minimum void ratios as 0.875 and 0.58, B0 = 7 GPa,
γ0/bρ = 25 Hz,ρ = 0.95ρd (implying a void ratio of e = 0.63), and the
dimensionless parameters (see “Appendix”) as

√
ζ1γ1/bρ = 3.6×104,

λ1/λ = 0.09, λ
√
η1/γ1 = 114,α = 0, (γ0/γ1)

2 b0ρd/B0 = 2×10−17,
η1/ζ1 = 3

dilation just before, see Fig. 1. With the applied intensity of
stretching v̄s from ca. 10−4 to 10−2/s the granular temper-
ature Tg ranges from ca. 103 to 105 K by (42) with (45). It
was nearly constant in each test as the changing volumetric
strain matters little for Tg by (24) with (41), and as the rest-
ing intervals at reversals were much shorter than the shearing
periods.

Youd’s [37] experiments are impaired by repeated shear
localizations with the applied big amplitudes (PSM). A better
uniformity could be achieved in isobaric triaxial tests with
smoolth endplates and so low axial deformation amplitudes
that the stress obliquity remains subcritical. One can expect
a densification up to lower average densities ρ for lower
amplitudes, and an asymptotic double cycle of ρ (PSM).
This is also obtained with GSH. Equation (27) with (19)
and (42) indicate a more rapid cumulative densification for
more intensive shearing, and with (31) for σ̇i i = 0 it reveals
a stronger amount of contractancy vi i/v̄s after a reversal than
of dilatancy before. An attractor near ed with a double loop is
also obtained by numerical simulations with GSH, this could
serve to calibrate λ and ρd . Fig. 1 shows that a gradual densi-
fication is obtained with GSH as in Youd’s tests, a saturation
with a sufficient number of cycles and an asymptotic dou-
ble cycle of void ratio versus shear strain is also reproduced.
A quantitative agreement can be achieved with experiments
which are underway, these will also enable to calibrate η0

which matters only for small amplitudes near the attractor.
Wichtmann et al. [38] imposed isochoric deformation

cycles to saturated sand in undrained triaxial tests. The
implied zig-zag plot of strain vs. time means a constant
stretching intensity v̄s ≈ 3.10−6/s (negligible resting inter-

Fig. 2 GSH simulation of Wichtmann’s experiment [38], depicting the
relaxation of q ≡ σzz − σxx and the pressure P in triaxial geometry,
keeping the volume constant and the shear oscillating, εzz = 3.8×10−4,
at e = 0.663. Inset amplifies the last calculated cycle. Parameters are
the same as in Fig. 1

vals), i.e. Tg ≈ 3000 K by (42) with λ = 10−6/(sK). The
observed zig-zag stress paths tend to a double cycle for high
densities ρ or big amplitudes, and to a decay otherwise. A
similar seismically activated relaxation up to a double stress
cycle is obtained with (27) and (19) by numerical simulation
(Fig. 2) and could serve to calibrate λ. As in the experiments
the asymptotic state cycle (attractor) is only obtained with
sufficient density and amplitude, otherwise the stress dwin-
dles completely. Variations of stretching intensity v̄s could
reveal how far a rate-independent approximation is valid. The
simulated asymptotic double stress cycle resembles observed
ones for low void ratios, although these are distorted by the
variable penetration of grains into the confining membrane
(PSM).

Wichtmann’s [39] triaxial tests with small stress cycles
imposed to drained saturated sand enable a further valida-
tion and calibration. Jiang and Liu (to be published) simu-
lated such evolutions with parameters from the present paper
and reproduced Wichtmann’s flow rule for cumulative defor-
mations except near critical stress obliquities. The flow rule
can be seen from (27) for constant mean stress, which yields
a relation of stress ratios with stretching ratios for Tg ∝ v̄s .
The factor λTg for the intensity of seismic creep and relax-
ation replaces an elaborate empirical factor in an accumula-
tion model by Niemunis et al. [40]. Wichtmann’s [41] results
could be used to calibrate λ,

√
η1/γ1, and also

√
η0/γ0.

A closer look reveals some intricate points. Wichtmann’s
[41] flow rule holds even for overcritical stress obliquities,
whereas these are taken to be unstable in GSH—though
there is of course a characteristic time associated with the
instability, and for time spans smaller this instability may
persist also in GSH: GSH excludes already critical average
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Fig. 3 GSH simulations of the
Ibsen’s experiments in triaxial
geometry [42], with a constant
volume, e = 0.663, and an
oscillatory shear stress
τ ≡ σzz − σxx , while the
pressure σ ′ relaxes and the shear
strain γ ≡ εzz − εxx grows. As
observed the asymptotic stress
cycle is a narrow lense which
touches the yield line for steady
states. Parameters are the same
as in Fig. 1

(a) (b)

obliquites, for which shear bands arise and disappear with the
same rate. Asymptotic state cycles in the subcritical regime
could not be attained by Wichtmann [41] and are not incor-
porated in Niemunis’ et al. [40] theory. They are produced
by simulations with GSH (Jiang and Liu, to be published)
and are principally preferable for validation and calibration
(PSM).

Stationary ratcheting was obtained e.g. (PSM) in
undrained triaxial tests with deviatoric stress cycles by Ibsen
[42]. He indicates without quantification that the asymptotic
stress cycles are lenticular with at most critical obliquity, and
that the mean pressure decreases or increases in the transition
for initially medium or very dense samples, respectively. This
is qualitatively reproduced by simulations with GSH (Fig. 3),
which could provide a calibration of λ and the parameters for
Tg . Other than in Wichtmann’s [41] tests a flow rule for the
average stress and rearrangement would require a kind of
seismic pressure, but this should be rather rate-independent.
As observed the asymptotic stress cycle is a narrow lense
which touches the yield line for steady states. Further triax-
ial tests of this kind are underway and needed as the published
ones yield at best qualitative attractors (PSM).

Recent constitutive models for sand with hidden state vari-
ables (PSM) are partly supported by GSH, and could thus
be superseded. The assumed rate-independence is justified
near states of rest and in the hypoplastic range, but cannot
be defended for arbitrary reversals (cf. end of Sect. 3.2). El-
astoplastic relations with back stress work with a narrow
elastic range and different flow rules for deviatoric loading
and unloading, whereas GSH produces an infinitesimal elas-
tic range and anelastic flow nearby. Hypoplastic relations
with intergranular strain imply an infinitesimal elastic range,
and they reproduce the cumulative densification or relaxation
as by GSH which is not achieved with recent elastoplastic
models [43]. The hidden variables in both models may be
related with a variable force-roughness, but their evolutions
can hardly be judged and the energetics is not clear. Cali-
brations and validations are rather cryptic with both models,
whereas calculations get more transparent with GSH, see
“Appendix”.

