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Abstract The rheological behavior of non-cohesive soils
results from the arrangement and complex geometry of the
grains. Numerical models based on discrete element mod-
eling provides an opportunity to understand these phenom-
ena while considering the discrete elements with a similar
shape to that of the grains the soil is composed of. How-
ever, dealing with realistic shapes would lead to a prohibi-
tive calculation cost. In a macroscopic modeling approach,
simplification of the discrete elements’ shape can be done as
long as the model can predict experimental results. Since the
intrinsic non-convex geometry property of real grains seems
to play a major role on the response of the granular medium,
it is thus possible to keep this geometrical feature by using
cluster of spherical discrete elements, which has the advan-
tage to reduce dramatically the computation cost. Since the
porosities found experimentally could not always be obtained
with the numerical model—owing to the huge difference in
shape, the notion of relative density, which requires a search
for minimum and maximum porosities for the model, was
chosen to compare the experimental and numerical results.
Comparing the numerical simulations with the experimental
triaxial tests conducted with relative densities and different
confining pressures shows that the model is able to predict
the experimental results.

Keywords Granular materials · Discrete element model ·
Shape of elements · Porosity · Triaxial tests

C. Salot · P. Gotteland (B) · P. Villard
Laboratoire 3S-R, UJF, CNRS, INP, UMR,
Grenoble Universités, Grenoble, France
e-mail: philippe.gotteland@hmg.inpg.fr

1 Introduction

Granular materials are important components of a geotech-
nical structure. They are used alone or in combination with
various other materials (reinforcement, drains, or recycled
materials) to modify its mechanical or hydraulic behavior.
The arrangement and interlocking of the soil grains have a
decisive impact on the mechanical behavior of the granular
assembly and therefore on the behavior of the structure. In
many of today’s applications, engineers do not have the tools
available that allow them to take the changes in density of
granular materials into consideration in the designing meth-
ods used.

This is particularly true in the evaluation of the liquefac-
tion strength of soils [1], reclaimed fill [2], innovative struc-
tures composed of combinations of materials with various
mechanical characteristics such as tire–reinforced sand mix-
tures [3], or structures that are subjected to strong impacts
such as protective barriers against rockfall [4].

To remedy these shortcomings, a numerical model is pro-
posed, based on the discrete element method that takes into
consideration the porosity of the material. The numerical
model is defined by a limited number of parameters and inte-
grates simple element shapes. The ability of the numerical
model to reproduce the mechanical behavior of a granular
assembly with different porosities was validated by com-
parison with axisymmetric triaxial compression tests on real
sand.

The discrete element method developed by Cundall and
Strack [5] is used to study the behavior of composite materi-
als composed basically of granular materials [6,7]. Contrary
to the models based on the finite element method, the discrete
element modeling (DEM) can model the complex behavior
of a granular medium with few parameters. The discrete
nature of the DEM models can also highlight localization
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phenomena. In the solution process there are two successive
alternating computation phases at each time step:

– the determination of the normal contact and tangential
forces between two interacting elements, obtained from
a contact law,

– the calculation of the displacement of each element
through a dual integration of Newton’s second law of
motion.

Classical models are based on the definition of spherical
discrete elements to optimize computation times during con-
tact detection. These models cannot quantitatively reproduce
the shear strength of a granular soil subjected to triaxial tests
[8] given the rolling mechanisms that may develop with the
spherical elements. As Matsushima and Saomoto [9] have
emphasized, elements that are more angular may cause an
increase in shear strength.

Several methods have been proposed to correct grain
rolling: they are based either on the definition of non-spher-
ical elements or they integrate contact laws that result in
partially or totally blocking the rotations.

Simple 2D models have been proposed on the basis of
elliptical convex elements [10–14], polygon-shaped elements
[15–21], superquadrics [22] or non-round elements defined
by circular segments [23,24]. More sophisticated shapes are
obtained in 2D using a bundle of overlapping or jointed discs
[25–29]. In the same way, 3D models based on ellipsoids
[30–33], polyhedrons [34–37], or overlapping or jointed sph-
eres [9,38–42] are used.

However, it seems that the convexity of the elements com-
posed of spheres supports rolling, which is the source of the
low level of resistance achieved by the samples during biaxial
simulation. Nevertheless, non-convex elements have many
points of contact, which enable the transfer of a resistance
moment even in the absence of frictional forces. This moment
tends to increase the overall resistance of the granular assem-
bly [43]. O’Sullivan and Bray [41] explain that this increase
in resistance caused by stabilization increases force chains.

Specific algorithms have been developed to enable a closer
approximation of the true shape of the grains of soil by using
2D [29] and 3D [9,37,42] clusters of spheres. These models
require a high number of spherical elements, which affects
the computation time, without realistically coming close to
the true shape of the grain.

An alternative would be to limit the rotation of the ele-
ments. Calvetti et al. [44] impede all rotation of the ele-
ments and partially reproduce the mechanical behavior of
sands with biaxial solicitations, whereas Iwashita and Oda
[45] modified the traditional contact laws by introducing a
resistance to rolling.

