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Abstract Explicit and closed expressions for the stress and
couple-stress fields for discrete (classical) mechanical sys-
tems in terms of the constituents’ degrees of freedom and
interactions are derived and compared to previous results.
This is done by using an exact and general coarse graining
formulation, which allows one to predetermine the resolu-
tion of the continuum fields. Since the full dynamics of the
pertinent fields is considered, the results are not restricted to
static states or quasi-static deformations; the latter comprise
mere limiting cases, which are discussed as well. The fields
automatically satisfy the equations of continuum mechan-
ics. An explicit expression for the antisymmetric part of
the stress field is presented; the question whether the lat-
ter vanishes, much like its nature when it does not, have been
debated in the literature. Physical explanations of some of
the obtained results are offered; in particular, an interpreta-
tion of the expression for the stress field provides an argu-
ment in favor of its uniqueness, yet another topic of debate
in the literature. The formulation and results are valid for
single realizations, and can of course be used in conjunction
with ensemble averaging. Part of the paper is devoted to a
biased discussion of the notion of coarse graining in general,
in order to set the presented results in a certain perspective.
Although the results can be applied to molecular (nanoscale
included) and granular systems alike, the presentation and
some simplifying assumptions (which can be easily relaxed)
target granular systems. The results should be useful for the
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1 Introduction

Efforts to connect molecular scale dynamics with macro-
scopic continuum dynamics date back to classical studies by
Boltzmann (for gases), Kirkwood [1], Born and Huang [2],
and others [3]. Coarse graining approaches to granular matter
appeared much later, perhaps starting with Weber’s work [4],
but are mostly based on similar principles, cf. a selection of
some relatively recent (1995 and later) studies and reviews
[5–18] and references therein; also see [19] for a review that
includes historic references, and [20] concerning the coarse
graining of granular gases. Although the present paper does
not focus on granular gases, the presented results are valid
for them as well, but, in models where the collisions are
taken to be instantaneous temporal as well as spatial coarse
graining need to be invoked [21] (a minor modification of the
presented formulation).

The classical expression for the stress tensor in terms of the
constituents’ degrees of freedom and their interactions, often
referred to as the Born-Huang [2] or Love [22] or Voigt [23]
formula, was originally derived for molecular systems and is
based on the “limit” of large REV’s or coarse graining scales.
This is justified for typical molecular systems since the latter
possess strong scale separation between the molecular and
macroscopic scales. For instance, in gases the scales that cor-
respond to typical gradients of the continuum fields are much
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larger than the corresponding mean free paths (else one deals
with the Knudsen regime); this fact is among other things the
basis for the fundamental and useful notion of local equilib-
rium. Similar statements can be made concerning molecular
solids. When the gradients (or strain) are sufficiently “small”
one can employ very large REV’s, i.e., much larger than the
microscopic scales, e.g., the lattice constant in ordered sol-
ids, yet much smaller than the typical scales on which the
physical entities of interest undergo significant changes.

The above mentioned classical expressions for stress and
other fields have often been adopted in the realm of granular
matter and for relatively small (e.g., nanoscale) systems and
very fine resolutions, where scale separation is weak and at
times nonexistent. This is particularly true for some exper-
iments which involve relatively small (granular) systems. It
is not a-priori obvious that results obtained for systems that
possess strong scale separation can be carried over to the
realm of granular media or small systems; as a matter of fact,
it is often untrue. When care is taken to coarse grain in such
a way that the issue of scales is properly handled, one can
indeed apply the same methods to granular and molecular
systems, in particular one can study nanoscale systems [24].
This topic will be further discussed below.

The formulation presented below is exact and fully com-
patible with continuum mechanics. The resolution of the
continuum fields can be chosen at will, although certain
choices are advantageous over others. Some of the results
presented below are known, cf. e.g., [8,21,24–29] and refer-
ences therein, and repeated here using a somewhat simpler
presentation and for sake of completeness. New results pre-
sented below include an exact and explicit formula for the
stress asymmetry, which has been a subject of debate in the
literature, see Bardet and Vardoulakis [12], references therein
and citations thereof, an explicit expression for the couple
stress field, and a novel derivation and interpretation of the
formula for the stress field which offers a possible answer to
the question whether this field is unique or not [25,26,30,31].

As mentioned, the results are of rather general validity,
but some simplifying assumptions are made for sake of con-
venience of presentation. In particular, it is assumed that the
particle interactions are binary and additive (these need to
be relaxed, e.g., for molecular solids). It is also assumed
that interacting pairs of particles possess (effective) discrete
contact points (easy to generalize to contact areas) and that
the force distribution at a contact area can be replaced by a
contact force acting at the corresponding contact point and a
couple or torque; physically this amounts to assuming that the
particles are quite stiff. The couples that arise from the distri-
bution of forces at the contact areas are referred to as torques
due to rolling friction. Each pair of particles is assumed to
possess at most one contact point, i.e., the particles are taken
to be convex; this assumption can be easily relaxed. In addi-
tion, effects such as attrition and breakup are ignored, hence

the particle masses are taken to be constant. It is not assumed
that the particles are rigid or spherical or the system is mono-
disperse, but, as mentioned, it is convenient to envisage that
the particles are not “too soft”.

The structure of this article is as follows. Section 2
provides a brief and biased introduction to coarse grain-
ing. Section 3 sets the notation, and provides additional gen-
eral comments. Section 4 starts with a demonstration of the
method through a derivation of the equation of continuity,
and provides closed expressions for the stress field and its
antisymmetric part. A derivation of the continuum mechani-
cal equation for the angular momentum density is presented
in Sect. 5, in which a closed expression for the couple-stress
is obtained. Finally, Sect. 6 provides concluding remarks.

2 On coarse graining

The goal of coarse graining is to produce continuum equa-
tions of motion out of microscopic dynamics. The first step
involved in the process of coarse graining is to choose and
define a set of continuum fields for which equations of motion
are desired. The choice is usually dictated by symmetries,
conservation laws, measurability and other considerations,
not the least of which is the wish to obtain closed sets of
equations of motion, i.e., the time derivatives of the fields
should depend on the chosen set of fields alone. The fields
should be defined everywhere in the space occupied by the
considered system, not only, e.g., at the centers of mass of
the discrete particles or in the interior of the particles. For
instance, the strain and stress fields of a solid have to be
continuous function of space, not restricted in their defini-
tions to the positions of the atoms. Coarse graining involves a
spatial coarse graining scale (when temporal coarse graining
is invoked as well one also needs a temporal coarse grain-
ing scale, see [21]). This scale, or resolution, is important
both for obtaining smooth fields and constitutive relations. As
explained, e.g., in Batchelor [32], the density field is strongly
fluctuating as a function of the coarse graining scale (or res-
olution) for very fine resolutions (e.g., when one uses a REV
whose linear dimension is smaller than the corresponding
mean free path in a gas), yet its value plateaus to a space-
dependent number as a function of resolution. The latter is
what one refers to as the macroscopic density. For very coarse
resolutions the density becomes space dependent again due
to macroscopic variations. The same holds for practically any
other macroscopic field, see e.g., [33,34] for the case of the
stress field. When the macroscopic gradients of a field are
“large” the corresponding plateaus may be narrow but still
identifiable [33,34]. In some cases, such as fluid turbulence,
there is no separation between the smallest and largest rele-
vant scales of certain fields and fluxes, and then these fields,
as well as the corresponding constitutive relations, are reso-
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lution or scale dependent (e.g., the “eddy viscosity” depends
on scale). This may also happen in granular systems [35].

