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Abstract In its simplest statistical-mechanical description,
a granular fluid can be modeled as composed of smooth
inelastic hard spheres (with a constant coefficient of nor-
mal restitution α) whose velocity distribution function obeys
the Enskog–Boltzmann equation. The basic state of a gran-
ular fluid is the homogeneous cooling state, characterized
by a homogeneous, isotropic, and stationary distribution of
scaled velocities, F(c). The behavior of F(c) in the domain
of thermal velocities (c ∼ 1) can be characterized by the
two first non-trivial coefficients (a2 and a3) of an expansion
in Sonine polynomials. The main goals of this paper are to
review some of the previous efforts made to estimate (and
measure in computer simulations) the α-dependence of a2

and a3, to report new computer simulations results of a2 and
a3 for two-dimensional systems, and to investigate the pos-
sibility of proposing theoretical estimates of a2 and a3 with
an optimal compromise between simplicity and accuracy.

Keywords Homogeneous cooling state ·
Sonine coefficients · Linear approximations

1 Introduction

The prototype model for a granular gas is a system of smooth
inelastic hard spheres characterized by a coefficient of nor-
mal restitution 0 < α ≤ 1 [1–3]. Kinetic theory arguments
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similar to those followed in the elastic case allow one to derive
the Boltzmann and Enskog equations [4] for the velocity dis-
tribution function f (r, v, t).

Perhaps the basic and simplest physical state for a gran-
ular gas is the homogeneous cooling state (HCS), where the
gas is isolated and has an isotropic and spatially uniform
distribution [3]. In this state, the collisional loss of energy,
characterized by the cooling rate ζ , makes the mean kinetic
energy (directly related to the so-called granular temperature
T ) decay monotonically in time following Haff’s law [5]:

T (t) = T (0)
[
1 + 1

2ζ(0)t
]2 . (1)

Therefore, the distribution function evolves in time toward
a delta function, i.e., f (v) → nδ(v), where n is the num-
ber density. However, the simplicity of this trivial asymp-
totic state is deceiving since the distribution function actually
reaches an interesting scaling (or self-similar) form

f (v, t) = nv−d
0 (t)F(c(t)), c(t) = v/v0(t). (2)

Here, d is the dimensionality and v0(t) is the thermal speed
defined by

d

2
v2

0(t) = 1

n

∫
dv ν2 f (v, t). (3)

By definition,

〈c2〉 = d

2
, (4)

where the (scaled) velocity moments are

〈c2p〉 =
∫

dc c2p F(c). (5)

In the HCS, the Enskog–Boltzmann equation for the
probability distribution function F(c) of the reduced velocity
is [6]
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µ2

d

∂

∂c
· cF(c) = I [c|F, F], (6)

where the collision operator is

I [c1|F, F] =
∫

dc2

∫
dσ̂ �(c12 · σ̂ )(c12 · σ̂ )

×
[
α−2 F(c′′

1)F(c′′
2) − F(c1)F(c2)

]
(7)

and we have introduced the collisional moments

µ2p ≡ −
∫

dc c2p I [c|F, F], (8)

so that 2µ2/d is the dimensionless cooling rate. In Eq. 7,
c12 ≡ c1 − c2 is the relative velocity of the colliding parti-
cles, σ̂ is a unit vector directed along the line of centers from
the sphere 1 to the sphere 2, � is the Heaviside step function,
and (c′′

1, c′′
2) are the precollisional or restituting velocities

yielding (c1, c2) as the postcollisional ones, i.e.

c′′
1,2 = c1,2 ∓ 1

2
(1 + α−1)(c12 · σ̂ )̂σ . (9)

The exact solution of Eq. 6 is not known. Except in the
elastic case (α = 1), the Maxwellian F(c) = π−d/2e−c2 ≡
φ(c) is not a solution. In particular, if α < 1, it is known that
F(c) develops an exponential high-energy tail [6,7],

F(c) ∼ e−ξc, ξ = dπ(d−1)/2


( d+1
2 )µ2

. (10)