3.4 Collapse modes at the verge of stability

The elastic energy we of an element at the verge of stability
is not changed by certain differential changes dui j and dρ of
elastic strain and density (Sect. 2.1). One can as well write
u̇i j and ρ̇ for this eigenvector, but how can it be related with
a collapse mode ve

i j as for state limits? The volumetric part
of ve

i j is given by (34), i.e. ve
i j = −ρ̇/ρ. It differs from the

elastic fraction ue
ii in general. Starting at rest (Tg = 0),

u̇e
ii = ve

ii − λ1Tg3uii = −ρ̇e/ρ − λ1Tg3uii (49)

holds by (28) with α = 0 from (29). The emerging Tg is thus
proportional to the intensity of elastic stretching at a critical
point. With uii = −�, (27) and (49), the collapse mode is
related with the eigenvector by

ve
i j = u̇e

i j + 1

3
(ρ̇e/ρ + u̇e

ii )

(
λ

λ1�
u0

i j − δi j

)
. (50)

It is rate-independent and could be normalized with the inten-
sity v̄e

s by (43), this correspondends to observed modes for
state limits (PSM). A rearrangement along an eigenmode at
the verge of convexity means that the elastic energy we is
differentially indifferent, i.e. ẇe = 0 for the indicated ve

i j
and ρ̇e/ρ. Thus the mechanical power imposed to an RSE is
maximally transformed into seismicity, whereaswe increases
for other differentials of elastic strain and density.

Consider for illustration a cylindrical sample with a dead
load. Equation (50) can be written with principal compo-
nents, dead load means σ̇1/σ1 = − ve

2. The element may
have constant radial pressure or volume. A state at the verge
of stability may be attained by axial shortening with smooth
plates. Switching then to dead load causes a spontaneous
growth of seismicity. The cylinder gets shorter and wider up
to a new shape and state of rest with the given dead load.
Such a chain reaction may be considered as a succession of
eigenvalue problems as long as the RSE is at the verge of
convexity. Observed states and rates of shape and state at the
verge of stability could be compared with calculated ones.

A precise validation and calibration gets difficult as the
verge of stability cannot be attained with uniform stretch-
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ing, and as the representation of we by (5) does not suffice
(Sect. 2.1). Real samples exhibit chain reactions including
localized shearing with dilation or contraction. Uniform state
limits may at best be assumed for spatial averages, experi-
ments reveal localizations for overcritical stress obliquities
(PSM). Bifurcations with new (presumably polar) degrees
of freedom for localized granular phase transitions are left
aside for the moment, it is not yet clear whether these are
necessary.

4 Non-uniform-evolutions

4.1 Evolution equations, initial and boundary conditions

In general the granular entropy production is given in GSH
by

Tg[∂t sg + ∇i (sgvi )] = Rg = −γ T 2
g + ζgv

2
ll + ηgv

0
i jvi j .

(51)

With the term ∇i (sgvi ) from the smoothed velocity vi the
left-hand side is Tgṡg for a convected ‘element’. Aside from
the term −γ T 2

g , the right-hand side is positive definite as
required by the Second Law of thermodynamics (Sect. 4.2).
The factor Tg and the viscous terms (with vi j = (∇iv j +
∇ jvi )/2) are the same as in (24), the viscosities depend on
Tg by (25).

The general thermal entropy production in GSH is more
complex, viz.

T [∂t s + ∇i (svi − κ∇i T )] = R ≡ γ T 2
g

+ κ(∇i T )
2 + βρ(∇ j π̄i j )

2 + βπ0
i jπ

0
i j + β1π

2
ll (52)

for hard grains with negligible thermally activated viscosity.
The left-hand term κ∇2

i Tg in (52) with the thermal diffusion
factor κ in addition to ṡ corresponds to the term χ2∇2

i Tg , it
is a source of entropy off equilibrium. The term γ T 2

g is the
same with opposite sign as in (51) for the balance of energy.
The term κ(∇i T )2 is a further source of entropy as ∇i T = 0
holds at a thermodynamic equilibrium. The terms with ∇i T
remain for seismodynamic equilibria and serve then to cal-
culate the field of T from the one of Tg by (51). The term
with

π̄i j ≡ πi j − ρgir j , (53)

the vector of gravity gi and the position vector ri , contribute
to the entropy production as ∇i π̄i j vanishes by (55) at a ther-
modynamic equilibrium. Factor T and the further right-hand
terms in (52) are the same as in (18). This is thus properly
extended as it is positive definite in all deviations form ther-
modynamic and seismodynamic equilibria.

The general evolution equation for the elastic strain reads

u̇i j ≡ ∂t ui j + ∇i (u jkvk) = (1 − α)vi j

−ui j

τ
− ullδi j

τ1
− βρ∇k

(∇iπ jk + ∇ jπik)

2
. (54)

Except for the convective term this agrees with (27) and
may be substituted with (19). The further term with a relax-
ation factor β p accounts for dissipative forces to eliminate
∇kπik—quite analogously as ∇k T is eliminated. It is a ‘force’
for the entropy production by (52) with (53), with its two parts
it preserves the symmetry of the tensor ui j .

The total stress tensor in GSH is generally given as

σi j = pT δi j + (1 − α)πi j − ηgv
0
i j − ζgvllδi j − ρgir j (55)

for hard grains. The evolution equations are completed by
the conservation equations for mass

∂ρ/∂t + ∇i (ρvi ) = 0 (56)

and linear momentum,

ρ(g j + ∂v j/∂t + ∇ jv
2
l ) = ∇iσi j (57)

with gravitational acceleration gi . The Eqs. (51), (52), (54)
and (55) are the only legitimate ones of first order in the
elastic strain within the hydrodynamic theory, extended by
granular temperature and entropy. Transitions to equilibria
and deviations from it are properly captured (Sect. 4.2).

The representations for the elastic and kinetic energies
need not be the ones by (5) and (10) with density-depen-
dent factors B and b, but they must satisfy general require-
ments. The Onsager matrix for the relation of “forces” and
“flows” may have more than the one off-diagonal coefficient
α. Further off-diagonal coefficients need to be introduced
as necessitated by experimental data, rendering the granular
hydrodynamic theory more intricate, see “Appendix”.

Boundary conditions are needed in addition to the ones
for equilibria (Sect. 2). Usual thermostats may suffice, seis-
mostats for Tg have to be clarified (Sects. 2.2, 2.3 and 4.5).
Pressure-free boundaries should be avoided because of decay
(PSM), boundary pressures can be imposed via a membrane
or mat. Adjacent deformable solids can be elastic and can
move alongside with the granular body, but not in general.
The granulate can move together with a solid at a rough sur-
face, but can also slip or get separated. Boundaries with mov-
ing solids can be intricate, only a few simple cases will be
considered in the sequel.