Coarse graining is a projection process through which
information is lost. Subresolution scale information is not
included in the fields. Therefore attempts to, e.g., define
displacement fields that coincide with the particle displace-
ments at their respective centers of mass clash with the notion
of coarse graining both in terms of physics and underlying
philosophy, even if such interpolations are mathematically
feasible. Not only is information not lost this way but the
fields one produces may possess large gradients (whose scale,
except for the case of ordered systems under small strains, is
typically an inverse particle diameter); practically all gradient
expansions may fail for such fields. Such interpolation would
be tantamount to requiring that the values of the momentum
field of a gas at the positions of the centers of mass of the mol-
ecules equals the corresponding momenta of the molecules.
As is well known the molecules of a gas (macroscopically)
at rest have speeds of the order of the speed of sound in the
gas, yet the macroscopic momentum and velocity fields van-
ish. Of course this description requires the use of spatial (and
often temporal) coarse graining of finite resolution.

In statistical mechanical theories of fluids it is common to
define fields by first using discrete Fourier transforms of the
microscopic entities (such as momentum) and then invoking
a cutoff in the wave-vector space upon back-transforming.
The inverse cutoff is the resolution of the coarse grained
fields. In Boltzmann’s kinetic theory the spatial resolution is
the mean free path.

As mentioned, in early studies of elasticity (see e.g., [2])
the coarse graining scale was taken to be very large com-
pared to the molecular scale (e.g., the lattice constant), yet
still small with respect to the macroscopic scales. This is pos-
sible when the system of interest is sufficiently large com-
pared to its microscopic scale and the gradients are “small”,
i.e., the properties of the system are nearly constant on the
coarse graining scale. Clearly, such a choice is not possi-
ble for nanoscale systems or granular materials due to the
lack of good scale separation. As stressed in the Introduc-
tion, this in turn requires one to revisit the ways to coarse
grain these classes of systems, paying due attention to the
resolutions involved. When a system is coarse grained with
a spatial resolution, w, no gradient involves a scale that is
smaller than w, and therefore one expects to obtain smooth
fields whose spatial variation is characterized by scales that
exceed the resolution or coarse graining scale. When only a
particle and its nearest neighbors are involved in the defini-
tion of coarse grained fields, the resolution is very fine and
one may not obtain proper continuum descriptions. Ensem-
ble averaging (when relevant) may enable one to use finer
resolution but then some features of interest may be smeared
out, cf. [33,34]. It is though particularly useful for stationary
states (also for cases with good scale separation).

3 Definitions and notation

Consider a finite or infinite number of particles, identified by
lower case Latin indices, e.g., the mass of particle i is denoted
by mi . Vectorial and tensorial components are denoted by
Greek letters. The positions of the centers of mass of the
particles are denoted by ri (t), where t denotes time, and
the α component of this vector is riα(t). The correspond-
ing center of mass velocity is vi (t) ≡ ṙi (t). In addition,
ri j (t) ≡ ri (t) − r j (t), denotes the relative positions of the
centers of mass of two particles, and vi j , the corresponding
relative center of mass velocities. The resultant force on par-
ticle i is denoted by fi (t), and it equals mi v̇i (t) by Newton’s
second law. Similarly, the angular momentum of particle i is
denoted by Si (t), and it satisfies Ṡi (t) = Mi (t) where Mi (t)
is the resultant torque on particle i (this does not require the
particle to be rigid). The force exerted by particle j on par-
ticle i is denoted by fi j (t), and thus fi (t) = ∑

j fi j (t), i.e.,
we assume binary and additive interactions (as mentioned,
it is not difficult to relax this assumption but we don’t do it
here for sake of simplicity). Bulk forces are easy to include
in the formulation but they are not. By Newton’s third law:
fi j (t) = −f j i (t); this is used below quite frequently. Nearly
all factors of 1

2 that appear below stem from the following
trivial identity: when expression, A, equals another expres-
sion, B, they both also equal 1

2 (A + B).
A point in space, r, is a point where we choose to measure

a physical entity (e.g., the value of the stress tensor field)
and it is not “time dependent”. The fields depend on r and
t , their time dependence being dictated by that of the parti-
cles’ positions, ri (t), velocities vi (t), orientations and angu-
lar velocities. The time dependence of the particles’ degrees
of freedom is often not explicitly spelled out below, nor is
that of the fields, for notational simplicity. The Einstein sum-
mation convention is used below only for Greek letters (i.e.,
vector/tensor components) but not Latin indices (that repre-
sent the particles’ identities); the latter are explicitly summed
over. Note that for numerical simulations one needs to restrict
the definitions to a set of discrete (e.g., on a grid) points.
This causes no problem. The formulation here is Eulerian
and can be changed to Lagrangian by standard means, cf.
e.g., [24,27].

4 Equation of continuity, stress and stress asymmetry

First we derive the equation of continuity as a trivial example
of how the formulation presented here can be used. Then we
proceed to the equation of motion for the momentum density
and derive an explicit formula for the stress tensor field. The
latter expression is used to obtain the antisymmetric part of
the stress tensor.
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4.1 The equation of continuity

The most trivial and well known equation of motion for any
system in which mass is conserved is the equation of conti-
nuity for the mass density, a similar statement holding for the
number density (or densities in polydisperse systems). The
derivation presented below helps further set the notation and
demonstrates part of the method used throughout this paper.

The microscopic mass density at a point r at time t ,
ρmic (r, t), is defined in statistical mechanics by:

ρmic(r, t) ≡
∑

i

miδ (r − ri (t)), (1)

where δ (r) is the Dirac delta function. This definition com-
plies with the basic requirement that the integral of the mass
density over a volume in space equals the mass contained in
this volume. It is however a singular entity. A nonsingular
mass density can be defined by

ρ(r, t) =
∑

i

miφ (r − ri (t)), (2)

i.e., by replacing the delta-function by a (real) “coarse grain-
ing” function of space, φ, which possesses a predetermined
“width”, w (the coarse graining scale or resolution) and
which is required to be positive semi-definite and normal-
izable (its integral over space is unity). A simple example is
φ(r) ≡ 1

�d (w)
H(w− ‖ r ‖), where H represents the Heavi-

side function and �d(w) is the volume of a sphere of radius
w in d-dimensions. Often it is more useful to take φ to be a
Gaussian of width w since then the resulting field is smoother.
In the limit w −→ 0, Eq. 2 becomes identical to Eq. 1. The
above coarse graining procedure can also be viewed as being
defined by a convolution of the microscopic density with the
coarse graining function, i.e.,

ρ(r, t) =
∫

dr′φ(r − r′)ρmic(r′, t). (3)

In most cases known to the author the values of the fields
depend mostly on w and not the precise choice of the coarse
graining function as long as the latter is not chosen to be sin-
gular or highly anisotropic. Similar definitions will be used
for the other coarse grained fields below. Note that (chain
rule):

∂

∂t
φ (r − ri ) = −ṙiβ

∂

∂rβ

φ (r − ri ) = −viβ
∂

∂rβ

φ (r − ri ).