A convenient way of characterizing the deviation of F(c)
from φ(c) in the regime of low and intermediate speeds is
through the Sonine polynomial expansion

F(c) = φ(c)

[

1 +
∞∑

k=2

ak L
( d−2

2 )

k (c2)

]

, (11)

where L(a)
k are generalized Laguerre (or Sonine) polynomi-

als [8]. The first two non-trivial coefficients are a2 and a3.
They are related to the fourth and sixth velocity moments as

〈c4〉 = d(d + 2)

4
(1 + a2) , (12)

〈c6〉 = d(d + 2)(d + 4)

8
(1 + 3a2 − a3) . (13)

The Sonine expansion (11) is known to be only asymptotic
[9], so that its practical applicability is restricted to low and
intermediate velocities (say c � 1), in which case the most
relevant coefficients are a2 and a3. Therefore, the determi-
nation of these two coefficients is important to quantify the
basic deviations of the HCS distribution F(c) from the Max-
wellian φ(c), at least for c � 1. This explains the interest this
problem has attracted over the years [3,6,9–21]. Apart from
this formal motivation, the knowledge of a2(α) and a3(α),
especially in the case of the former, is needed to evaluate

the dependence of the transport coefficients on inelasticity
[9,22,23].

The aim of this paper is three-fold. First, some of the
efforts done in the last dozen years or so to estimate a2 and
a3 by theoretical tools and to measure them in simulations
are briefly reviewed in Sect. 2. Next, we explore the possi-
bility of deriving theoretical expressions for a2 and a3 with
an optimal compromise between simplicity and accuracy. To
that end, we restrict ourselves to the class of linear approx-
imations, revisit some of the ones already proposed in the
literature, and construct a few new ones in Sect. 3. Those
approximations are compared with new (d = 2) and recently
published [18,19] (d = 3) computer simulations in Sect. 4.
Section 5 addresses the case of granular gases heated with a
white-noise thermostat. Finally, the conclusions are summa-
rized in Sect. 6, while some complementary material is rele-
gated to the Appendices.

2 A brief review of previous results

Taking (even) moments in both sides of Eq. 6 one gets the
exact set of moment equations

µ2p = pµ2
〈c2p〉
〈c2〉 , p ≥ 2, (14)

where use has been made of Eq. 4. The condition p ≥ 2 is
introduced because Eq. 14 becomes an identity for p = 0
and also for p = 1.

It is important to notice that the collisional moments are
functionals of the distribution function, so that Eq. 14 implies
a coupling among all the Sonine coefficients ak and there is
no a priori reason to expect a chosen truncation to provide
accurate results for a subset of coefficients. On the other hand,
most of the routes followed to get theoretically based results
assume some kind of truncation and/or order-of-magnitude
simplification. More specifically, one usually approximates
the first few collisional moments µ2p by inserting the expan-
sion (11) into Eqs. 7 and 8, truncating the expansion after a
certain order and, in some cases, neglecting nonlinear terms.
The resulting set of approximate equations is then solved
algebraically to obtain estimates for the desired coefficients
ak . In principle, these estimates are uncontrolled and can be
assessed only after comparison with computer simulations.

The first application of this method was carried out by
Goldshtein and Shapiro in a pioneering and extensive paper
[10]. They derived a simple expression for a2 in the
three-dimensional (d = 3) case by taking a linear approxi-
mation (namely, neglecting a2

2 and ak with k ≥ 3) in Eq. 14
with p = 2. Here we quote their result:

a2 = 16(1 − α)(1 − 2α2)