To optimize computation time, for this study simple con-
tact laws and elements made up of inseparable spheres that

can be either interlocked or not, were considered. These
elements are non-convex and not limited in rotation. This
global approach is used to reproduce the behavior of real soil
as accurately as possible without having to precisely describe
the geometry of the grains and the granular distribution of the
medium to be modeled.

To validate this approach, numerical simulations of the
axisymmetric triaxial compression tests were compared to
experimental results. The model was calibrated on one test,
carried out at a given porosity and under a confinement stress.
Once it was calibrated, the model was tested for various
porosities and different confinements.

In the calibration stage, different shapes of discrete ele-
ments and several sets of micromechanical parameters were
tested. The concave aspect of these elements generates
numerical samples of porosity ranges that are well above
those of the experimental samples. The experimental and
numerical results therefore cannot be compared at the same
porosity. The notion of relative density makes this compari-
son possible but requires that minimum and maximum poros-
ities of the sample be defined. A procedure to determine these
relative densities within the model is presented.

2 Presentation of the numerical model

2.1 Interaction laws

The code used for this study is the SDEC software [46]. It
is based on the molecular dynamics method and integrates
3D sphere assemblies. The spherical shape of the basic ele-
ments enables the computation time to be optimized in terms
of detecting contacts, since the spheres interact with contacts
that are assumed to be punctual.

The macroscopic behavior of granular assemblies is a
function of the geometry of the elements, their initial arrange-
ment, and three intrinsic parameters (Ec, α and ϕµ) of the
material, independent of the size of the elements.

Coefficient α and the normal contact modulus Ec account
for the elastic behavior of the granular assembly. The micro-
scopic friction angle ϕµ characterizes the failure criterion
between the elements.

With each sphere of radius Ri normal stiffness kn,i and
tangential stiffness ks,i are associated defined by Eqs. 1 and 2
with parameters Ec and α.

The normal force Fn exerted between the two spheres i
and j is related to the interpenetration of spheres dn according
to Eq. 3. Therefore, no tensile strength is possible between
the elements. At each time step, the tangential force is incre-
mented by �Fs . The variation �Fs of the tangential force
Fs is defined based on the tangential displacement increment
�ds by Eq. 4. A friction law of the Coulomb type is used. At
each contact, it limited the absolute value of the tangential
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Fig. 1 Definition of the parameters d and R for two spheres making
up one clumped element

force to a fraction of the normal force (Eq. 5).

kn,i = Ec · Ri (1)

ks,i = α · kn,i (2)

Fn = Kn · dn with Kn = kn,i · kn, j

kn,i + kn, j
(3)

�Fs = Ks ·�ds with Ks = ks,i · ks, j

ks,i + ks, j
= α · Kn (4)

|Fs | ≤ tan
(
ϕµ

) · Fn (5)

The conditions at the boundaries of the model are controlled
by rigid walls without any friction. These walls impose dis-
placements or forces on the sample through a controlled pro-
cedure. The contact stress between a sphere i and a wall is
normal at the wall and proportional to their interpenetration
dn . This force is similar to the normal force generated by two
spheres in contact for the same interpenetration (Eq. 6).

Fw = Kn · dn = EC · Ri

2
· dn (6)

2.2 Geometry of the discrete elements

To account for a realistic behavior of the soil, the spheres
of the initial model were combined to form non-convex ele-
ments. These spheres form a rigid body and are either inter-
locking or not. The non-convex shape of the elements limits
the rotations of the global elements and the rolling mech-
anisms. To simplify their geometry, the radii of the spheres
making up an element are identical. An angularity coefficient,
denoted ang, quantifies the concave aspect of the element
based on the distance d between two spheres composing an
element and their radius R (Eq. 7, Fig. 1).

ang = d

2 · R
(7)

The morphology of an element is defined by two parameters:
the number of spheres that compose it and the angularity. The
number of spheres varies from 1 to 4 (Fig. 2). Later, this num-

Fig. 2 Influence on the number of spheres per clumped element (1, 2,
3 and 4) on the geometry of the clumps for ang = 1

Ang (-)

0.0 1.00.5                                 1.51.0

Fig. 3 Influence of angularity on the geometry of elements composed
of two spheres

ber of spheres per element will be associated to the element
models: model 1R for independent spheres, model 2R for
axisymmetric elements comprising two spheres, models 3R
and 4R for asymmetric elements made up of three and four
spheres.

Angularity characterizes both the slenderness ratio and the
concavity of the elements. For ang = 0, the elements are per-
fectly spherical and for ang = 1, the spheres of the elements
are tangent (Fig. 3). For ang = 1.4, the spheres of the element
have no contact with each other but can also be considered
a rigid body. Depending on the sample’s granulometry, limit
angularity values are set such that the elements can never
cross each other. The non-convexity of the element increases
with the value of ang and limits the global rolling mecha-
nisms. Usually, the microscopic angle is used to simulate a
friction (that limits rotations) and the shape of the elements
remain spherical or at least non-convex. Taking convexity
into account enables a real aspect of the non-spherical and
the roughness of natural materials to be added.