Also note that ∂
∂rβ

(a component of the gradient) commutes
with all variables that describe the particles’ degrees of free-
dom (i.e., it can be moved to front of sums) since the latter
are just time dependent entities.

The mass conservation (continuity) equation can be
derived by taking the time derivative of the coarse grained
mass density:

∂ρ(r, t)

∂t
= ∂

∂t

∑

i

miφ(r − ri )

= − ∂

∂rβ

∑

i

miviβφ(r − ri ) = −∂pβ(r, t)

∂rβ

, (4)

where the coarse grained momentum density is defined by

p(r, t) ≡
∑

i

mi viφ(r − ri ), (5)

corresponding to the following microscopic momentum den-
sity field: pmic(r, t) ≡ ∑

i mi vi (t)δ (r − ri (t)) (here the
time dependence is explicitly presented). Note that the above
result holds even for a single particle and therefore one does
not need to resort to arguments involving swarms of particles
or ensembles, as in some derivations in the literature. In the
limit w → 0 one obtains the same result for microscopic
resolution. These observations hold for all fields discussed
below and will not be repeated. The coarse grained velocity
field is defined by

V(r, t) ≡ p(r, t)/ρ(r, t). (6)

Notice that the velocity field is meaningful only as a coarse
grained field, unlike the mass and momentum density fields,
which are densities of well defined physical entities (from a
thermodynamic point of view the velocity field is the vec-
tor chemical potential conjugate to the momentum density
field). Substituting Eq. 6 in Eq. 4, one obtains the standard
form for the equation of continuity: ρ̇ = − ∂

∂rβ
(ρVβ).

4.2 Equation for the momentum density

The momentum equation can be derived in a similar way.
Taking the time derivative of Eq. 5 one obtains:

∂pα(r, t)

∂t

= ∂

∂t

∑

i

miviαφ(r − ri )

=
∑

i

mi v̇iαφ(r − ri ) +
∑

i

miviα
∂φ(r − ri )

∂t

=
∑

i

mi v̇iαφ(r−ri )

︸ ︷︷ ︸
Aα

− ∂

∂rβ

∑

i

miviαviβφ(r−ri )

︸ ︷︷ ︸
Bα

. (7)

Here the time dependence of the particles’ positions and
velocities is no longer spelled out. Next, each part of Eq. 7
is treated separately. The first part is:

Aα ≡
∑

i

mi v̇iαφ(r − ri ) =
∑

i

fiαφ(r − ri )

=
∑

i j

fi jαφ(r − ri ), (8)
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where Newton’s second law was used and the assumption
of additive binary interactions invoked. Upon exchanging
the names of the dummy summation variables, i and j , one
obtains:

Aα =
∑

i j

f j iαφ(r − r j ).

Using Newton’s third law one further obtains:

Aα = −
∑

i j

fi jαφ(r − r j ). (9)

Upon summing expressions Eq. 8 and Eq. 9 for Aα , and
dividing the sum by 2 one obtains:

Aα = 1

2

∑

i j

fi jα
[
φ(r − ri ) − φ(r − r j )

]
. (10)

The following identity, which holds for any smooth function,
φ, will be useful in the sequel:

φ(r − r j ) − φ(r − ri ) =
1∫

0

ds
∂

∂s
φ(r − ri + sri j )

=
1∫

0

ds ri jβ
∂

∂rβ

φ
(
r − ri + sri j

)

= ri jβ
∂

∂rβ

1∫

0

ds φ
(
r − ri + sri j

)
,

(11)

where integration by parts has been invoked to go from the
first to the second line in the above. Substituting the identity,
Eq. 11, in Eq. 10 one obtains:

Aα = −1

2

∂

∂rβ

∑

i j

fi jαri jβ

1∫

0

ds φ(r − ri + sri j ), (12)

where again, the commutation of the gradient operator, ∂
∂rβ

,
with the (time dependent) particle position vectors and forces
has been invoked. Note that Eq. 11 corresponds to a specific
choice of an integration path from ri to r j (a straight line) and
is therefore not the most general possibility for representing
the difference in Eq. 10. This issue will be further discussed
below.

In rewriting the expression for Bα , defined in Eq. 7, it is
convenient to define the fluctuating velocity of particle i at
time t :

v′
i (r, t) ≡ vi (t) − V(r, t). (13)

Note that the reference coarse grained velocity is at the
“coarse graining-center”, r, and not at the particle’s posi-
tion [21]. This also corresponds to the numerical method of

defining fluctuations: one divides the system into boxes and
computes the center of mass velocity of the particles in each
box. The fluctuating velocity of a particle in a given box is
then measured with respect to the center of mass velocity of
the particles in the corresponding box and not the velocity
field at the particle’s position. There are other ways to define
fluctuations but they do not always yield results that are con-
sistent with the equations of continuum mechanics. In the
realm of kinetic theory (which is a coarse grained theory, as
mentioned above) one does define fluctuations with respect
to the local value of the pertinent field in the framework of an
ensemble average but a discussion of this issue is beyond the
goals of this paper. Below we write v′

i for v′
i (r, t) for sake of

notational brevity.
The following identity follows from the definition, Eq. 13,

and the definition of the coarse grained velocity, Eq. 6:

∑

i

mi v′
iφ(r − ri ) ≡

∑

i

mi [vi − V] φ(r − ri )

=
∑

i

mi viφ(r−ri )−V
∑

i

miφ(r−ri )

= p − ρV = 0, (14)

i.e., the coarse-grained velocity fluctuation field vanishes by
construction, as it should.

Using this result (which implies:
∑

i Vαviβφ(r − ri ) =
Vα

∑
i viβφ(r − ri ) = 0) and Eq. 7 one obtains:

Bα = − ∂

∂rβ

∑

i

miviαviβφ(r − ri )

= − ∂

∂rβ

∑

i

mi (Vα + v′
iα)(Vβ + v′

iβ)φ(r − ri )

= − ∂

∂rβ

[
∑

i

mi VαVβφ(r−ri )+
∑

i

miv
′
iαv′

iβφ(r−ri )

]

= − ∂

∂rβ

[

ρVαVβ +
∑

i

miv
′
iαv′

iβφ(r − ri )

]

. (15)

Combining Eqs. 12, 15, yields the momentum conservation
equation:

∂pα

∂t
= − ∂

∂rβ

[
ρVαVβ − σαβ

]
, (16)

where (on the basis of continuum mechanics) we identify
the following expression for the stress tensor, σ , in terms of
microscopic entities:

σαβ = −1

2

∑

i, j

fi jαri jβ

1∫

0

ds φ(r − ri + sri j )

−
∑

i

miv
′
iαv′

iβφ(r − ri ), (17)
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The first term on the right hand side of Eq. 17 is the “con-
tact” or “collisional” stress, σ c, while the second term is the
“kinetic” or “streaming” stress, σ k (with σ = σ c +σ k) and it
is negligible for quasi-static deformations. Note that in static
states (all velocities vanish), Eq. 16 identically reduces to
divσ c = 0, as expected.