λ0 + λ1α + λ2α2(1 − α)
, (15)
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where (λ0, λ1, λ2) = (401,−337, 190). They noted that,
according to their estimate, the magnitude of a2 was quite
small (|a2| < 0.04). However, there was a small algebraic
mistake in their derivation that was subsequently corrected
by van Noije and Ernst [6], who also generalized the result to
arbitrary d. The expression derived by van Noije and Ernst
(vNE) maintains the form (15), except that (λ0, λ1, λ2) =
(9 + 24d, 8d − 41, 30), what in the three-dimensional case
becomes (λ0, λ1, λ2) = (81,−17, 30). This yields values of
|a2| up to five times larger than those predicted by the (wrong)
original expression by Goldshtein and Shapiro. Although
published in 1998, vNE’s result had been circulating ear-
lier and so in 1996 Brey et al. [11] confirmed its accuracy
for d = 3 and α ≥ 0.7 by comparison with DSMC simula-
tions [24,25] of the Boltzmann equation. Brey et al. [11] also
presented simulation data for 〈c6〉 but they did not extract
from them the corresponding values of a3. When this is done
from Figs. 5 and 6 of Ref. [11], one gets a3 � −0.005 for
0.7 ≤ α ≤ 0.9 and d = 3. More recently, Ahmad and
Puri [20,21] carried out large-scale event-driven molecular
dynamics simulations and measured a2 and a3 in the HCS for
α ≥ 0.7 in two- and three-dimensional systems. The results
confirmed the accuracy of vNE’s expression of a2 in that
range of inelasticity and showed that a3 was typically four
to five times smaller than a2. These authors also studied the
time evolution of ak for k = 2–5 to monitor the transition
from the HCS to an inhomogeneous state.

In 1999, Garzó and Dufty [12] studied the HCS for
three-dimensional binary mixtures. Neglecting again a2

2 and
ak with k ≥ 3, they obtained explicit expressions for the
Sonine coefficient a2 of both species as functions of the three
coefficients of restitution and of the temperature ratio T1/T2.
To close the problem, it is necessary to determine T1/T2 from
the condition of equal cooling rates for both species, yielding
a highly nonlinear equation. The results showed that typically
the component made of particles with a larger mass has a
higher temperature and a higher value of a2. The theoreti-
cal predictions were later validated by DSMC simulations
[16].

The authors pointed out in 2000 [13] that the linear approx-
imation to get a2 is not univocally defined, the result depend-
ing on the way that the quantities in Eq. 14 are arranged. In
particular, if Eq. 14 for p = 2 is rewritten as µ4/〈c4〉 =
2µ2/〈c2〉 and then a linear approximation is applied the result
is given again by Eq. 15 but with (λ0, λ1, λ2) = (25 +
24d, 8d − 57,−2), implying (λ0, λ1, λ2) = (97,−33,−2)

for d = 3. This alternative expression is hardly distinguish-
able from vNE’s if α � 0.5 but provides up to 16% smaller
values than the latter for higher inelasticities. We performed
DSMC simulations of a2 for d = 3 and α ≥ 0.2 which
exhibited an excellent agreement with our alternative linear
approximation. Moreover, DSMC data of a3 were also pre-
sented in Ref. [13]. While a3 � −0.005 for 0.6 < α < 0.9,

a relatively rapid decay of a3 for higher inelasticities was
observed.

Brilliantov and Pöschel [14] were possibly the first ones to
depart from the linear approximation. They neglected ak with
k ≥ 3 but retained a2

2 in Eq. 14 with p = 2, thus obtaining
a closed cubic equation for a2 (and d = 3). Its physical root
is very close to vNE’s expression for α � 0.4 but becomes
up to 10% larger than it for smaller values of α. Taking into
account the simulation results presented in Ref. [13], it turns
out that the physical root of the cubic equation deviates in the
wrong direction from vNE’s simpler linear approximation.
This paradoxical outcome shows that the Sonine coefficients
ak with k ≥ 3 are not negligible for α � 0.4.

A different truncation scheme was followed by Huthmann
et al. [15], who assumed that ak = O(εk), where ε ∼ |a2|1/2

was treated as a small parameter. The solution to order k ≥ 2
was obtained by taking Eq. 14 for p = 2, . . . , k and formally
neglecting terms of order ε
 with 
 > k. The second-order
solution recovers the vNE result for a2. In the third-order
solution one has a set of two linear equations for a2 and a3,
but the fourth-order approximation involves a set of three
equations for a2, a3, and a4 that include a2

2 , so that the prob-
lem becomes nonlinear for k ≥ 4. In this approach, the coef-
ficient a2 is renormalized as the truncation order increases.
Huthmann et al. applied their scheme to d = 2 and observed
that the values of a2 obtained from order ε2 to order ε6 were
practically the same as long as α � 0.6. However, those
values were dramatically sensitive to the truncation order
for higher inelasticities, thus indicating that the assumption
ak = O(εk) fails if α � 0.6. Molecular dynamics simula-
tions showed a good performance of vNE’s expression for
hard disks and α ≥ 0.4.