Initial conditions for the field variables will usually be
specified for a state of rest (i.e. vi = 0 and Tg = 0). The
density field (or e instead of ρ) has to be estimated from the
kind of placement or from probing. The stress field σi j = πi j

at rest may be determined by ∇ jσi j = ρgi , and is (as the den-
sity ρ ) severely confined by stability (Sect. 2.1). Assuming
a straight previous elastic strain path and rigid boundaries
without or with activated friction is a legitimate approach to
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πi j if an initial ρ field is given [24]. Attractors in the large
(Sect. 4.3) may instead be employed if the past is adequately
known (Sect. 4.3). This can lead to πi j and also ρ in case
of past seismicity. Otherwise the initial state remains rather
indeterminate, and thus also the onset of subsequent evolu-
tions (PSM).

4.2 The total energy

Consider a granular body with adjacent rigid or elastic bodies.
The interfaces are rough or smooth so that grains are fixed
or can slide along solids. Shear localization and decay may
be excluded for simplicity, particularly along interfaces and
free surfaces. The total energy is

E = Eg + Ee + Ek + Et (58)

with gravitational, elastic, kinetic and thermal parts. The lat-
ter may frequently be ignored, especially if T is kept constant.
With specific energies per unit of volume E can be expressed
by the integral

E =
∫
(wg + we + wk + wt ) dV (59)

over the volume V of connected granular and solid bodies.
Movable boundaries with fluids require additional surface
integrals, e.g. along a confining membrane with pressure
from a reservoir. The specific gravitational energy wg of
quartz sand changes by roughly 20 J/m3 for a change of height
by 1 mm. The specific elastic energywe of sand has the same
order of magnitude for 100 kPa mean pressure (Sect. 2.1), i.e.
ca. 10 m below a free surface. The heat-like seismic energy
ws is roughly 10−3 J/m3 for Tg = 106 K with the b0 given
in Sect. 2.2, and is thus negligible for E in the hypoplastic
regime—let alone the hypoelastic one. The kinetic energy
ρvivi/2 from the average velocity vi may also be neglected
for slow evolutions to which we focus in the sequel.

The stablility should be judged by means of E for station-
ary boundary conditions. These imply adjacent solids which
can be movable and may be shaken (seismostats), and mov-
able granular surfaces. The balance of linear momentum can
be substituted by the principle of virtual work, but this does
not mean an extremum of E in general. Only equilibria with
stationary position and state have δE = 0, i.e. E is differ-
entially stationary for variations of position and state. Stable
equilibria require δ2 E > 0, unstable ones have δ2 E < 0, and
δ2 E = 0 holds at the verge of stability for certain variations
of position and state.

The functional dependence of the energy E on the state
field (ui j , ρ) and its change during a collapse is not suffi-
ciently determinate in general. It is not yet clear when and
how eigenvector fields (modes) for neighboured static equi-
libria could be calculated with GSH. Collapse does not mean
a kinematic chain (collapse mode) in general with limit stress

states as often assumed (PSM), but a chain reaction by a
succession of modes. This could mean that the rate-depen-
dence as for elements near Tg = 0 (Sect. 3.4) is not justified
in general. As this problem is not yet solved, we focus on
seismically activated stabilizations, i.e. quasi-static evolu-
tions with slowing-down redistributions of position and state
which are driven by stationary shaking and gravity. This
means dE/dt < 0 with d2 E/dt2 > 0 and requires suit-
ably specified seismostats. The shaking of adjacent solids
may be harmonic or intermittent and should produce a sta-
tionary field of period-averaged seismicity T̄g . Stabilizations
tend to a stationary energy, but this asymptote (which is not a
seismodynamic equilibrium) need not be attained in applica-
tions. A stabilization may be called self-healing if a desired
configuration and state is regained after a damaging action.

Let us see by means of examples how this could work with
GSH. Consider first an elastic pile which is clamped at the
bottom and surrounded by a sand layer. At the beginning the
pile may be upright and the sand dense. The energy without
seismic and thermal parts, i.e.

E = Eg1 + Eg2 + Ee1 + Ee2 (60)

for pile (1) and sand (2), increases by pushing the pile head
and decreases partly by its release. A part of the imposed
mechanical work is regained by unloading, a major part is
dissipated by loading and less by unloading. The remain-
ing part is elastic (Ee1 and Ee2 grow) by jamming of the
unloaded pile and the sand nearby, plus gravitational by tilt-
ing of the pile with head structure and by lifting of dilated
sand (reduction of Eg1, rise of Eg2). One could calculate E
with elasticity for pile and GSH (or an equivalent) for sand,
but this is not needed to judge the potential of self-healing.
Shaking of bottom or pile head causes relaxation of pile and
sand plus settling of sand by densification. E returns to the
previous minimum with upright pile and dense sand, and
remains there with continued shaking.

Not quite, however, as a closer look reveals. Shaking
with stationary, but inevitably non-uniform Tg would lead
to a seismodynamic equilibrium with complete relaxation,
hydrostatic pressure and almost maximal density (Sect. 2.2).
This would take such a long time that it could not really occur.
A shaking base would excite sand and pile via hysteretically
damped waves. The bigger amplitudes near the pile and the
free surface prevent a complete relaxation and densification.
Shaking the pile head can excite the neighboured sand only
as far as seismic waves are generated in the interface of pile
and sand and are propagated. A strongly distorted and very
flexible pile could not return by shaking its head, and the
sand nearby would be strongly dilated and contracted with a
rather low average density.

Such evolutions could principally be simulated with GSH,
but the numerical expenditure would be enormous and inad-
equate. In spite of an initial indeterminacy one may state that
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a pile in sand is capable of self-healing if it is stiff enough
and its foot is clamped. A mat upon the sand surface should
prevent skeleton decay and reduce the amplitudes (PSM). If
a solid layer is not available to fix the pile foot this should be
so deep that it is not bent. This could be assessed with GSH
(or a substitute) for a new strong loading after self-healing.

Consider now a rigid tower with a shallow foundation
upon sand. With high density a minute tilt δψ from the
upright position changes the energy by

δ2 E =
(

−mghg + c1 B
( mg

Bb2

)1/3
b3

)
(δψ)2 (61)

with tower mass m, centre of gravity height hg and foundation
width b. The hypoelastic stiffness is proportional to B and to
(pb/b)1/3 by (3) and (32) with base pressure pb ∝ mg/b2.
The factor c1 is determined by the base shape and the pressure
distribution below, which could be estimated with Jiang and
Liu’s [22,23] Granular Elasticity. The tower is at the verge of
stability for δ2 F = 0 and would topple in a chain reaction.