Within a granular assembly, the size of the constitutive
spheres of the elements is randomly selected between radii
Rmax and Rmin. These radii depend on the size of the numer-
ical sample and the number of elements to be studied.
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2.3 Methods for 3D sample preparation

The preparation of an isotropic, homogeneous numerical
sample is not easy. Currently, several methods exist for set-up.
According to Bagi [47], they can be divided into two main
categories.

First, there are the methods called constructive algorithms
that create a sample from algorithms that are exclusively
based on the geometry of the elements. These are generally
used for 2D assemblies and become difficult to develop for
any 3D shapes. Moreover, one cannot obtain minimum and
maximum porosities for a given sample with these methods.

Second, there are the dynamic methods that are based
on rearranging the granular assembly by displacing and/or
increasing the size of the elements. The simplest method
consists in positioning the elements by gravitational deposi-
tion, which tends to generate anisotropic assemblies. To pre-
vent this anisotropy, Combes [48] suggests randomly mixing
followed by enlarging the elements or sedimentation under a
field of gravity. A number of authors [8,28,43,49,50] suggest
positioning the elements in a given volume and then increas-
ing the density of the soil by reducing the volume or enlarging
the elements. These methods are particularly well adapted
to random volumes and shapes and generate isotropic and
homogenous samples. Chareyre and Villard [51] developed
a method called radius expansion–friction decrease (REFD),
which generates a precise management of the final porosity
for a 2D sample. Small-size elements with micromechanical
properties are generated e in a given volume, then increase
in size until they exert a stress of 1 kPa on the walls. The
friction is then reduced and the diameter of the elements is
increased to maintain the stress on the walls until the desired
porosity is achieved.

In the current study, the REFD method was used and
adapted to obtain granular assembly at different states of
porosity. The elements are set up randomly using a small
size in a given volume so that there is no contact between two
elements. The micromechanical parameters of the material
needed to reproduce the macroscopic behavior are set from
the beginning of the computations (stiffness and microscopic
friction angle ϕµ).

The radii of the elements are increased until a mean given
stress σ0 is exerted on the walls of the volume. The porosity
of the material obtained is called maximum porosity.

The microscopic friction is progressively reduced and
simultaneously the radius of the elements is increased to
maintain the mean stress on the walls at the value σ0. This
numerical procedure is applied until the desired porosity is
obtained. If the microscopic friction reaches the null value,
the porosity obtained is called minimum porosity.

After stabilizing the numerical sample the micromechan-
ical properties of the granular assembly to be tested (ϕµ) are
thus affected. This method introduces only two new

parameters: the speed of element enlargement and σ0. These
parameters have only a slight influence on the final state
of the sample if a sufficiently low speed at which the ele-
ments enlarge is chosen and the mean pressure remains weak
enough in comparison with the confining pressure used dur-
ing the numerical simulations of triaxial tests.

2.4 Determining the relative density (RD) of the numerical
sample

Traditionally, when the numerical and experimental geome-
tries of the particles are close to each other, users of discrete
numerical models seek to numerically reproduce experimen-
tal porosities (e.g., elements that have a quasi-spherical
shape). In the opposite case, the difference in morphology
between the model’s elements and the real grain assembly
makes any direct comparison between the numerical and
experimental porosities impossible. It is then more appropri-
ate to attempt to make the relative densities (RD) of the gran-
ular medium studied coincide. The RD coefficient describing
the state of porosity of the granular assembly studied com-
pared to the minimum (nmin) and maximum (nmax) porosi-
ties is defined by Eq. 8. At maximum porosity, RD = 0% is
obtained, and at minimum porosity, RD = 100%.

RD = (nmax − n) · (1 − nmin)

(nmax − nmin) · (1 − n)
(8)

The notion of relative density is rarely raised in discrete
numerical simulation. However, many authors have carried
out simulations using samples for loose and dense states
[49,50]. In 2D, Deluzarche et al. [52] present a procedure
that defines minimum and maximum porosities of a gran-
ular assembly. They created clusters of spherical elements
using P FC2D set up by enlargement. Maximum porosities
are obtained from frictioning samples placed by gravity. Min-
imum porosities are obtained by the successive change in the
microscopic friction angle of the elements, an isotropic com-
pression and cycles of compaction by the walls. The interven-
tion of gravity and the compacting procedure can, however,
generate anisotropy of the sample.

The procedure adopted for this study to implement a sam-
ple with a fixed relative density is based on the method
advanced by Deluzarche et al. [52] and the REFD proce-
dure described above. For each material, the computation
procedure adopted provides a first estimation to determine
as defined previously the maximum and minimum porosi-
ties of the numerical sample. It is then possible to choose
the porosity corresponding to the relative density desired, by
reproducing the closest geometric configuration beyond the
porosity sought.
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3 Modeling triaxial compression tests

3.1 Principle

The numerical samples are generated in a cubic volume
defined by six walls (the initial volume of the cube is 1 m3).
When the desired porosity of the sample is reached the size
of the element remains constant. Thus the final size of the
element is a function of the initial porosity and of the num-
ber of grains used. The element assemblies have a grain size
distribution that is tight and uniform. The ratio between the
largest and the smallest elements is 2.