Coppex et al. [17] tried an approach to estimate a2 dif-
ferent from those based on Eq. 14. They started from Eq. 6
in the limit c → 0 and then inserted the Sonine expansion
(11) by neglecting a2

2 and ak with k ≥ 3. The solution of the
resulting linear equation for a2 had the structure of a polyno-
mial of fourth degree in α2 divided by a polynomial of eighth
degree in α (with no α5 and α7 terms). Although promising,
this alternative method yields poor results for small and mod-
erate inelasticities and only improves over the vNE bench-
mark formula if α � 0.4, as comparison with DSMC data
for d = 2 shows [17]. Coppex et al. also elaborated further
on the ambiguity of the linear approximation for a2 pointed
out in Ref. [13]. In particular, they showed that the linear
approximation as applied to µ4/〈c4〉 = 2µ2/〈c2〉 and to
µ4〈c2〉/2µ2〈c4〉 = 1 presented a very good agreement with
their two-dimensional simulations.

More recently, Brilliantov and Pöschel [18,19] have con-
sidered the linear approximation of Eq. 14 with p = 2 and
p = 3 by neglecting a2

2 , a2a3, a2
3 , and ak with k ≥ 4. This

gives a set of two linear equations for a2 and a3 that is actu-
ally equivalent to Huthmann et al.’s method to order ε3. By
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comparing with their own DSMC simulations for d = 3,
Brilliantov and Pöschel showed that their expression of a2,
while rather more complicated than vNE’s, provided worse
estimates than the latter for α � 0.6. As for their expression
of a3, it was quite good for α � 0.6 and exhibited the right
qualitative behavior for larger inelasticities. Apart from a2

and a3, they also measured a4, a5, and a6 in the simulations,
showing that their values were not negligible if α � 0.6. In
fact, these authors argued that the Sonine expansion breaks
down for large inelasticity.

Using the asymptotic high-velocity tail (10), Noskowicz
et al. [9] have shown that ak ∝ (−4/ξ2)k(k + 1)! for large k,
so that the series (11) is divergent, although it is asymptotic
and Borel resummable. On the other hand, the Sonine expan-
sion of the modified function Gγ (c) = e−(1−γ )c2

F(c) does
converge for 0 < γ < 1

2 . Truncating the Sonine expan-
sion of Gγ (c) after k = Ns (with Ns = 10, 20, and 40),
Noskowicz et al. obtained numerically the associated Sonine
coefficients a(γ )

k , k = 0, 1, . . . Ns , with the help of sym-
bolic software. Once Gγ (c) is (approximately) determined
in this way, the Sonine coefficients ak of the true distribution
function F(c) = e(1−γ )c2

Gγ (c) can be obtained by quadr-
atures. The numerical results for a2, which are well fitted
in the three-dimensional case by Eq. 15 with (λ0, λ1, λ2) =
(104.1,−51.43, 78.67), confirmed that vNE’s expression
overestimates a2 for α � 0.5, while the alternative expres-
sion proposed in Ref. [13] is rather accurate (although it
slightly overestimates a2).