A lower hg/b is necessary for self-healing from a tilted
position with lifted sand by dilation nearby. The tower would
topple if E is at the verge of convexity, but δ2 E can no more
be calculated as by (61). The pressure and density distribu-
tion under a tilted tower could no more be estimated as the
GSH-equations get ill-posed for neighboured static equilib-
ria. The mode for δ2 E = 0 is not hypoelastic as it implies an
anelastic densification and an average base settlement.

A more feasible approach requires a slenderness and tilt
well below the verge of stability. A safe tilt could be estimated
with GSH (or an equivalent) for a temporary design load. This
leaves back a skew near-field of stress and reduced density.
Subsequent calculations could be carried out with small hor-
izontal load cycles ±�H . If the tower turns back for any
height and direction of�H self-healing may be expected. A
few test cycles would indicate how the tower returns and how
dilated sand is densified. This was done by Sturm [44] with
hypoplastic and elastoplastic relations and was validated by
model tests.

A more elegant approach could be achieved with an aver-
age stationary filed of granular temperature T̄g by contin-
ued shaking with small amplitudes. In the stable range the
response is nearly hypoelastic (Sect. 3.3). With a hysteretic
energy loss of about 1/100 per cycle the geometric damp-
ing by radiation of elastic waves dominates for wavelengths
above ca. b/10. The stress- and pressure-dependent stiffness
may be substituted by an average modulus and a Poisson ratio
ca. 1/3, i.e. a constant velocity cs of transversal waves. The
amplitudes of harmonically excited blocks on an elastic half-
space can be calculated by means of substitute stiffness and
damping factors, which depend on frequency f , for wave-
lengths cs/ f < b/2 [45].

The imposed power is radiated off in proportion to the
kinetic energy of the block. Period averages of stretching

intensities can be estimated by v̄s ≈ f V̄s/cs with resul-
tant velocities V̄s . These can be obtained for the block as
indicated, and can be estimated for the near-field from the
balance of power by assuming its spatial distribution. Small
amplitudes yield T̄g ≈ v̄s

√
η0/γ0 by (47). This determines

the average elastic strain rate ˙̄ui j by (27) with the average
stretching v̄i j , and the average stress rate ˙̄σi j by (31) and
(44).

If the T̄g-field is thus given in sufficient detail one can cal-
culate the field of average stretching v̄i j and and stress rate ˙̄σi j

by means of the balance of momentum. Estimates may suf-
fice instead as the input data are rarely precise. Zones with
negligible average stretching (v̄i j = 0) experience seismic
relaxation with an alignment by the average stress via ūi j

and (3), and an intensity

| u̇i j |≈| ui j | λT̄g. (62)

Zones with negligible relaxation experience seismic creep
with an alignment by ūi j and an intensity

| vi j |≈ 2�λT̄g, (63)

wherein | ui j |≈ 2� is assumed for simplicity. As outlined
in Sect. 3.3 λTg is not changed by rescaling Tg via

√
η0/γ0,

this eases the calibration. Typically λTg ranges from about
10−8/s to 10−5/s for small amplitudes.

The field of density and stress is skew after a temporary
horizontal loading and could turn back the tower slightly. Its
relaxation by 1/10 (say) needs a time τr ≈ 0.1/λT̄g . With a
suitable stress alignment a tilt of 10−2 (say) is returned by
seismic creep in a time τc ≈ 10−2/�λT̄g . With � ≈ 10−3

this means τc/τr ≈ 102, i.e. self-healing occurs mainly by
creep as the relaxation ends much earlier. So the tower could
be pushed back by skew pressures at best at the beginning,
but how can it return further on?

Sturm [44] showed with hypoplastic relations that sand
under the risen side of a foundation is more dilated than
under the lowered side, and settles more by average-free cyc-
lc loading at the higher side so that the tilt is reduced. The
sand is almost equally distorted on both sides by a forced
tilt, but less dilated with increasing pressure on the former
leeward side than with decreasing pressure on the windward
side. The energy drops faster with a back-tilt as thus the sand
loses gravitational energy more rapidly. The rise of the cen-
tre of gravity by back-tilt is more than compensated by an
average settlement, which goes on after the tower is upright
and the sand is re-densified. This is confirmed by model tests
and calculations [44].

The proposed method could also be applied to other foun-
dations, but with less precision. The T̄g-field around a pile
by a head excitation may be estimated by means of elastic
waves, but this is debatable with the bigger amplitudes near
the pile. A floating pile which was tilted down to its foot can-
not turn back as E can be the same for different tilts. A group
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of piles cannot turn back and can even rise by strong head
shaking with a permanent moment until the whole structure
collapses.

A single pile can move past sand with axial symmetry.
With high density and monotonous shift the resistance at
the shaft rises strongly as the sand is jammed by confined
dilation. Rebstock [46] could reproduce observed resistances
with hypoplasticity, but not the strong unjamming by further
shifting. The latter can be attributed to a dramatic rise of Tg

by localized shearing, this is not in the present reach of GSH.
The sand is relaxed by periodic shaking of the pile head, this
could be estimated by (62) with T̄g from elastic waves via
(24). The pile creeps with increasing rates under an axial
dead load. An estimate by (62) gets debatable near the verge
of stability as then waves can no more be propagated.

4.3 Attractors in the large

The observed asymptotic response of sand bodies with suit-
able boundary conditions can be used for validation and cal-
ibration of calculation models (PSM). Such attractors in the
large will be discussed here with GSH. They can also help to
understand limitations and to specify boundary conditions,
in particular with shaking.

SOM-fields (swept-out memory) can be obrained with
monotonous displacements of soil bodies past sand, and also
by filling and excavation as long as localized shearing and
collapse are avoided. This was observed e.g. with a con-
crete block by pushing it into sand with a skew guided jack
(PSM). Apart from an irregular onset due to indeterminate
details of installation one could thus validate and calibrate
GSH beyond element tests. Spatial fluctuations of stress and
void ratio are partly ironed out by monotonous deformations,
this gain of symmetry could also be obtained with GSH in
the stable range.

The symmetry can get lost if the verge of stability is
reached and the boundary conditions prevent a stabilization
(Sect. 4.2). A block with a dead load can topple suddenly,
whereas sand near a penetrating guided pile can be homog-
enized by approaching state limits in the near-field. Moving
a wall past sand leads to shear bands and earth pressures
which deviate from Coulomb’s assumptions. Such critical
phenomena with a sudden drop of energy and spontaneaus
new degrees of freedom are beyond the present reach of GSH.

Periodic state fields can be attained by slow cyclic dis-
placements of solid bodies past sand, and also with superim-
posed monotonous shift (ratcheting). For instance, a pile in
sand can wake an asymptotically cyclic reaction by shifting
it repeatedly up and down, and also with additional monot-
onous shifting. Pressure and void ratio in the near-field can
get periodic, their averages are determined by the amplitudes
and the far-field. Periodic fields can also be generated with

torsion, tumbling or driving (PSM). The attained symmetry
gets lost by critical phenomena in case of too big amplitudes
or insufficient guiding.