An isotropic loading is then applied with a confining pres-
sure σ1 = σ3 (Fig. 4). The volume of the sample decreases.
After isotropic confinement, the homogeneity of the sample
was observed via the isotropy of the contact distribution [49].

Finally, e triaxial compression is realized by imposing
a vertical compression speed. At the same time confining
pressure σ3 is maintained constant. The confining pressure
σ1 is measured on the horizontal walls and a positive devia-
toric stress q defined by Eq. 9 is calculated. The volume of
the samples varies during the triaxial test.

q = σ1 − σ3 (9)

The sample can be compared to a representative volume
element when the number of elements is sufficiently high for
the scattering on the macroscopic results to be sufficiently
low. Figure 5 presents the macroscopic response of five dif-
ferent numerical samples obtained using the same numerical
process. As shown on this figure, for a 2R model comprising
8,000 elements, the scattering on the macroscopic response
of the model remains low. This shows the good reproducibil-
ity of the numerical process selected. In parallel, the influence
of the number of elements on the macroscopic response is
slight if assemblies larger than 8,000 elements are considered
(Fig. 6). The representative volume elements are therefore
modeled by 8,000 element assemblies.

Fig. 4 Illustration of a sample (Mod. 2R, ang = 1, RD = 50%)

-50

0

50

100

150

200

250

0 5 10 15 20 25

ε1 (%)

q 
(k

P
a)

-0,02

0,00

0,02

0,04

0,06

0,08

0,10

0,12

ε v
 (

-)

Test n°1
Test n°2
Test n°3
Test n°4
Test n°5

Fig. 5 Scattering of the results for the deviator and the volume strain
(Mod. 2R, σ3 = 80 kPa, ang = 1.4,RD = 60%, Ec = 300 MPa,
α = 0.2 and ϕµ = 20◦)
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Fig. 6 Influence of the number of elements N on the deviator and
the volume strain (Mod. 2R, σ3 = 80 kPa, ang = 1.4,RD = 60%,
Ec = 300 MPa, α = 0.2 and ϕµ = 20◦)

3.2 Influence of relative density on the model’s
macroscopic response

The triaxial test was numerically simulated on several
samples for relative densities of 0, 25, 50 and 100%. The
changes in the deviator, porosity, and the number of coordi-
nations are shown as a function of the axial strain for a 150kPa
confining pressure (Figs. 7, 8, 9). The coordination number,
defined as the mean number of contacts per element, is noted
z. At the initial state, the densest samples are characterized by
a high coordination number (Fig. 9). They generate a peak of
the stress deviator and a reduction in the coordination num-
ber during triaxial compression. For an axial strain close to
20%, the stress deviators obtained at different relative densi-
ties tend toward a common value. This observation matches
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Fig. 9 Influence of relative density on the coordination number (Mod.
2R, σ3 = 150 kPa, ang = 1.4, Ec = 600 MPa, α = 1.0 and ϕµ = 30◦)

Kruyt and Rothenburg’s observation [50]. Figures 7, 8 and 9
also show that the samples’ porosity coordination numbers

are identical for a high axial strain. The notion of critical state
is therefore satisfied because the final state of a sample is not
dependent on its initial relative density.

4 Micro–macro calibration procedure

The purpose of the computer model is to reproduce experi-
mental results. This means determining the values of
micromechanical and geometrical parameters of the model
that provide a better correlation between numerical and
experimental results (in terms of deviator curves—axial strain
and volume strain—axial strain for triaxial tests). The pro-
cedure that enables an optimal set of parameters to be cho-
sen is called the micro–macro calibration procedure. It was
deduced from the results of a numerical parametric study
given the influence of the main geometrical and microme-
chanical parameters. In order to argue the choice made to
define the calibration process, the results of the parametric
study are first detailed.

Since the arrangement of the elements plays an important
role in the macroscopic behavior of granular assemblies, the
influence of the main geometric parameters of the elements
(morphology and angularity) on the minimum and maximum
porosities will be presented first. Then the influence of geo-
metric parameters on the macroscopic results obtained at a
given relative density is determined. The influence of mi-
cromechanical parameters is summarized in the last part.
Finally, the micro–macro procedure is deduced from the var-
ious dependencies.

4.1 Principle

To set up the procedure, the influence of the tested parame-
ters on the model’s volume stresses and strains was studied.
Axial simulations were carried out on 8,000-element sam-
ples the sphere diameters of which were between Rmax and
Rmin. The Rmax/Rmin ratio reflects the spread of the granu-
lometric curve. In the following, Ns denotes the number of
spheres per element and z0 the initial coordination number.
The macroscopic results of the numerical model are charac-
terized by five parameters: E0 the initial modulus, ϕpeak the
friction angle at its peak, ϕc the critical friction angle, υ0 the
Poisson ratio, and ψ the dilatancy angle.