3 Theoretical estimates from linear approximations

Our main goal now is to get estimates of the Sonine coef-
ficients a2 and a3 by the application of approximations that
neglect the coefficients ak with k ≥ 4 as well as the nonlinear
terms a2

2 , a2a3, and a2
3 . As we will see, this recipe is not a

systematic method and so it does not provide a unique result.
Given a functional X [F] of the scaled probability distri-

bution function F(c), henceforth we will use the notation
La2,a3 {X} to denote an approximation to X [F] obtained
by using Eq. 11 and neglecting ak with k ≥ 4 and non-
linear terms (like a2

2 , a2a3, and a2
3). Furthermore, if a3 is also

neglected, the corresponding approximation will be denoted
by La2 {X}. In particular, in the case of the collisional
moments defined by Eq. 8 with p = 1, 2, and 3, one gets

La2,a3 {µ2} = A0 + A2a2 + A3a3, (16)

La2,a3 {µ4} = B0 + B2a2 + B3a3, (17)

La2,a3 {µ6} = C0 + C2a2 + C3a3. (18)

The expressions for the coefficients Ai , Bi , and Ci as func-
tions of α and d were derived by van Noije and Ernst [6]
and by Brilliantov and Pöschel [3,18,19]. They are given in

Appendix A. Obviously, La2 {µ2} and La2 {µ4} are obtained
by formally setting A3 → 0 and B3 → 0 on the right-hand
sides of Eqs. 16 and 17, respectively.

The exact Eq. 14 becomes an approximation when it is
linearized with respect to a2 and a3. For p = 2 and p = 3
we get

0 = La2,a3

{
µ4 − 2µ2

〈c4〉
〈c2〉

}

= B0 − (d + 2)A0 + [B2 − (d + 2)(A0 + A2)] a2

+[B3 − (d + 2)A3]a3, (19)

0 = La2,a3

{
µ6 − 3µ2

〈c6〉
〈c2〉

}

= C0 − 3

4
(d + 2)(d + 4)A0 +

[
C2 − 3

4
(d + 2)(d + 4)

×(3A0 + A2)

]
a2

+
[

C3 − 3

4
(d + 2)(d + 4)(A3 − A0)

]
a3. (20)

The non-systematic character of the linearization method
is made evident if one proceeds in the same way, except that
Eq. 14 is rewritten in the equivalent form

µ2p

〈c2p〉 = p
µ2

〈c2〉 , p ≥ 2. (21)

This equation shows that the rescaled collisional moment
µ2p/〈c2p〉 is just proportional to p. Now, instead of Eqs. 19
and 20 we have

0 = La2,a3

{
µ4

〈c4〉 − 2
µ2

〈c2〉
}

= B0 − (d + 2)A0 + [B2 − B0 − (d + 2)A2]a2

+[B3 − (d + 2)A3]a3, (22)

0 = La2,a3

{
µ6

〈c6〉 − 3
µ2

〈c2〉
}

= C0 − 3

4
(d + 2)(d + 4)A0 +

[
C2 − 3C0 − 3

4
(d + 2)

×(d + 4)A2

]
a2+

[
C3+C0− 3

4
(d+2)(d+4)A3

]
a3.

(23)

Note that Eq. 22 is obtained from Eq. 19 if one formally
replaces (d + 2)A0 by B0 in the coefficient of a2. Like-
wise, Eq. 23 is obtained from Eq. 20 by formally replacing
3
4 (d + 2)(d + 4)A0 by C0 in the coefficients of a2 and a3.
Nevertheless, the approximations (19) and (20) are differ-
ent from the approximations (22) and (23), respectively, so
they provide different estimates of the coefficients a2 and a3.
Henceforth we will refer to the approximations (19) and (20),
which are based on Eq. 14, with the label “a”. Analogously,
the approximations (22) and (23), which are based on Eq. 21,
will be labeled by “b”. Of course, other alternative ways of
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rewriting Eq. 14 are possible [13,17]. With independence of
the adopted approach (say “a” or “b”), there are two basic
classes of approximations: either a3 is neglected versus a2 in
the equation for µ4 (but not in the equation for µ6) or both
Sonine coefficients are treated on the same footing.