When the coarse graining scale, w, is far larger than the
typical distance between interacting particles one can neglect
sri j in the integral in Eq. 17, since for most particle pairs that
contribute to the sum in this equation ‖ r − ri ‖>>‖ ri j ‖.
In this case: σ c

αβ ≈ − 1
2

∑
i, j fi jαri jβφ(r − ri ), where σ c

stands for “the contact stress contribution”. Furthermore,
when φ(r − ri ) is chosen to equal 1

�d (w)
H(w− ‖ r − ri ‖),

i.e., one averages over a sphere around r, the formula
reduces to the well known (and frequently used) Born-Hu-
ang expression: σ c

αβ ≈ − 1
2

1
�d (w)

∑
i, j;‖(r−ri )‖<w fi jαri jβ .

In other words, the standardly employed formula is only jus-
tified in the limit of large coarse graining scales and spheri-
cal coarse graining volumes, and needs to be replaced by the
exact expression presented above when one is concerned with
mesoscopic scales, else the error can be large [24,33,34]. As
mentioned, the original, e.g., in Born and Huang [2], der-
ivation of this formula pertains to molecular systems that
possess strong scale separation and therefore the use of the
limit of “coarse” resolution compared to molecular dimen-
sions is practically always justified. Also note that the coarse
graining center in many applications of the Born–Huang for-
mula is taken to be the center of mass of “particle i”. A one
dimensional demonstration of this formulation can be found
in Goldenberg and Goldhirsch [24].

One may criticize [25,26,30,31] the above derivation of
the expression for the stress since it is not unique, in the sense
that any tensor whose divergence vanishes can be added to
the expression without changing the equation of motion. Fur-
thermore, the choice in Eq. 11 of a straight line interpolation
may seem arbitrary (other choices amount to adding a diver-
gence free tensor to the obtained expression). However, in
addition to the fact that the above choice of the integration
path is simple to implement (when Maxwellian or Heaviside
coarse-graining functions are used one can perform the inte-
gration analytically and obtain an explicit expression, hence
the numerical application of this formula is not more expen-
sive than that of other expressions) it can be shown [31] that
additional symmetry requirements (e.g., that the stress ten-
sor is invariant to permutations of the particles’ identities,
symmetric for particles interacting by binary central forces,
reduces to the well known formula for equilibrium pressure
and more) render this a unique choice. A stronger argument
in favor of the above expression for the contact part of the
stress tensor is provided in Sect. 4.3. Note that the integral
of the above expression for the normal stress over a closed
surface yields the total force acting on the material enclosed
by the surface. The expression does not a-priori guarantee

the same for an open surface. As shown in Sect. 4.3 the force
exerted across any smooth (even open) geometric surface is
given by an integral of the normal stress over this surface, in
accordance with Cauchy’s definition of stress.

4.3 A direct derivation and physical interpretation of Eq. 17

It is sufficient to derive the contact part of the stress tensor
since the expression for the kinetic contribution is not dis-
puted. To this end recall that the classical (Cauchy) definition
of stress is related to the force per unit area applied through
a small area that is normal to direction, n̂, by the material
on the side to which n̂ points on the material on the other
side, in the limit of “vanishing” area. In a system comprising
discrete particles one needs to identify the forces transmitted
through this small area. To this end consider for simplicity
(and without loss of generality) a square of side ε whose nor-
mal points in the positive y direction and whose center is at
the “origin” r0 ≡ (x0, y0, z0), as depicted in Fig. (1). It is
reasonable to define a force as penetrating the square (or act-
ing through it) if a particle to the right of the square, whose
center of mass is at r j , i.e., y j > y0, exerts a force on a parti-
cle whose center of mass is at ri to the left of the square, i.e.,
yi < y0. This condition is not sufficiently restrictive since
by it alone any particle whose center of mass resides to the
right of the x − z plane and which interacts with a particle
whose center of mass is located to the left of the x − z plane
will contribute to the stress. A further restriction is obtained
when one requires the line connecting the centers of mass
of the interacting particles to intersect the above mentioned
square. Note that the actual point of contact can be either
on the right or left of the x − z plane (or on it), depending
on the particles’ shapes, orientations and positions. Now, the
contact stress component contributed by particles i and j ,
σ

c;i, j
α2 , at r0 can be written as follows (the subscript 2 stands

for the y direction):

σ
c;i, j
α2 = lim

ε→0

1

ε2 fi jα × (expression for the constraints)

The first constraint on the locations of the centers of mass
of particles i and j can be expressed as follows: H(y j −
y0)H(y0 − yi ) �= 0, where H denotes the Heaviside func-
tion. Next, in order for the line connecting the centers of
mass to cut through the x − z plane there must be a num-
ber 0 ≤ s∗ ≤ 1 such that yi + s∗(y j − yi ) = y0. Denoting
yi j ≡ yi − y j this condition amounts to y0 − yi + s∗yi j = 0.
It can be enforced as a constraint by noting that

|yi j |
1∫

0

δ(y0 − yi + syi j )ds =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 when a value, s∗,
with 0 ≤ s∗ ≤ 1
satisfies the
above constraint

0 otherwise
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Fig. 1 Demonstration of the procedure for finding the contact stress:
note the square of side ε in the (x, z) plane around the origin at
(x0, y0, z0). The center of mass of particle j , denoted by r j is to the
right of the plane, i.e., y j > y0, and the center of mass of particle i is to
the left of the plane, i.e., yi < y0. A straight line connects these two cen-
ters of mass and pierces through the square, else these particles would
not have been considered to contribute to the force exerted “through the
square” by particle j on particle i . The intersection point of this line
with the square is denoted by r∗

hence the constraint is |yi j |
∫ 1

0 δ(y0 − yi + syi j )ds �= 0. For
the same value of s = s∗ one would like the line that con-
nects the centers of mass to actually intersect the square (not
only the x − z plane). This means that one needs the x and z
components of the point of intersection, r∗, not to be farther
away than a distance ε

2 from the origin, i.e., the following
needs to be satisfied: H( ε

2 − |x0 − xi + s∗xi j |) H( ε
2 − |z0 −

zi + s∗zi j |) �= 0. All of these conditions can be combined
into:

H(y j − y0) H(y0 − yi )|yi j |
1∫

0

ds
(
δ(y0 − yi + syi j )

×H
(ε

2
−|x0−xi+sxi j |

)
H
(ε

2
−|z0−zi+szi j |

))
�= 0

Thisconditioncanbefurthersimplifiedbynotingthat thedelta
function implies that the y-component of the point of intersec-
tion, i.e., y0 (which also equals y∗, since both are in the same
x − z plane), is between yi and y j ; therefore one can replace
H(y j − y0)H(y0 − yi ) in the last expression by H(y ji ). In
addition, given the last condition one can also replace |yi j |
in the prefactor of the delta function by −yi j . With these, the
expression for the contact stress can be written as:

σ c
α2 = lim

ε→0

1

ε2

∑

i j

fi jα(−yi j )H(y ji )

×
1∫

0

ds
(
δ(y0 − yi + syi j )

×H
(ε

2
−|x0−xi+sxi j |

)
H
(ε

2
−|z0−zi+szi j |

))

where a summation over all particle pairs has been invoked.
Next, note that limε→0

1
ε

H( ε
2 − |G|) = δ(G) for any real

variable or function, G (the Heaviside function defines a rect-
angle of width ε and its prefactor defines a height of 1

ε
).