The back-analysis of evolutions up to periodic fields gets
cumbersome or impossible with elastoplastic or hypoplastic
relations as the equations are rather obscure, in particular with
hidden variables needed for reversals. The GSH-equations
remain transparent although a spatio-temporal intermittent
seismicity cannot easily be captured. The often assumed rate-
independence could be checked and superseded by means
of periodic attractors. It is justified for the hypoplastic range
and as far as the duration of waiting intervals does not matter.
Rate-dependence arises near reversals due to drastic changes
of streching, its observation can be of use for calibration
(Sects. 3.2 and 3.3). Initial fluctuations are ironed out by
intermittent seismicity in the stable range. Critical phenom-
ena are left aside as strange attractors are not yet at hand.

The approach with nearly hypoelastic relations proposed
in Sect. 4.2 could also work with attractors in the large. The
stretching of samples in usual resonant column tests, e.g.,
is not spatially uniform. A seismically approached periodic
density field may be assumed (Sect. 3.3), but a closer look
reveals defaults. A stationary non-uniform period-average
T̄g would mean an average rate of densification by (63), this
would require λ = 0 for a stationary average density. Like
the amplitude T̄g should be proportional to the distance r ,
this requires an excess of axial pressure near the axis so that
the sample can get shorter by seismic creep, which in turn
excludes Tg = 0 for r = 0. A back-analysis of observed
attactors will therefore be difficult.

Resonant column tests with shearing amplitudes above ca.
10−4 do not lead to a periodic response as samples lose the
cylindrical shape. One may doubt a periodic attractor also
with smaller amplitudes as a visible loss of shape could take
more time than spent unsually. Therefore estimates like (62)
and (63) cannot easily be improved. This holds also true with
anisotropic average stresses: the sample creeps indefinitely
and loses its cycindrical shape so that a periodic response
cannot strictly occur.

Consider now the propagation of plane waves by GSH in
a dry sand layer from a solid base. Without inclination and
with small amplitudes Tg gets nearly biharmonic as by (47),
and reduces the amplitude off the base by seismic damping.
The stationary vertical pressure by weight causes biharmi-
nic oscillations of density. The amplitude grows near a free
surface so that Tg is no more biharmonic. The layer is densi-
fied by repeated propagations if it is not dense from the very
beginning. If the layer has a subcritical inclination it moves
downwards by each propagation.

An attractor in the large can be attained by stationary shak-
ing of the base. With small amplitudes the average density ρ̄
comes close to the upper bound ρd near the base. The aver-
age horizontal pressure gets stationary by relaxation with
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few propagations, the stress cycles get symmetric. A zone
with periodic changes is approached earlier near the base,
the lower Tg further above due to damping causes a slower
approach. With a subcritical inclination the layer tends to a
kind of stationary ratcheting with asymmetric stress cycles.

With bigger amplitudes Tg is no more biharmonic and
reduces the amplitudes more markedly off the base. With
strong shaking the kinetic energy from the base can no more
be propagated by waves as the sand loses its average elastic
energy by relaxation. Then the seismicity is only spread by
diffusion with small half-value lengths (Sect. 2.2). Needles to
explain that simulations get harder with bigger amplitudes,
and as yet impossible beyond the verge of stability due to
localizations.

Further attractors with small amplitudes can be related
with the examples in Sect. 4.2. The self-healing of a clamped
pile in sand can occur by exciting its head horizontally. If its
oscillation amplitude u0 is lower than ca. 10−5 times its diam-
eter d the T̄g-field may be estimated via the propagation of
elastic waves. An attractor is approached with the paceλT̄g by
(62) and (63). One could observe with higher frequencies f
how far the pace is proportional to u0 f as by GSH for low Tg .

An asymptotically periodic response could be exploited
with more expenditure. The overall compliance and damp-
ing of the sand could more easily be observed than the
distribution of bending and densities. The latter could be cal-
culated iteratively with GSH for validation and calibration.
This would also work with a weakly tumbling pile head.
Bigger amplitudes could cause so high Tg that the sand gets
totally unjammed near the pile and cannot propagate waves.
The observed sinking of turbine foundations into dense sand
by a few cm per year (V. Ilyichev, personal communication)
could serve for calibration.

A tower with a shallow foundation and low enough centre
of gravity could turn back and redensify neighboured sand
by means of a symmetric head excitation, during and after
this self-healing its sinks further on. The pace decreases as
a growing part of the imposed kinetic energy is absorbed by
the increasingly embedded flanks of the foundation, and due
to on-going densification below if the sand was not dense
before. The observed amplitude-dependent pace could be
used for calibration. The repeated return of a TV tower in
Moscow with a ring foundation on dense sand (B. Mazur-
kiewicz, personal communication) could serve for calibra-
tion.

A pile with guided foot and a vibrator on top can produce
axi-symmetric attractors in surrounding sand (PSM). With-
out average shift the state cycle field for small amplitudes
could be simulated by means of almost hypoealstic waves,
this could help to validate GSH near Tg = 0. With a station-
ary average shift and small amplitudes shear waves cannot
likewise be propagated, simulations could then help to under-
stand the verge of convexity. A kind of granular flow could

also be generated with bigger amplitudes, but then critical
phenomena could impede calculations.

Torsion tests with vibrators enable further periodic attrac-
tors (PSM). A loss of symmetry can be avoided with guided
twisted solids at sand and control of average pressure p̄ or
density ρ̄. Without average shift the asymptotic ρ̄ or p̄ is
determined by the controlled p̄ or ρ̄, respectively, and by
the amplitude ψ0 and frequency f . An annular thin layer
between rough horizontal and smooth vertical rings could
get so uniform that that it may be considered as an element.
Vibrations from above or below could generate a uniform
time-averaged seismicity. Steady states with stationary shift
and weak shaking could similarly be evaluated; T̄g gets higher
by average shearing, but could be low enough for neglecting
the viscous resistance and the dynamic pressure.

Periodic fields with radially and axially decreasing seis-
micity could be obtained with twisted and shaken axi-
symmetric solids in sand. Without average torsion and with
small amplitudes the field of T̄g − T could be estimated by
means of hypoelastic waves. Simulations with GSH could
show how far this works, this could likewise be tried with rat-
cheting. Stationary fields could also be obtained with stronger
shaking as long as deterministic chaos beyond the verge of
stability is avoided.