3.1 Class-I approximations: a3 
 a2

Let us first assume that a3 can be neglected versus a2 in either
Eq. 19 (approach “a”) or Eq. 22 (approach “b”):

0 = La2

{
µ4 − 2µ2

〈c4〉
〈c2〉

}

= B0−(d+2)A0 + [B2 − (d + 2)(A0 + A2)] a2, (24)

0 = La2

{
µ4

〈c4〉 −2
µ2

〈c2〉
}

= B0 − (d + 2)A0 + [B2 − B0 − (d + 2)A2]a2. (25)

These are linear equations for a2 whose respective solutions
are

aIa
2 (α) = B0 − (d + 2)A0

(d + 2)(A2 + A0) − B2

= 16(1 − α)(1 − 2α2)

9 + 24d − (41 − 8d)α + 30(1 − α)α2 , (26)

aIb
2 (α) = B0 − (d + 2)A0

(d + 2)A2 − (B2 − B0)

= 16(1 − α)(1 − 2α2)

25 + 24d − (57 − 8d)α − 2(1 − α)α2 , (27)

where in the last steps use has been made of the explicit
expressions of A0, A2, B0, and B2. As recalled in Sect. 2,
the method labeled here as “Ia” was the one first followed
by Goldshtein and Shapiro [10], the corresponding estimate,
Eq. 26, being first obtained by van Noije and Ernst [6]. The
alternative method “Ib”, Eq. 27, was proposed in Ref. [13].
It is interesting to note that

aIb
2 = aIa

2

1 + aIa
2

. (28)

Comparison with DSMC data shows that the estimate aIb
2 is

superior to aIa
2 for α � 0.6 [13]. Other class-I approxima-

tions for a2 were considered by Coppex et al. [17] and are
more generally described in Appendix B.

Once a3 has been neglected in Eqs. 19 and (22), we can
use Eq. 20 (approach “a”) or Eq. 23 (approach “b”) to express
a3 in terms of a2. The respective results are

aIa
3 (α) = Ga(α, aIa

2 (α)), (29)

aIb
3 (α) = Gb(α, aIb

2 (α)), (30)

where

Ga(α, a2)≡
{

C0− 3

4
(d+2)(d+4)A0+

[
C2− 3

4
(d+2)

×(d+4)(3A0+ A2)

]
a2

}/[
3

4
(d+2)(d+4)

×(A3 − A0) − C3

]
, (31)

Gb(α, a2)≡
{

C0 − 3

4
(d + 2)(d + 4)A0 +

[
C2 − 3C0

−3

4
(d + 2)(d + 4)A2

]
a2

} /[
3

4
(d + 2)

×(d + 4)A3 − C3 − C0

]
. (32)

It is also possible to construct a hybrid approximation “Ih”
in which a2 is obtained from Eq. 25 and a3 is subsequently
obtained from Eq. 20. In that case, aIh

2 = aIb
2 while

aIh
3 (α) = Ga(α, aIb

2 (α)). (33)

The other hybrid possibility a3 = Gb(α, aIa
2 (α)) turns out to

be rather poor and will not be further considered here.

3.2 Class-II approximations: a3 ∼ a2

If a3 is formally treated as being of the same order as a2,
Eqs. 19 and 20 become a linear set of two coupled equa-
tions for a2 and a3 (approach “a”). This was the method
recently considered by Brilliantov and Pöschel [18,19]. Now
the problem is algebraically more involved than in the class-I
approximation. The solution for a2 is

aIIa
2 (α) = Na(α)

Da(α)
, (34)

where

Na(α) ≡ C3 B0 − C0 B3

+(d + 2)(A3C0 − A0C3) + 3

4
(d + 2)

×(d + 4)[A0 B3 − (A3 − A0)B0 − (d + 2)A2
0],
(35)

Da(α) ≡ C2 B3 − C3 B2 + (d + 2)[(A2 + A0)C3 − A3C2]
+3

4
(d+2)(d+4)[(A3− A0)B2−(A2+3A0)B3

+(d + 2)(A0 + A2 + 2A3)A0]. (36)

The corresponding result for a3 is

aIIa
3 (α) = Ga(α, aIIa

2 (α)). (37)

Note that, although the same functional form Ga(α, a2)

appears in Eqs. 29 and 37, obviously aIIa
3 (α) �= aIa

3 (α).
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The same class-II approximation can be applied to Eqs. 22
and 23 (approach “b”). The solution is now

aIIb
2 (α) = Nb(α)