Therefore the limit ε → 0 in the last equation can be exe-
cuted, the result being:

σ c
α2 = −

∑

i j

fi jα yi j H(y ji )

1∫

0

ds
(
δ(y0 − yi + syi j )

× δ(x0 − xi + sxi j )δ(z
0 − zi + szi j )

)
(18)

or

σ c
α2 = −

∑

i j

fi jα yi j H(y ji ) ×
1∫

0

ds δ(r0 − ri + sri j )

Next, it is convenient to replace the general point r0 by just r
and it is clearly allowed to replace the index ‘2’ in the above
equation by a general index, β. The result is:

σ c
αβ = −

∑

i j

fi jαri jβ H(r jiβ)

1∫

0

ds δ(r − ri + sri j ) (19)

Note that (by a simple change of variables, s −→ 1 − s):

χ j i ≡
1∫

0

ds φ(r − r j + sr j i )

=
1∫

0

ds φ(r − ri + sri j ) = χi j (20)

i.e., the integral χi j is symmetric under the exchange of i and
j . This also clearly holds when φ is replaced by a delta func-
tion (the limit w → 0). Also note that the product fi jαri jβ is
symmetric under the same exchange of indices. Therefore,
this exchange of dummy indices yields from Eq. 19:

σ c
αβ = −

∑

i j

fi jαri jβ H(ri jβ)

1∫

0

ds δ(r − ri + sri j ). (21)

Since Eqs. 19, 21 represent the same entity one can add up the
corresponding expressions and divide by 2. Also, since the
only difference between these expressions is the sign inside
the Heaviside function one obtains:
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σ c
αβ = −1

2

∑

i j

fi jαri jβ

1∫

0

δ(r − ri + sri j )ds. (22)

Equation 22 provides an exact expression for the contact
stress with microscopic resolution (corresponding to w = 0).
We shall rename the result σ c,mic to denote this fact. The
coarse grained contact stress can now be obtained by convo-
luting the latter expression with the coarse graining function,
i.e., computing

σ c
αβ(r) =

∫

dr′φ(r − r′) σ
c,mic
αβ (r′).

Alternatively and equivalently one may replace the delta
function in Eq. 22 by the coarse graining function.

This derivation shows that indeed the identification of the
stress tensor field in Eq. 17 is justified in the sense that the
same expression complies with Cauchy’s definition of stress
and clearly the integration of the normal stress over an open
surface yields the force transmitted “through” this surface.
This should answer at least part of the above mentioned crit-
icism [25,26,30,31] raised against the validity of the expres-
sion for the contact stress in Eq. 17.

4.4 The antisymmetric part of the stress tensor field

The kinetic stress is manifestly symmetric and therefore it
does not contribute to the antisymmetric part of the stress
tensor, i.e., σαβ − σβα = σ c

αβ − σ c
βα , where we recall that:

σ c
αβ = −1

2

∑

i, j

fi jαri jβ

1∫

0

ds φ(r − ri + sri j ). (23)

It follows that:

σαβ − σβα = −1

2

∑

i, j

(
fi jαri jβ − fi jβri jα

)

×
1∫

0

ds φ(r − ri + sri j ), (24)

hence

σαβ − σβα = −1

2

∑

i, j

εαβγ

[
ri j × fi j

]
γ

×
1∫

0

ds φ(r − ri + sri j ) (25)

where εαβγ is the antisymmetric isotropic tensor. It follows
immediately that when only normal contact forces are pres-
ent and the particles are (internally) homogeneous spheres
(or inhomogeneous in such a way that their centers of mass
coincide with their respective geometric centers) the stress

tensor is symmetric, else the vector product in the last equa-
tion need not vanish and a stress asymmetry arises even for
spheres. For central interactions (i.e., f i j ‖ ri j ) the stress is
always symmetric. Other possibilities are discussed below.

Denote by M f
i j the torque applied on particle i by the force

exerted by particle j on particle i . This torque can be due to
frictional forces as well as normal forces, e.g., when the par-
ticles are not spherical. Clearly: M f

i j = (rc
i j −ri )×fi j , where

rc
i j denotes the point of contact of particles i and j ; when the

contact is not approximated by a point one can still define
an effective point of contact but this is not important here.
Also, the theory can easily be extended to the case when
several points of contact between a pair of particles (e.g.,
for concave particles) exist. Clearly rc

i j = rc
ji . Similarly, the

torque exerted by particle i on particle j is given by M f
j i =

(rc
i j −r j )×f j i = −(rc

i j −r j )×fi j . Notice that ri j = −(rc
i j −

ri ) + (rc
i j − r j ). It follows that: ri j × fi j = −M f

i j − M f
j i .

Substitution of the latter result into Eq. 25 yields:

σαβ − σβα = 1

2

∑

i, j

εαβγ

(
M f

i jγ +M f
jiγ

) 1∫

0

dsφ(r−ri+sri j )

= 1

2

∑

i, j

εαβγ M f
i jγ

1∫

0

ds φ(r − ri + sri j )

+1

2

∑

i, j

εαβγ M f
jiγ

1∫

0

ds φ(r − ri+sri j ). (26)

Upon exchanging i and j in the last line of Eq. 26 and using
the symmetry, Eq. 20, one obtains:

σαβ − σβα =
∑

i, j

εαβγ M f
i jγ

1∫

0

ds φ(r − ri + sri j ). (27)

This is one way to express the antisymmetric part of the
stress tensor field. One can obtain further insights by rewrit-
ing this exact result in a different way. Details can be found
in Appendix A-1. The result is:

σαβ − σβα = εαβγ

∑

i

Ṡiγ φ(r − ri )

+εαβγ

∂

∂rδ

∑

i, j

⎛

⎝1

2
Mr f

i jγ ri jδ

1∫

0

dsφ(r − ri + sri j )

+M f
i jγ ri jδ

1∫

0

ds(1 − s)φ(r − ri + sri j )

⎞

⎠. (28)

The three terms in the above equation represent the contri-
butions of the rotations (dynamics), rolling friction and “reg-
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ular” friction (and normal forces for non-spherical particles
that give rise to torques) to the stress asymmetry (which, in
general, stems from localized sources of torques, or angular
momentum).