Continuously vibrating solids may be named seismostats
if they generate stationary T̄g-fields in adjacent granular bod-
ies. Other than with thermostats a net input of seismic power
is needed for the loss into heat. The seismic energy is spread
by diffusion in case of seismodynamic equilibria, and by
hypoelastic waves in the differential vicinity of thermody-
namic equilibria. For cases in between the GSH-equations
are non-linear so that numerical iterations are needed even for
layers with gradients only along the normal. Simplified equa-
tions like (1) for estimating Tg-fields could thus be improved.
Some field observations during earthquakes (PSM) could
serve for validation and calibration.

5 Conclusions and outlook

5.1 What has been achieved

The present paper provides arguments for the validity of GSH
and proposes some improvements and quantifications. The
verge of stable equilibria seems to agree with state limits,
both cannot be attained with uniform deformations. Seismo-
dynamic equilibria are scaled by means of granular boiling
with an estimated Tg ≈ 109 K for dry fine sand. This suf-
fices for the mainly considered slow evolutions with granu-
lar temperatures Tg below ca. 106 K, although seismometers
for measuring Tg are not yet available. The seismic energy
ws ∝ T 2

g matters more than the thermal one wt in spite of
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ws � wt as only grain contacts are affected byws during its
transition into heat.

A thought electromagnetic excitation helps to understand
that the transferred stress is proportional to the elastic one,
can be smaller and dwindles in case of constant Tg . Only few
parameters are needed for the hypoplastic range with monot-
onous isotachic deformations. The observed rate-dependence
just after a sudden rise of stretching intensity v̄s suits to GSH,
but could not yet be quantified. The known crackling noise
supports Tg ∝ v̄s independently of pressure p for constant
v̄s .

The rate-independent small hysteretic damping ratio in
resonant column tests suits to GSH for small Tg , this supports
the proposed granular viscosity η0 for Tg = 0 and explains
the observed almost hypoelastic behaviour near states of rest.
The rate-dependence for bigger amplitudes by GSH cannot
be quantified by such tests as then the samples lose their cylin-
drical shape. Isochoric cyclic deformations cause a gradual
relaxation in triaxial tests, its reproduction by GSH can be
used for calibration. The densification up to double cycles
of void ratio, observed with isobaric cyclic shearing and
different amplitudes, can likewise be reproduced, and also
asymptotic stress cycles by isochoric ratcheting. For all these
evolutions the remaining arbitrariness of scaling Tg does
not matter as long as deviations from rate-independence are
minor.

The equations for elastic strain ui j and Tg are the same for
non-uniform evolutions except for convection terms as other
terms with gradients are negligible in the considered range.
Stabilizations can be judged by means of the total energy
which gets minimal by stationary shaking. This is shown for
clamped piles and towers on shallow foundations, both can
turn back with re-densification from a tilt with dilation. The
progress of seismic creep and relaxation can be estimated
with an average Tg from elastic waves. Limitations of this
approach could be explored by axi-symmetric model tests.

Evolutions by GSH can be judged by means of attractors
in the large. Hypoplastic state fields attained in experiments
strengthen GSH as far as localized shearing and collapse
are avoided. Periodic state fields can be attained by slow
cyclic displacements and ratcheting of solids past sand in
the stable range. Such attractors can more reliably be repro-
duced than with elastoplastic or hypoplastic relations, the
GSH-equations are also more transparent and robust. GSH
can supersede high-cycle accumulation models which can-
not reproduce observed attractors. Localized shearing and
collapse have as yet to be left aside.

5.2 What could be further done

The energy functions in GSH should be improved. The spe-
cific elastic energy we should depend on the third invariant
of elastic strain. A more elegant representation of we for

low densities and stress obliquities is desirable. It will be
more difficult to introduce polar quantities for shear bands.
They arise along rough boundaries by shearing of thin layers,
and spontaneously inside with an overcritical average stress
obliquity (PSM). Thin layer shear tests with shaking base
could help to improve and quantify the seismic energy ws

and the granular viscosity for high Tg and v̄s .
The extension for pore water will not be difficult with

full saturation. For equilibria the energies with given ui j and
Tg are hardly reduced by the lower granular surface energy,
but the factor γ for the relaxation of sg (and Tg) by (12)
is bigger by the viscous resistance of water between the
grains, more so if these are small. Water matters little for the
quantities αh, λ/λ1, ζg/ηg and λ

√
η1/γ1 which count in the

hypoplastic regime. Wichtmann [41] observed the same
cumulative effects for small amplitudes without and with
water, this seems thus to have no influence also on λ

√
η0/γ0.

It is rather evident that the granular viscosity ηg increases
likewise with water as the relaxation factor γ , so the quan-
tities named above should only depend on grain properties.
Pore water causes an additional viscosity η which appears
already in GSH, but resonant column tests indicate that η is
negligible. As known in soil mechanics the water pressure
increases the total pressure by p = pg + pw, and deviations
of pw from hydrostatic values cause seepage independently
of Tg .

The calibration of parameters beyond the hypoplastic
range could proceed as indicated in Sects. 3.2 and 3.3.
λ
√
η0/γ0 could be determined with minute oscillations,λ and

λ1 could be calibrated with isochoric deformation cycles and
ratcheting. A better scaling of Tg and Tg-dependent parame-
ters could be obtained from tests with variation of the stretch-
ing intensity v̄s over more than three decades. Rapid shearing
of thin layers with strong shaking (v̄s ≈ 1/s and Tg ≈ 107 K,
say) could help to calibrate bo and η1.

Matching attempts could reveal the need for further
parameters. Those for the elastic energy should better cap-
ture the verge of stability, and beyond it localizations will
presumably require polar quantities. A further transfer factor
α1 could be introduced if the calibration of λ and λ1 does
not suffice. Asymptotic state cycles with small amplitudes
should be thoroughly investigated before introducing further
parameters. One should not expect, however, a precise match-
ing with few parameters for several decades of Tg .

Model and field tests can help to specify initial and
boundary conditions in the stable range. Simplified average
Tg-fields will be needed to estimate the alignment and pro-
gress of stabilizations, therein the balance of seismic energy
and the preference of maximal dissipation could be of use.
We hope that modes for the onset of chain reactions can be
calculated as a succession of eigenvalue problems. Critical
phenomena should be tackled with further degrees of free-
dom, their traces cause an indeterminacy for states of rest.
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In the long run transitions to and from granular fluids, sus-
pensions and gases have to be considered in order to capture
changing boundaries due to placement and removal (PSM).

Thermal activations should be considered in extensions
of GSH. They can play a role even with hard grains in case
of strong seismicity, and certainly with capillary bridges and
soft grains. It could be of use to consider ductile solids with
simultaneous seismic and thermal activation. This could help
to support and substitute visco-hypoplastic relations in the
validated range (PSM). Critical phenomena should embrace
fracture by tension and shrinkage, this could help to establish
fractals and strange attractors.