4.2 Influence of the shape of the elements on the samples’
minimum and maximum porosities

The numerical samples are set up at a given porosity, which,
when the minimum and maximum porosities are known,
can be expressed by a relative density RD required for all
comparisons. The shape of the elements, which is charac-
terized by a model of an element and an angularity, has a
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Fig. 10 Influence of angularity on minimum and maximum porosities
(Mod. 2R, Ec = 600 MPa, α = 0.1 and ϕµ = 15◦)

role in the initial interlocking and arrangement of the ele-
ments. It therefore influences the different states of poros-
ity. To determine this influence, samples made up of various
angularities, then different models of elements were set up at
minimum and maximum porosities according to the proce-
dure described above. The micromechanical contact param-
eters are set: Ec = 600 MPa, α = 0.1 and ϕµ = 15◦.

4.2.1 Influence of angularity

Tests were conducted for five angularity values (0, 0.2, 0.6,
1 and 1.4) for the two-sphere elements (2R model). The
minimum and maximum porosities obtained in each case
are reported in Fig. 10. It can be seen that an increase in
angularity generates a reduction in minimum and maximum
porosities first. Extended elements but sufficiently close in
shape to a sphere allow a better filling of the void spaces.
For higher angularities, the effect of the more lengthened
shapes generates an increase in porosity. For angularities
over 1, a volume of void space is constantly present between
two spheres comprising an element; that indeed explains the
porosity increases.

The difference between maximum and minimum porosi-
ties seems almost constant when the angularity is greater than
0.2 (Fig. 11). The difference in behavior obtained between
a null angularity and a 0.2 angularity may be related to a
high level of rolling of the spherical elements, which are
constantly rearranging themselves and generate a low maxi-
mum porosity. It has been observed elsewhere that this rolling
mechanism has a predominating role when microscopic fric-
tion is high and an insignificant role when friction is null.
A very low angularity (0.2) would therefore suffice to limit
the rolling phenomenon and make it possible to obtain min-
imum and maximum porosities that are almost constant for
the highest levels of angularity.
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Fig. 11 Influence of angularity on the difference between maximum
and minimum porosities (Mod. 2R, Ec = 600 MPa, α = 0.1 and ϕµ =
15◦)

Comparing the minimum porosities obtained for
angularities ang = 0 and ang = 1 (Fig. 10), it can be seen
that these values are very similar. For null microscopic fric-
tion, the sliding and the rolling between elements (made of
two tangent inseparable spheres) is enough to obtain the same
porosity as that for an assembly of spheres alone. Taking into
account the contacts within spheres making up the same ele-
ment, the calculation of the number of contacts per sphere
reaches a value of 5.8 for ang = 1 and 5.6 for sphere assem-
blies (ang = 0). Both samples are therefore in a state that
is very close to minimum porosity. If there is microscopic
friction, the porosity is greatly modified between ang = 1
and ang = 0, so the existence of friction clearly prevents the
rearranging of non-spherical elements.

4.2.2 Influence of the element model

To demonstrate the influence of the shape of the element on
the minimum and maximum porosities, tests were carried
out on five angularity values (0, 0.2, 0.6, 1.0 and 1.4) and
for different element models (2R, 3R and 4R models). The
minimum and maximum porosities obtained in each case are
reported in Fig. 12.

It can be seen that the tendencies observed for two-sphere
elements are reproduced for three- and four-sphere elements.
In particular, the gap between minimum and maximum
porosities is almost constant as soon as the angularity value
is higher than 0.2. However, an increase in the number of
spheres per element generates a reduction in the minimum
and maximum porosities for an angularity of less than 0.6. In
this case, the interpenetration of the spheres of a single ele-
ment is better, which results in a lower global porosity. The
inverse is obtained for an angularity greater than 1.0 since the
pore spaces between the elements increase with the number
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Fig. 12 Influence of the element model and angularity on minimum and maximum porosities (Ec = 600 MPa, α = 0.1 and ϕµ = 15◦)

of elements, giving a minimum porosity of the 3R and 4R
models that is greater than the porosity of the 2R model.

As this study shows, the sample’s intrinsic porosity makes
it impossible to establish a direct correlation between the
porosities of the numerical samples and the porosities of real
soils. The minimum and maximum porosities depend to a
large extent on the shape and angularity of the elements.
However, the notion of relative density based on comparing
the state of porosity as a function of minimum and maximum
porosities is independent of the geometry of the elements.
It should also be noted that for a given granular assembly
of non-spherical elements, the gaps between the minimum
and maximum porosities are independent of the number of
spheres per element and the angularity.

4.3 Influence of element shape on the model’s macroscopic
results

To determine the influence of the element shape on the macro-
mechanical behavior of granular assemblies, numerical sim-
ulations were carried out on the samples studied above. To
compare the results quantitatively, these simulations were
accomplished on samples with the relative density RD equal
to 50% (at different initial porosities). For all these simu-
lations, the micromechanical contact parameters remain the
same (Ec = 600 MPa, α = 0.1 and ϕµ = 15◦) and the
confining stress is 110 kPa.