Db(α)
, (38)

aIIb
3 (α) = Gb(α, aIIb

2 (α)), (39)

where

Nb(α)≡ (C0+C3)B0−C0 B3+(d + 2)[A3C0 − (C0 + C3)

×A0] + 3

4
(d + 2)(d + 4)(A0 B3 − A3 B0), (40)

Db(α)≡ (C2 − 3C0)B3−(C0+C3)(B2 − B0)+(d + 2)

×[A2(C0 + C3) − A3(C2 − 3C0)]
+3

4
(d + 2)(d + 4) [A3(B2 − B0) − A2 B3] . (41)

The three class-I and two class-II approximations
described in this Section are summarized in Table 1. As said
before, aIa

2 and aIb
2 = aIh

2 were already proposed in Refs.
[6,13], respectively, while aIIa

2 and aIIa
3 were derived in Ref.

[18,19]. All the other possibilities, to the best of our knowl-
edge, have not been considered before.

4 Comparison with computer simulations

In order to assess the reliability of the linear estimates for
the Sonine coefficients a2 and a3 introduced in Sect. 3, it is
necessary to compare them against computer simulations.
To that end, we have performed new DSMC simulations
for inelastic hard disks (d = 2). In the case of inelastic
hard spheres (d = 3) we have used the extensive DSMC
simulations presented in Ref. [18,19]. Figure 1 compares

the simulation data of a2 with the theoretical estimates aIa
2 ,

aIb
2 = aIh

2 , aIIa
2 , and aIIb

2 . It is observed that the best global
agreement with computer simulations is provided by the
two approaches “b”, i.e., the ones based on linearization
of Eq. 21, in contrast to the two approaches “a”, which
are based on linearization of Eq. 14. Given that the class-I
estimate aIb

2 = aIh
2 (where a3 is neglected) is much simpler

than the class-II estimate aIIb
2 (where a3 is retained), the for-

mer is preferable to the latter. In the region 0.6 ≤ α ≤ 1
the four approximations practically coincide among them-
selves and with the simulation results, thus showing that a2

2
and ak with k ≥ 3 are indeed negligible in that region. On
the other hand, our simulation data for hard disks (d = 2)
show a slight improvement of the two class-II approxima-
tions with respect to the two class-I approximations, what
indicates that the influence of a2

2 is even smaller than that of
a3 for 0.6 ≤ α ≤ 1. The opposite behavior appears in the
case of hard spheres (d = 3), although a certain scatter of
the data in this case prevents us from confirming or refuting
the behavior observed in the two-dimensional case.

Next, we consider the third Sonine coefficient a3. The
simulation data are compared with aIa

3 , aIb
3 , aIh

3 , aIIa
3 , and

aIIb
3 in Fig. 2. It is apparent that both approaches aIb

3 and
aIIb

3 have a very poor global performance, failing to account
for the rapid increase of the magnitude of a3 when α � 0.6.
However, a good semi-quantitative agreement with computer
simulations is found for aIa

3 , aIh
3 , and aIIa

3 . All of this implies
that the linearization of Eq. 21 with p = 3 is much less accu-
rate than the linearization of Eq. 14 with p = 3, in contrast
to the situation with p = 2. Interestingly enough, among
the three estimates of a3 based on the linearization of Eq. 14
with p = 3, the best behavior is presented by the two class-I
approximations, namely aIa

3 for d = 2 and aIh
3 for d = 3.