Note that even in the quasistatic limit (i.e., for Ṡi = 0),
there are contributions to the stress asymmetry that are not
nominally vanishing. However, these contributions take on
the form of a divergence. One can try to naively estimate
the values of these contributions as follows (for different
approaches to estimate length scales associated with Coss-
erat formulations, cf. e.g., [36] and references therein). The
largest value of a derivative, given the resolution, is of the
order of 1

w
. The typical value of the rolling friction term, up

to a constant, is the product d f , where f represents the norm
of a typical force, and d stands for a typical particle diameter
(the same holding for the force contribution to the torque).
Also, the norm of ri j can be represented by d. Therefore the
overall contribution of this term can be roughly estimated by

1
w�d (w)

f d2 Ncq1, where �d(w) is the coarse graining vol-
ume (the normalization of φ when it is taken to be a Heaviside
function), Nc is the number of contacts in the volume and q1

is a “reduction factor” due to cancellations stemming from
possible different signs of the summands. To within an O(1)
factor, �3(w) ≈ w3 in three dimensions. Therefore one can
estimate the antisymmetric part of the stress tensor in three
dimensions by f d2

w4 Ncq1. Compare this to a similar rough

estimate of the stress: f d Ncq2
w3 , where q2 plays a similar role

to q1. The ratio of the former to the latter is d
w

when q1 ≈ q2

(unjustified), and it is rather small for large coarse graining
scales, irrespective of the neglected numerical factors. How-
ever, it can be rather significant for small coarse graining
scales. Note that even in the absence of rolling friction there
is a contribution to the stress asymmetry which is approxi-
mately of the same order as the above estimate. When the
dynamics is not “slow” the antisymmetric part of the stress
has a contribution from the time dependence of the particles’
angular momenta. For frictionless spherical homogeneous
particles the stress tensor is symmetric as already mentioned
above. Finally, note that the above result is similar but not
identical to that obtained in Bardet and Vardoulakis [12] since
they do not use controlled resolution fields and their results
are basically valid in the limit of low resolution (or large w

in the language of this paper); the similarity can be easily
appreciated by comparing Eq. 27 with (47–48) in Bardet and
Vardoulakis [12].

5 Equation for the angular momentum density field,
and the couple-stress tensor

In order to define the angular momentum of a system or parts
of it one needs a fixed reference point (in an inertial frame)
with respect to which angular momentum is measured (the

center of mass of the system can also be used, even when it
accelerates, but this is not convenient here). We denote this
point by ro. The reference point does not have to be “inside”
the system or otherwise related to it. Since angular momen-
tum is conserved in the absence of external torques, its density
should satisfy a conservation equation similar to that that is
satisfied by the momentum density. In the case of momen-
tum density the flux accounts both for the flow of momentum
due to the mere motion of the particles and the transfer of
momentum by forces that are exerted on a subsystem (e.g.,
within the coarse graining volume) by the complementary
subsystem (its exterior). In the case of angular momentum
the flux accounts for the transfer of angular momentum by
the mere motion of the particles and by torques on a given
subsystem exerted by the complementary subsystem. It does
not matter whether the torques are the results of forces or
couples, such as those involved in rolling friction.

The angular momentum of particle i with respect to r0 is
given by: (ri − ro) × mi vi + Si . Recall that Si denotes the
angular momentum of particle i around its center of mass.
On the basis of this we define the angular momentum density
as follows:

L ≡
∑

i

[(ri − ro) × mi vi + Si ] φ(r − ri ). (29)

Clearly a microscopic angular momentum density field can
be defined by replacing φ by a delta function. It follows from
the definition of L that:

L =
∑

i

[(ri − r + r − ro) × mi vi + Si ] φ(r − ri )

= (r − ro) × p +
∑

i

[mi (ri − r) × vi

+ Si ] φ(r − ri ) = (r − ro) × p + J, (30)

where the local angular momentum (LAM) density, J (with
respect to the coarse graining center, r), is defined as:

J ≡
∑

i

[mi (ri − r) × vi + Si ] φ(r − ri ). (31)

Note that this entity does not depend on the reference point,
ro. The physical interpretation of the above is obvious: the
angular momentum corresponding to a coarse graining vol-
ume in the system is the sum of its internal angular momen-
tum (measured with respect to the center of coarse graining,
r), J, and the angular momentum due to the resultant momen-
tum in this volume with respect to the reference point, ro.
A derivation of the continuum mechanical equation for the
LAM density, J, is presented in Appendix A-2. The result is:

∂ Jα

∂t
= − ∂

∂rδ

[Vδ Jα − Cαδ] − εαβγ σβγ , (32)
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where the couple stress tensor is given by:

Cαδ = −1

2

∑

i j

[((
rc

i j − r
)

× fi j

)

α
+ Mr f

i jα

]
ri jδ

×
1∫

0

ds φ
(
r − ri + sri j

)−
∑

i

[
εαβγ

(
riβ − rβ

)

× miviγ + Siα
]
v′

iδφ(r − ri ). (33)

In the quasi-static limit Eq. 33 simplifies to:

Cαδ = −1

2

∑

i j

[(
(rc

i j − r) × fi j

)

α
+ Mr f

i jα

]
ri jδ

×
1∫

0

ds φ
(
r − ri + sri j

)
. (34)

Like in Eq. 28 note that the couple stress has terms due to
friction and rolling friction. When the dynamic part is not
neglected there is also a contribution to the particles’ rotation
and angular momentum with respect to the coarse-graining
center, r.

A further simplification is obtained when rolling friction
is neglected:

Cαδ = −1

2

∑

i j

((
rc

i j − r
)

× fi j

)

α
ri jδ

×
1∫

0

ds φ
(
r − ri + sri j

)
. (35)

In the limit of large coarse graining scales and a spherical
coarse graining volume one obtains:

Cαδ = − 1

2�d(w)

∑

i j;‖r−ri ‖<w

((
rc

i j − r
)

× fi j

)

α
ri jδ. (36)

This formula is very similar to, e.g., the expression used by
Lätzel et al. [11] and others for the same entity (rewritten in
the language of this article): 1

�d (w)

∑
jcontacts of i ((r

c
i j −

ri ) × fi j )αri jδ , where r in Eq. 36 is replaced by ri , the latter
serving as the “coarse graining center” in the phenomeno-
logical approaches. However, the effective value of w in the
latter approaches is basically a diameter and therefore the
limit of large w does not apply there.