4.3.1 Influence of angularity

The results obtained with the 2R model for several angu-
larity values are compared in Figs. 13 and 14 (deviator q
and volume variation εv as a function of ε1). An increase
in the deviators to the peak value and at a steady state with
the angularity can be observed (Fig. 13). This is related to an
improved interlocking of the elements because of the increase
in concavity of the elements as a function of angularity. With
the 2R model, the residual friction angles were 20◦ for null
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angularity (perfectly spherical elements) and 28◦ for a 100%
angularity (tangent spheres). These values remain lower than
critical friction angles given in the literature for non-cohesive
soils such as sands: 34◦–39◦ for medium to fine sands of the
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Venice lagoon [53], roughly 31◦ for Athabasca sand [54],
and from 30◦ to 34◦ for Hostun sand [55].

The influence of angularity on the volume strain curves
(Fig. 14) is low for angularities greater than 0.6. The inter-
locking of elements generates a tendency to dilatancy that
is compensated by an increase in initial porosity (Fig. 10),
providing relatively similar volume variation curves depend-
ing on the axial strain.

4.3.2 Influence of the element model

To generate more realistic macroscopic behaviors of gran-
ular soils (relatively high friction angles at plasticity), one
must take into consideration the more complex shaped ele-
ments (asymmetric models 3R and 4R). To determine the
influence of the different model elements (1R, 2R, 3R and
4R) on the macroscopic results of the granular assemblies,
several triaxial simulations were carried out on 1.0 angular-
ity samples. The results obtained are compared in Figs. 15
and 16. Figure 15 shows that the 2R model yields strengths
at the peak and at plasticity that are far higher than those of
the 1R model but lower than those produced by the 3R and
4R models results of which, in terms of deviator and volume
variation (Fig. 16), are quite similar.

For a given angularity, the symmetry of the elements
(perfect symmetry for the 1R model, rotational symmetry for
the 2R model, and asymmetry for the 3R and 4R models)
determines rolling and rotation of the elements. This seems
to explain the differences in behavior observed between the
different models.

4.3.3 Influence of shape on element rotation

To quantify the influence of angularity and the element model
on the rolling mechanisms obtained during triaxial compres-
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sion, Eq. 10 is used to define coefficient Cr . It character-
izes the rotation of the elements. It is defined by the relation
between the mean rotation |�θ | of the elements of any sam-
ple and the mean rotation |�θ |ang=0 of a sample made up
of null-angularity elements (spherical elements). |�θ | is the
mean absolute rotation of the elements of a given sample
calculated between 0 and 20% axial strain.

Cr = |�θ |
|�θ |ang=0

(10)

Coefficient Cr was calculated for all the numerical simula-
tions (1R–4R models and angularity from 0 to 1.4).
Figure 17 shows that the angularity significantly reduces
the rotations between the elements and that the reduction
of Cr is greater for low angularities. A non-null angularity
leading to an asymmetry in shape, even low, is enough to
perturb the rotation mechanisms. The 3R and 4R models,
the results of which are similar, limit the rotations more than
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Table 1 Influence of the geometric and micromechanical parameters on the macroscopic results

the 2R model does, which allows rotations around the sym-
metry axis. In view of the curves presented, the evaluation
of the mean rotation of the elements clearly shows that the
strength of a sample is highly dependent on the rotation of its
elements.

It can be concluded that to obtain realistic friction angles
for soil behavior at plasticity, the shape of asymmetrical and
angular elements must be taken into account. These shapes
limit the elements rolling among each other and make it pos-
sible to increase the global strength of the material. When a
certain asymmetry is reached (3R and 4R models), the results
vary little, whether in terms of strength or element rolling. To
minimize the number of spheres and the computation time,
the 3R model is preferred over the 4R model.

4.4 Procedure for calibrating micromechanical and
geometric parameters

The results of the parametric study show the influence of
angularity and the element model on the model’s macro-
scopic results. They establish a qualitative relation between
these parameters (ang and Ns) and the macroscopic parame-
ters reproduced (ϕc, ϕpeak, E0 and υ0). Table 1 summarizes
these trends and presents the influence that the micromechan-
ical parameters have on the macroscopic parameters (Ec, α

and ϕµ) for ϕµ greater than 15◦. It should be noted that:

– The critical friction angleϕc depends, for the most part, on
the angularity and the element model. This is in agree-
ment with the simulation results on 2D models found
by Mahboubi [49]. Kruyt and Rothenburg [50] which
also showed little change in the critical friction angle ϕc

with the microscopic friction angle ϕµ for values greater
than 15◦.

– The Poisson ratio υ0 decreases when the ratio between
the tangential stiffness and normal stiffness α increases.
The same observation was made in Collop et al. [56].

– The initial modulus E0 is independent of the microscopic
friction angle ϕµ.

– The friction angle at the peak ϕpeak and the dilatancy
angle ψ both depend on the angularity and all the micro-
mechanical contact parameters.

The calibration procedure consists in determining the set
of micromechanical parameters that are best adapted to repro-
duce the experimental behavior of the material to be mod-
eled. The different steps of this procedure are summarized in
Fig. 18.