Appendix: Dimensionless GSH equations
for triaxial tests

General GSH equations: We start with the following equa-
tions of motion neglecting thermal effects,

∂tρ + ∇k (ρvk) = 0 (64)

∂t (ρvi )+ ∇kσik = 0 (65)

(∂t + vk∇k) ui j = vi j − uik∇ jvk − u jk∇ivk + Xi j (66)

∂t sg + ∇k
(
sgvk − fk

) = Rg/Tg − I, (67)

the dissipative fluxes according to Onsager,

⎛
⎜⎜⎝

yi

Yi j

I
σD

i j

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
βi j 0 0 0
0 λi jlk 0 −αi jlk

0 0 γ 0
0 αlki j 0 ηi jlk

⎞
⎟⎟⎠

⎛
⎜⎜⎝

∇nπ jn

πlk

Tg

vlk

⎞
⎟⎟⎠ (68)

(
fi

�i j

)
=

(
κi j 0
0 η

g
i jlk

)(∇ j Tg

vlk

)
, (69)

and the thermodynamic relations

σi j = ρviv j + PT δi j + πi j − σD
i j −�i j , (70)

Rg = fk∇k Tg +�i jvi j , (71)

πi j = − ∂F

∂ui j
, (72)

sg = − ∂F

∂Tg
, (73)

PT =
(
ρ∂

∂ρ
− 1

)
F, (74)

Xi j = − (∇ j yi + ∇i y j
)
/2 + Yi j . (75)

These equations are closed once the expressions for the free
energy F and the transport coefficients are given.

If we take the off-diagonal coefficients of the Onsager
matrices as given in (68, 69), we have

yi = βi j∇nπ jn, (76)

Yi j = λi jlkπlk − αi jlkvlk, (77)

I = γ Tg, (78)

σD
i j = αlki jπlk + ηi jlkvlk, (79)

�i j = η
g
i jlkvlk, (80)

fi = κi j∇ j Tg. (81)

So the stress tensor (70) becomes (neglecting the convective
part ρviv j )

σi j = PT δi j + πi j − αlki jπlk −
(
ηi jlk + η

g
i jlk

)
vlk . (82)

Equations (64–82) are the general scheme of GSH.
Triaxial tests: For simplicity we assume the samples is an

element, i.e. density, stress, strain, deformation rate, etc. are
all spatially uniform. Also, cylindrical symmetry is assumed.
For the case of triaxial tests, the tensors ui j , σi j , vi j can be
written as sums of isotropic and deviatoric parts:

ui j = −�
3

⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠ + U

3

⎛
⎝−1 0 0

0 −1 0
0 0 2

⎞
⎠, (83)

σi j = P

⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠ + q

3

⎛
⎝−1 0 0

0 −1 0
0 0 2

⎞
⎠, (84)

vi j = −V

3

⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠ + ϒ

3

⎛
⎝−1 0 0

0 −1 0
0 0 2

⎞
⎠, (85)

with the shear strain strength us = √
2/3 |U |, shear stress

strength σs = √
2/3 |q|, shear deformation rate vs = √

2/3
|ϒ |, etc.

The dissipative fluxes vanish, yi = 0, fi = 0, due to the
assumption of spatial uniformity. The equation of motions
(64–67) become

∂tρ = ρV, (86)

∂t ui j = vi j − uik∇ jvk − u jk∇ivk + Yi j , (87)

∂t sg − sgV = Rg/Tg − I, (88)

or, neglecting higher terms such as uik∇ jvk ,

∂tρ = ρV, (89)

∂t� = V − λnnlkπlk + αnnlkvlk, (90)

∂tU −ϒ = (λzzlk − λxxlk) πlk − (αzzlk − αxxlk) vlk, (91)

∂tϑ = η
g
i jlk

ρTg
vlkvi j − γ Tg

ρ
, (92)

if the dissipative fluxes (77–80) are inserted. Here ϑ ≡ sg/ρ

is the granular entropy per unit mass. Moreover, according
to (82), the stresses P, q are
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P = PT + πnn

3
− αlknnπlk

3

− (
ηnnlk + η

g
nnlk

) vlk

3
, (93)

q = πzz − πxx − (αlkzz − αlkxx ) πlk

− (
ηzzlk − ηxxlk + η

g
zzlk − η

g
xxlk

)
vlk . (94)

Equations (89–91) are the basic equations for analyzing
triaxial dynamics. They will be closed by material relations,
i.e. expressions for the free energy and the transport coeffi-
cients.

Models: Next, consider the material relations. When with-
out intrinsic (or fabric) anisotropy, the free energy has the
form F

(
ρ, Tg, ui j

) = F
(
ρ, Tg,�, us, uI I I

)
with uI I I ≡

3
√

u∗
i j u

∗
jku∗

ki the third strain invariant. We then have

πi j = π1δi j + π2u∗
i j + π3u∗∗

i j , with (95)

π1 = ∂F

∂�
, π2 = − 1

us

∂F

∂us
, (96)

π3 = − 1

u2
I I I

∂F

∂uI I I
, (97)

where u∗∗
i j ≡ u∗

iku∗
k j − u∗

klu
∗
klδi j/3 is the traceless part of the

the deviatoric strain squared. We can further assume that the
thermodynamic energy has the form

F = F0 (ρ,�, us, uI I I )− b

2
ρT 2

g , (98)

b = b0 (1 − ρ̃)a , (99)

where F0 is an elastic potential, and

ρ̃ ≡ ρ/ρcp (100)

a dimensionless density. This implies there is no coupling
between elasticity and the granular entropy. The model gives

ϑ = bTg, (101)

PT = a

2

bρ2T 2
g

ρcp (1 − ρ̃)
, (102)

where terms of order�2.5 in PT are neglected. For isotropic
material, the tensorial coefficients in (68,69) such as ηi jlk or
αi jlk can be written as

αi jlk = α1δikδl j − (α1 − α2) δi jδkl/3,

+α3

(
u∗

i jδkl + δi j u
∗
kl

)
(103)

λi jlk = −ui j

τ

π∗
lk

π2
s

+�

(
1

τ1
− 1

3τ

)
δi jδlk

πnn
, (104)

ηi jlk = ηδilδ jk +
(
ζ − η

3

)
δi jδlk, (105)

η
g
i jlk = ηgδilδ jk +

(
ζg − ηg

3

)
δi jδlk . (106)

Note that (104) is a relaxation time model for strain, with
τ, τ1 being two relaxation times.

Inserting the features of this model into the triaxial equa-
tions (89–92), we obtain the following governing equations
for triaxial dynamics

∂tρ = ρV, (107)

∂t� = (1 − α2) V + 2α3Uϒ − 3

τ1
�, (108)

∂tU = (1 − α1)ϒ + α3V U − U

τ
, (109)

∂tϑ = 2

3

bηg

ρϑ
ϒ2 + bζg

ρϑ
V 2 − γ

bρ
ϑ, (110)

and

P = PT + (1 − α2) π1 − 2

3
α3

(
π2 + π3

U

3

)
U 2, (111)

+ (
ζ + ζg

)
V

q =
[
(1 − α1)

(
π2 + π3

U

3

)
− 3α3π1

]
U (112)

− (
η + ηg

)
ϒ.