Note that Eq. 32 is not a strict conservation equation for the
LAM density, J, since the latter does not represent the density
of a conserved quantity by itself. Therefore its time derivative
includes a source term, −εαβγ σβγ , which is proportional to
the antisymmetric part of the stress tensor. The full momen-
tum density, L(r, t), is conserved, as can be verified by add-
ing the contribution of the time derivative of (r − r0) × p to
that of J:

∂Lα

∂t
= ∂

∂t

[
εαβγ

(
rβ − r0β

)
pγ + Jα

]

= − ∂

∂rδ

{
Vδ Lα − εαβγ

(
rβ − r0β

)
σγ δ − Cαβ

}
. (37)

Note that three terms contribute to the angular momentum
flux. The first is a convective term, the second is a torque due
to the stress and the third is the couple stress, in agreement
with continuum mechanics [37].

6 Concluding remarks

One of the main objectives of coarse graining is to produce
constitutive relations for the continuum equations as well
as appropriate boundary conditions. This has been achieved
for gases and granular gases using the Boltzmann equation
and its extensions, and for molecular liquids by employing
the powerful methods of response and projection operator
theory. When it comes to disordered solids and dense gran-
ular systems in static or “liquid” states or under quasi-static
deformations, there is still much to be done, see however the
derivation of elasticity in Goldhirsch and Goldenberg [27].

When attempting to coarse grain from the level of the
constituents to that of continuum theory one needs to bear
in mind that the fields thus obtained and their corresponding
fluxes, sources and sinks should actually be smooth (with
possible exceptions, e.g., when shocks are concerned), pref-
erably have a well defined resolution (as is the case in non-
equilibrium statistical mechanical derivations) and obey the
equations of continuum mechanics. These “rules” are not
always “obeyed” in phenomenological studies, in particular
one often considers “fields” that are only defined on the dis-
crete set of particle centers of mass, one uses expressions that
are justified for large coarse graining scales when only a par-
ticle and the particles with which it is in contact (typically,
its nearest neighbors) are accounted for, and one does not
pay attention to the boundaries. Furthermore, it is not clear
whether some of the definitions employed for these “fields”
actually satisfy the equations of continuum mechanics. Con-
cerning boundaries, it is known from, e.g., fluid dynamics
that near boundaries there is a thin (Knudsen) layer where
the constitutive relations (which are usually based on gra-
dient expansions) do not hold since there the gradients are
“large”. A proper way to incorporate the effects of bound-
aries in kinetic theories has been developed and it involves
the matching of the kinetics near the boundaries to the con-
tinuum descriptions away (i.e., a few mean free paths) from
them, cf. [38] for a general description and [39] for an appli-
cation to granular gases. A similar procedure has not yet
been developed for dense granular systems. However, one
may note the following. The stress field defined above, and
even those defined phenomenologically, does not vanish at
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the surface of a “sand pile”. At first this looks surprising
but then consider the above definition of the stress field
at points which are a few w’s from the surface: there the
stress automatically vanishes and this is fully compatible
with the understanding that the description has a finite reso-
lution.

Even before one uses coarse graining to obtain constitu-
tive relations one can employ the above (and other) expres-
sions for the study of results of computations or experiments
and their characterization in terms of stress, strain (not dis-
cussed in this paper), couple-stress and other fields; for appli-
cation of the above formulation (including the strain field),
see [24,27,28,40,41].

It is important to reiterate the issue of plateaus. Exper-
imental results concerning purely sheared two dimensional
slabs [41], as well as numerical findings [24,33,34] show
that even when the gradients of various fields are relatively
large one can observe plateaus, e.g., in the stress as a func-
tion of resolution, or w. This allows one to define “objective”
continuum fields.

In summary, this paper describes a coarse graining
approach,stresses themeaningofcoarsegrainingandpresents
novel results concerning the couple stress and stress asymme-
try, and the question of uniqueness of the stress field. These
and other results should be relevant for other systems such as
disordered solids, and since one can control the resolution and
define it to be quite fine, one may apply them to nanoscale
materials [24]. The above results can easily be extended to
include temporal coarse graining, when needed, see [21].
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Appendix A: Details of some derivations

This appendix presents technical details of the derivations of
some expressions in the main text.

A-1: the stress asymmetry

Following Eq. 27:

σαβ − σβα =
∑

i, j

εαβγ M f
i jγ

1∫

0

ds

⎛

⎝φ(r − ri )

+
s∫

0

∂

∂s′ φ(r − ri + s′ri j )ds′
⎞

⎠

=
∑

i

εαβγ M f
iγ φ(r − ri )

+ εαβγ

∂

∂rδ

∑

i, j

M f
i jγ ri jδ

1∫

0

ds

×
s∫

0

φ(r − ri + s′ri j )ds′ (38)

where M f
i ≡ ∑

j Mi j is the resultant torque on particle i
due to forces; note that integration by parts has been invoked
in the above chain of equations. A simple transformation of
the above double integral yields:

σαβ − σβα = εαβγ

∑

i

M f
iγ φ(r − ri )

+ εαβγ

∂

∂rδ

∑

i, j

M f
i jγ ri jδ

1∫

0

ds(1 − s)φ(r − ri + sri j ).

(39)

Recalling that Ṡi = Mi , the resultant torque on particle i ,
and noting that: Mi = M f

i + Mr f
i , where Mr f denotes the

contribution of rolling friction (or couples in general), one
can replace M f

i in Eq. 39 by Ṡi − Mr f
i . The result is:

σαβ − σβα = εαβγ

∑

i

(Ṡiγ − Mr f
iγ )φ(r − ri )

+ εαβγ

∂

∂rδ

∑

i, j

M f
i jγ ri jδ

1∫

0

ds(1 − s)φ(r − ri + ri j )

(40)

Denote by Mr f
i j the couple exerted by particle j on particles

i . Clearly,

∑

i

Mr f
iγ φ(r − ri ) =

∑

i j

Mr f
i jγ φ(r − ri )

=
∑

i j

Mr f
jiγ φ(r − r j )

= −
∑

i j

Mr f
i jγ φ(r − r j ),

where use has been made of Mr f
i j = −Mr f

j i . Therefore:

∑

i

Mr f
iγ φ(r − ri ) = − 1

2

∑

i j

Mr f
γ i j

(
φ(r − r j )− φ(r − ri )

)
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= − ∂

∂rδ

1

2

∑

i j

Mr f
i jγ ri jδ

1∫

0

dsφ(r−ri+sri j ).

(41)

Upon substituting this result in Eq. 40 one obtains another
expression for the stress difference, Eq. 28.

A-2: the equation of motion for the LAM

Consider the time derivative of the α component of the LAM
density, Eq. 31:

∂ Jα

∂t
= ∂

∂t

∑

i

[
εαβγ mi

(
riβ−rβ

)
viγ +Siα

]
φ(r−ri )

= εαβγ

∑

i

miviβviγ φ(r−ri )

︸ ︷︷ ︸
Cα

+ εαβγ

∑

i

mi
(
riβ−rβ

)
v̇iγ φ(r−ri )

︸ ︷︷ ︸
Dα

+
∑

i

Ṡiαφ(r−ri )

︸ ︷︷ ︸
Eα

+ εαβγ

∑

i

mi
(
riβ−rβ

)
viγ

∂φ(r−ri )

∂t
︸ ︷︷ ︸

Fα

+
∑

i

Siα
∂φ(r−ri )

∂t
︸ ︷︷ ︸

Gα

(42)

Each part of Eq. 42 is treated separately below. First note
that Cα = 0 since the tensor

∑
i miviβviγ φ(r − ri ) is sym-

metric. Next, using the antisymmetry of εαβγ , changes of
dummy summation variables and Newton’s second and third
laws, one can obtain expressions for the other terms in Eq. 42.
We start with Dα .