The Rmax/Rmin ratio and the element model were ini-
tially set in order to limit the number of spheres to a reason-
able value (elements of neighboring sizes, limited number
of spheres per element). The confining stress adopted corre-
sponds to the experiment’s confining stress. Initially, all of
the model’s parameters to be set (ang,α, Ec, ϕµ) were chosen
arbitrarily by the user with ϕµ > 15◦. For this set of parame-
ters, the minimum and maximum porosities are obtained by
the numerical process described in part 2.3. Consequently,
a sample is created with a relative density resembling the
experimental sample. A triaxial test is carried out on this
sample and the model’s response is compared to the experi-
mental curves to initiate the calibration phase. When one of
the model’s parameters is modified, a new search for mini-
mum and maximum porosities is carried out, except for the
calibration of Ec, which has no influence on these porosities
(Table 1).

Four successive steps are necessary to calibrate the model
(Fig. 18):

(a) If the model’s critical friction angle is greater than the
critical friction angle obtained experimentally, the angu-
larity of the elements is reduced. In the opposite case,
it is increased. If the material’s critical friction angle
cannot be reproduced by the 2R model, the 3R model
is used. When the critical friction angle is restored cor-
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Fig. 18 Parameter calibration
procedure for the model based
on experimental data and results
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rectly for a given angularity value, the calibration pro-
cess is continued by step b.

(b) Similarly, parameter α is calibrated to come as close as
possible to the Poisson ratio of the material to be mod-
eled. The parameter α does not influence the critical
friction angle obtained (Table 1) and therefore does not
implicate the calibration of ang.

(c) Ec is determined so that the model can reproduce as
accurately as possible the experimental initial modulus
E0. This modification does not change the preceding
calibrations, as can be noted in Table 1.

(d) The microscopic friction angle ϕµ is adjusted so that
the numerical model approaches the friction angle at
the peak ϕpeak of the material to be modeled. It was
shown above that ϕµ has little influence on the residual
friction angle for a value greater than 15◦.

Finally, the dilatancy angle obtained by the numerical model
is compared to the angle in the experiment. Testing new
shapes of elements can be undertaken if necessary for a better
calibration of the model (cf. Sect. 5).

In conclusion, the geometric and micromechanical param-
eters (ang, α, Ec, ϕµ) are determined successively analogous
to the macromechanical parameters of the material to be sim-
ulated (ϕc, υ0, E0, ϕpeak). At the end of the simulations con-
ducted for a 2R element model, if the critical friction angle
is too low or the dilatancy angle ψ does not correspond to
the experimental value, a 3R element (or 4R) model must be
tested. In this case, all of the parameters must be calibrated
again.

5 Application to tests on real sand

This application was tested as part of a research project
financed by the Rhône-Alpes region of France (GeoDis
project). The project’s objectives were to compare various
numerical models based on the DEM and to analyze their
ability to reproduce experimental results. This required
experimental tests carried out on a Ticino sand provided by
the Politecnico di Milano, Milan, Italy, a partner in the pro-
ject. Part of these results, from V. Ghionna and D. Porcino,
are used in this section.

5.1 Description of the Ticino sand

Drained axisymmetric triaxial compression tests were con-
ducted on Ticino sand for two ranges of relative density (data
provided by V. Ghionna and D. Porcino, Università Mediter-
ranea di Reggio-Calabria, Italy). Figure 19 summarizes all
the geometric characteristics of the material tested: the shape
of the grains (morphology, sphericity, mineralogy, specific
gravity Gs), granulometry (granulometric curve, uniformity
coefficient cu), and the minimum γmin and maximum γmax

densities.
The objective of the numerical study was to develop a

model that could reproduce the experimental behavior of
sand for various densities and confining pressures.

The model will be calibrated on the basis of a single exper-
imental trial carried out on a sample with a relative density
equal to 47% (the authors wish to come closer to 50%) and
for a 109-kPa confining pressure. The micromechanical and
geometric parameters of the model thus calibrated will be
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Fig. 19 Index properties of Ticino sand (V. Ghionna and D. Porcino)

Table 2 Comparison of the parameters obtained for the 2R and 3R models

Parameters Porosities

ang (–) α (–) Ec (MPa) ϕµ (
◦) nmax (RD = 100%) n0 (RD = 47%) nmin (RD = 0%)

Mod. 2R 1.40 0.1 1,100 25 0.504 0.472 0.427

Mod. 3R 1.30 0.1 800 19 0.550 0.519 0.479

fixed. The predictive results of the numerical model will then
be compared with the experimental results obtained in dif-
ferent trial conditions for density and confining pressure (rel-
ative density 73% (the authors wish to come closer to 75%),
confining pressure 100, 200 and 300 kPa).

5.2 Calibration of the model’s micromechanical properties

Two element models were tested: the 2R model made up
exclusively of two-sphere elements and the 3R model made
up exclusively of three-sphere elements. To optimize compu-
tation time, the granulometry of the numeric soil was defined
by a Rmax/Rmin ratio of 2. The calibration of the microme-
chanical and geometric parameters of the models is carried
out according to a protocol established earlier based on exper-
imental results from a relative density sample equal to 47%
and for a pressure confinement of 109 kPa.

The reduced strain rate, defined by Roux [57], quantifies
the ratio of inertia forces and the imposed forces. Its value,
proportional to the compression speed, is low for a quasistat-
ic regime and high for a dynamic regime. During the tests
carried out, the reduced strain rate is between 1.7×10−4 and
1.8 × 10−4. The maximum variation of σ3 compared to the
mean reference value is 0.69%.