Here we used the facts that for the triaxial case u∗
i j u

∗
i j =

u2
s = 2U 2/3 and u∗∗

i j = Uu∗
i j/3. So πkk = 3π1 and

u∗
klπ

∗
lk = (2/3) (π2 + π3U/3)U 2 according to (95). Also

u∗
klv

∗
lk = 2Uϒ/3 andηg

i jlkvlkvi j = 2ηgϒ
2/3+ζgV 2 accord-

ing to (106), λnnlkπlk = 3�/τ1 and (λzzlk − λxxlk) πlk =
−U/τ according to (95, 104), αnnlkvlk = 2α3Uϒ −
α2V and (αzzlk − αxxlk) vlk = α1U − α3U V accord-
ing to (103), αlknnπlk = 3α2π1 + 2α3U 2 (π2 + π3U/3)
and (αlkzz − αlkxx ) πlk = U [3α3π1 + α1 (π2 + π3U/3)]
according to ( 95, 103).

Algorithm: For solving the triaxial equations numerically,
it will be convenient to introduce a characteristic time scale
t∗. Writingγ0 = γ ∗

0 γ̃0 withγ ∗
0 a constant and γ̃0 a dimension-

less factor which accounts for variation of γ0 with density ρ̃,
we can define the time scale by

t∗ = b0ρcp

γ ∗
0
. (113)

Furthermore, an entropy scale

ϑ∗ =
√

B0b0

ρcp
, (114)

and a stress scale, B0, can be also introduced. With help of
these scales, the following dimensionless variables (denoted
bỹ ) will be used for numerical computations:

t̃ = t

t∗
, Ṽ = t∗V, ϒ̃ = t∗ϒ, ϑ̃ = ϑ

ϑ∗
, (115)

P̃ = P

B0
, q̃ = q

B0
, π̃1,2,3 = π1,2,3

B0
. (116)
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In these dimensionless variables, the Equations (107–112)
become

ρ̂ = ρ̃Ṽ , (117)

�̂ = (1 − α2) Ṽ + 2α3U ϒ̃ − 3

τ̃1
�, (118)

Û = (1 − α1) ϒ̃ + α3U Ṽ − U

τ̃
, (119)

ϑ̂ = 2

3
η̃gϒ̃

2 + ζ̃2Ṽ 2 − γ̃ ϑ̃, (120)

q̃ =
[
(1 − α1)

(
π̃2 + π̃3

U

3

)
− 3α3π̃1

]
U (121)

−
(
η̃ + ρ̃ϑ̃ η̃g

(1 − ρ̃)a

)
ϒ̃,

P̃ = a

2

ρ̃2ϑ̃2

(1 − ρ̃)1+a + (1 − α2) π̃1 (122)

−2

3
α3

(
π̃2 + π̃3

U

3

)
U 2 +

(
ζ̃ + ρ̃ϑ̃ ζ̃g

(1 − ρ̃)a

)
Ṽ .

Here the quantities with ̂ are

ρ̂ = ∂̃t ρ̃, �̂ = ∂̃t�, Û = ∂̃tU, ϑ̂ = ∂̃t ϑ̃ (123)

where ∂̃t is derivative with t̃ . The dimensionless coefficients
are

η̃g
(
ρ̃, ϑ̃

) = bηg

t∗ϑ∗ρϑ
, (124)

ζ̃g
(
ρ̃, ϑ̃

) = bζg

t∗ϑ∗ρϑ
, (125)

γ̃
(
ρ̃, ϑ̃

) = t∗γ
bρ
, (126)

τ̃
(
ρ̃, ϑ̃

) = τ/t∗, (127)

τ̃1
(
ρ̃, ϑ̃

) = τ1/t∗, (128)

and

η̃ = η

B0t∗
, (129)

ζ̃ = ζ

B0t∗
. (130)

In computations, the evolution of the 12 triaxial variables{
ρ̃0, �̃0, Ũ0, ϑ̃0, Ṽ0, ϒ̃0, P̃0, q̃0, ρ̂0, �̂0, Û0, ϑ̂0

}
(131)

after a time step dt̃ can be calculated by solving the Equa-
tions (117–122) and the discrete forms of (123):

ρ̃ = ρ̃0 + (ρ̂ + ρ̂0)
dt̃

2
, (132)

�̃ = �̃0 + (
�̂+ �̂0

) dt̃

2
, (133)

Ũ = Ũ0 + (
Û + Û0

) dt̃

2
, (134)

ϑ̃ = ϑ̃0 + (
ϑ̂ + ϑ̂0

) dt̃

2
. (135)

in{
ρ̃, �̃, Ũ , ϑ̃, Ṽ , ϒ̃, P̃, q̃, ρ̂, �̂, Û , ϑ̂

}
. (136)

Because of the symmetry of triaxial tests, two temporal evolu-
tions determining any of Ṽ , ϒ̃, P̃, q̃ (or their combinations)
are sufficient. Therefore, the ten Eqs. (117–122,132–135)
fully determine the dynamics.

In the present work, we take the elastic potential to be

F0 = B0 B̃
√
�

(
2

5
�2 + 1

ξ
u2

s

)
, (137)

B̃ =
(
ρ̃ − ρ1

1 − ρ̃

)0.15

, (138)

with B0 = 7 GPa, ξ = 5/3, which leads to

π̃1 = B̃�
√
�

(
1 + 1

3ξ

U 2

�2

)
, (139)

π̃2 = −2

ξ
B̃

√
�, (140)

and π̃3 = 0. The transport coefficients will be modeled as

τ−1 = λTg, (141)

τ−1
1 = λ1Tg, (142)

ηg = η0 + η1Tg, (143)

ζg = ζ0 + ζ1Tg, (144)

γ = γ0 + γ1Tg, (145)

withλ, λ1, η0,1, ζ0,1, γ0,1 density dependent factors. Accord-
ing to (124–128), we therefore have

η̃g = bη0

t∗ϑ2∗ρϑ̃
+ η1

t∗ϑ∗ρ
, (146)

ζ̃g = bζ0

t∗ϑ2∗ρϑ̃
+ ζ1

t∗ϑ∗ρ
, (147)

γ̃ = t∗γ0

bρ
+ t∗ϑ∗γ1

b2ρ
ϑ̃, (148)

τ̃ = b

ϑ∗t∗λϑ̃
, (149)

τ̃1 = b

ϑ∗t∗λ1ϑ̃
. (150)
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