Dα = εαβγ

∑

i j

(
riβ − rβ

)
fi jγ φ(r − ri )

= εαβγ

∑

i j

(
r jβ − rβ

)
f j iγ φ(r − r j )

= −εαβγ

∑

i j

(
r jβ − rβ

)
fi jγ φ(r − r j ) (43)

Summing up the first and last lines on the rhs of Eq. 43, and
dividing by 2 one obtains:

Dα = 1

2
εαβγ

∑

i j

fi jγ
[(

riβ − rβ

)
φ(r − ri )

− (r jβ − rβ

)
φ(r − r j )

]

= 1

2
εαβγ

⎧
⎨

⎩

∑

i j

fi jγ ri jβφ(r − ri )

+
∑

i j

fi jγ
(
r jβ − rβ

) [
φ(r − ri ) − φ(r − r j )

]
⎫
⎬

⎭

= 1

2
εαβγ

⎧
⎨

⎩

∑

i j

fi jγ ri jβφ(r − ri )

−
∑

i j

fi jγ
(
r jβ − rβ

) ∂

∂rδ

1∫

0

ri jδds φ
(
r − ri + sri j

)
⎫
⎬

⎭

= 1

2
εαβγ

∑

i j

fi jγ ri jβφ(r − ri )

−1

2
εαβγ

∂

∂rδ

∑

i j

(
r jβ − rβ

)
fi jγ ri jδ

×
1∫

0

ds φ
(
r − ri + sri j

)

−1

2
εαβγ

∑

i j

fi jγ ri jβ

1∫

0

ds φ
(
r − ri + sri j

)
. (44)

Since the product fi jγ ri jδ is symmetric to the exchange of
i and j and so is the integral over φ (see Eq. 20), one can
invoke a exchange of indices in the second term on the right
hand side of Eq. 44 to obtain:

Dα = 1

2
εαβγ

∑

i j

fi jγ ri jβφ(r − ri )

−1

2
εαβγ

∂

∂rδ

∑

i j

(
riβ − rβ

)
fi jγ ri jδ

×
1∫

0

ds φ
(
r − ri + sri j

)

−1

2
εαβγ

∑

i j

fi jγ ri jβ

1∫

0

ds φ
(
r − ri + sri j

)
. (45)

Next (recalling that Mi denotes the resultant torque on par-
ticle i):

Eα =
∑

i

Ṡiαφ(r − ri )

=
∑

i

Miαφ(r − ri ) =
∑

i j

Mi jαφ(r − ri )

=
∑

i j

M jiαφ(r − r j )
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= 1

2

∑

i j

(
Mi jαφ(r − ri ) + M jiαφ(r − r j )

)

= 1

2

∑

i j

(
Mi jα + M jiα

)
φ(r − ri )

+1

2

∑

i j

M jiα
(
φ(r − r j ) − φ(r − ri )

)
. (46)

At this stage recall that Mi j = M f
i j + Mr f

i j , where M f
i j =

(rc
i j − ri ) × fi j . Also note that Mr f

i j = −Mr f
j i . We have seen

before that Mi j + M j i = −ri j × fi j . Substituting these facts
in Eq. 46 one obtains:

Eα = 1

2
εαβγ

∑

i j

fi jβri jγ φ(r−ri )

+1

2

∑

i j

M jiα
[
φ(r−r j )−φ(r−ri )

]

= 1

2
εαβγ

∑

i j

fi jβri jγ φ(r−ri )

−1

2

∑

i j

Mi jα
[
φ(r−r j )−φ(r−ri )

]

= 1

2
εαβγ

∑

i j

fi jβri jγ φ(r − ri )

−1

2

∂

∂rβ

∑

i j

Mi jαri jβ

1∫

0

ds φ(r − ri + sri j ). (47)

Next, rewrite Fα as follows:

Fα = −εαβγ

∑

i

mi (riβ − rβ)viγ viδ
∂

∂rδ

φ(r − ri )

= −εαβγ

∂

∂rδ

∑

i

mi (riβ − rβ)viγ viδφ(r − ri )

−εαβγ

∑

i

miviγ viβφ(r − ri )

= −εαβγ

∂

∂rδ

∑

i

mi (riβ − rβ)viγ viδφ(r − ri )

= −εαβγ

∂

∂rδ

[

Vδ

∑

i

mi
(
riβ − rβ

)
viγ φ(r − ri )

+
∑

i

mi
(
riβ − rβ

)
viγ v′

iδφ(r − ri )

]

, (48)

where use has been made of εαβγ

∑
i miviγ viβφ(r−ri ) = 0,

by symmetry considerations. Finally,

Gα ≡
∑

i

Siα
∂φ(r − ri )

∂t
= − ∂

∂rδ

∑

i

Siαviδφ(r − ri )

= − ∂

∂rδ

[

Vδ

∑

i

Siαφ(r − ri ) +
∑

i

Siαv′
iδφ(r − ri )

]

.

(49)

Adding up all contributions on the right hand side of Eq. 42,
as calculated in Eq. 45, 47, 48, 49, and employing the anti-
symmetry of εαβγ , one obtains:

∂ Jα

∂t
= − ∂

∂rδ

[Vδ Jα − Cαδ] − εαβγ σβγ , (50)

where the couple stress tensor is identified as:

Cαδ ≡ −1

2

∑

i j

[
εαβγ

(
riβ − rβ

)
fi jγ ri jδ

+Mi jαri jδ
]

1∫

0

ds φ
(
r − ri + sri j

)

−
∑

i

[
εαβγ

(
riβ − rβ

)
miviγ + Siα

]
v′

iδφ(r − ri ).

= −1

2

∑

i j

[(
(ri − r) × fi j

)
α

+ Mi jα
]

ri jδ

×
1∫

0

ds φ
(
r − ri + sri j

)

−
∑

i

[
εαβγ

(
riβ − rβ

)
miviγ + Siα

]
v′

iδφ(r − ri ).

(51)

Using Mi jα = M f
i jα+Mr f

i jα = (rc
i j ×fi j )α+Mr f

i jα , the couple
stress tensor can be further rewritten as follows:

Cαδ = −1

2

∑

i j

[(
(ri − r) × fi j

)
α

+
((

rc
i j − ri

)
× fi j

)

α

+Mr f
i jα

]
ri jδ

1∫

0

ds φ
(
r − ri + sri j

)

−
∑

i

[
εαβγ

(
riβ − rβ

)
miviγ + Siα

]
v′

iδφ(r − ri )

The above is presented in a somewhat more compact form
in the main text, Eq. 33.
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