Table 2 presents the micromechanical parameters for the
calibration for each of the models. The numerical results
obtained for the 2R and 3R models are compared with the
experimental curves in Figs. 20 and 21.

The 2R model makes it possible to come close to the devia-
tor obtained experimentally (Fig. 20). However the dilatancy
obtained numerically is much greater. The 3R model allows a
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Fig. 20 Comparison of the experimental and numerical reference
curves for the 2R model (RD = 47%)

better approach of the volume strain curve (Fig. 21). The sam-
ple is less dilatant because the microscopic friction angle that
enables calibration is lower (Table 2). The number of spheres
per element plays an important role in the micromechanical
parameter calibration process. At equal parameter values, the
3R model reduces element rotation while the 2R model does
not. This generates an increase in strength, which is compen-
sated during calibration by a reduction in the angularity and
the microscopic friction angle. The 3R model is preferred to
the 2R model in defining the calibration parameters. Finally,
Fig. 21 shows that the 3R model does not correctly repro-
duce the elastic modulus characterizing the elastic loading
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Fig. 21 Comparison of the experimental and numerical reference curves for the 3R model, with enlargement of the initial phase

Table 3 Relative densities
obtained for the experimental
and numerical trials at various
confining stresses (%)

RD (%)

Confining pressure σ3 (kPa) Experimental (Exp.) Numerical Mod. 3R (Num.)

109–110 (calibration test) 47 47

99–100 72 72

200 74 75

300 75 76
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Fig. 22 Changes in the deviators obtained experimentally and numerically for the 3R model, with enlargement of the initial phase

and unloading phases of the reference soil in the domain of
low axial strains (<1%).

5.3 Comparison between the numerical model and the
experimental results

The 3R model was subjected to three triaxial compression
tests for a relative density of roughly 73% and confinement
stresses of 100, 200 and 300 kPa corresponding to the
experimental values (Table 3). The numerical and experi-
mental results were compared for the three trials: Fig. 22
shows the changes in the deviators and Fig. 23 the changes
in volume strains.

The model reproduces the experimental deviator curves
for various confining pressures (Fig. 22). For a low axial
strain, as in the experiment, the model generates an increase

in the initial modulus with the confining stress. However, it
can be seen that the moduli of the unloading/reloading cycles
are numerically identical to the initial modulus while exper-
imentally they are greater.

The volume strain curves obtained by the model come
close to the experimental curves (Fig. 23). The contraction
phases (negative volume strains) are accurately simulated
overall. However, certain differences between the model and
the experiment in the dilatancy phase (positive volume
strains) can be noted, particularly beginning with a 4% axial
strain for the trial confined to 99 kPa. It is thought that these
differences are related to measurement imprecisions even
though no information is available on the scattering of the
experimental results. Be that as it may, the slopes of the vol-
ume strain curves during the dilatancy phase are correctly
reproduced by the numerical model.
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6 Conclusion

This study shows that the use of a simplified numerical model
based on the DEM, enables the reproduction of the macro-
scopic behavior of a granular material without it being nec-
essary to describe the granular structure perfectly and or take
into consideration the complexity of the shape of the grain. In
this study, discrete elements made up of interlocked or non-
interlocked spheres were used. These elements have non-
convex shapes, very different from the real shape of grains,
but which enable a high level of interlocking and which
limit rotations within the granular assembly. Several element
shapes were tested and showed that an element asymmetry
is required to account for the high residual friction angle
values obtained during an axisymmetric triaxial compres-
sion. In practice, two- or three-element clusters are enough
to create asymmetry thereby coming sufficiently close to the
behavior of a real material.

Since the shapes of the numerical elements are remote
from the real shapes, the intrinsic porosities of the numeri-
cal and experimental samples cannot be directly compared.
To describe the compactness of the numerical samples, the
notion of relative density was introduced. This was estab-
lished based on the minimum and maximum porosities
obtained using a precise and reproducible computation
procedure. Under these conditions, it was shown that the
numerical model, once it had been calibrated, was capable
of reproducing the experimental results of the triaxial tests on
sands of different relative densities and under different con-
fining stresses. It should be emphasized that the microme-
chanical and geometrical parameters were calibrated based
on a single experimental test according to a clearly estab-
lished protocol.

It should also be noted that under these conditions, the
numerical model is capable of closely reproducing the behav-
ior of non-cohesive soils in the elastic, contraction, and dilat-
ancy phases and at the critical state. The notion of relative
density is relevant because the numerical and experimental

results obtained at different relative densities correlate very
well.

The model thus defined provides the opportunity for a
quantitative study of the phenomena controlled by the den-
sity of a granular material. It will be used to characterize
the behavior of composite materials such as heterogenous
materials with large elements or for reconstituted materials
such as sand–tire mixtures used for their dissipative powers
in protective barriers against rockfall. To test the compu-
tation methodology under other stresses, various types of
trials will be modeled, such as direct shearing tests. The
results of simulations will again be compared to experimental
results.
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