Table 1 Summary of the linear approximations considered in this paper

Label Equations References Behavior of a2 Behavior of a3

a2 a3 0 < α < 0.6 0.6 < α < 1 0 < α < 0.6 0.6 < α < 1

Ia
La2

{
µ4 − 2µ2〈c4〉/〈c2〉} = 0

La2,a3

{
µ6 − 3µ2〈c6〉/〈c2〉} = 0

[6] New Fair Good Good Fair

IIa
La2,a3

{
µ4 − 2µ2〈c4〉/〈c2〉} = 0

La2,a3

{
µ6 − 3µ2〈c6〉/〈c2〉} = 0

[18,19] [18,19] Fair Good Fair Good

Ib
La2

{
µ4/〈c4〉 − 2µ2/〈c2〉} = 0

La2,a3

{
µ6/〈c6〉 − 3µ2/〈c2〉} = 0

[13] New Good Good Poor Poor

IIb
La2,a3

{
µ4/〈c4〉 − 2µ2/〈c2〉} = 0

La2,a3

{
µ6/〈c6〉 − 3µ2/〈c2〉} = 0

New New Good Good Poor Good

Ih
La2

{
µ4/〈c4〉 − 2µ2/〈c2〉} = 0

La2,a3

{
µ6 − 3µ2〈c6〉/〈c2〉} = 0

[13] New Good Good Good Fair
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Fig. 1 (Color online) Plot of the second Sonine coefficient a2 as a
function of the coefficient of restitution α for d = 2 (top panel) and
d = 3 (bottom panel). The circles represent DSMC results (d = 2: this
work; d = 3: Ref. [18,19]), while the lines correspond to aIa

2 (- -•- -),
aIb

2 = aIh
2 (- - -), aIIa

2 (—•—), and aIIb
2 (——). The insets magnify the

region 0.6 ≤ α ≤ 1

As for the region 0.6 ≤ α ≤ 1, the two class-II approxima-
tions are the most accurate ones. This can be understood as
a consequence of the better behavior of aIIa

2 and aIIb
2 over aIa

2
and aIb

2 in that region, as discussed above in connection with
Fig. 1.

The performance of the five linear approximations is suc-
cintly summarized in Table 1. The best global agreement with
simulations is achieved by the approximation “Ih”, i.e., a2 is
autonomously obtained by linearizing Eq. 21 with p = 2
and neglecting a3. Next, a3 is obtained in terms of a2 and α

from the linearization of Eq. 14 with p = 3. The second best
combination is “IIa”, where a2 and a3 are simultaneously

Fig. 2 (Color online) Plot of the third Sonine coefficient a3 as a func-
tion of the coefficient of restitution α for d = 2 (top panel) and d =
3 (bottom panel). The circles represent DSMC results (d = 2: this
work; d = 3: Ref. [18,19]), while the lines correspond to aIa

3 (- -•- -),
aIb

3 (- - -), aIh
3 (- -�- -), aIIa

3 (—•—), and aIIb
3 (——). The insets magnify

the region 0.6 ≤ α ≤ 1

derived from linearization of Eq. 14 with p = 2 and p = 3.
While “Ih” is simpler than “IIa”, it provides a better estimate
of a2 and a3 for high inelasticity (α � 0.6). This comes from
a fortunate cancelation of errors and is yet another indica-
tion on the non-negligible character of nonlinear terms and
higher-order Sonine coefficients in that region [18,19]. On
the other hand, the best estimate of a3 for 0.6 < α < 1 is
provided by aIIa

3 .
Let us now define the deviations

δµ2 ≡ µ2 − La2 {µ2} , (42)

δµ̃2 ≡ µ2(1 + a2) − La2 {µ2(1 + a2)} , (43)
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Table 2 DSMC values [13] of a2, µ2, µ4, δµ2, δµ̃2, δµ4, and δµ̃4 for
d = 3

α a2 µ2 µ4 δµ2 δµ̃2 δµ4 δµ̃4

0.8 −0.0141 0.8950 4.414 −0.005 −0.005 −0.01 −0.01

0.6 0.0207 1.6101 8.213 0.000 0.000 0.03 0.02

0.4 0.0760 2.1354 11.494 0.000 0.002 0.09 0.02

0.2 0.1274 2.4625 13.881 −0.001 0.006 0.20 0.02

δµ4 ≡ µ4 − La2 {µ4} , (44)

δµ̃4 ≡ µ4

1 + a2
− La2

{
µ4

1 + a2

}
. (45)

Consequently,

La2

{
µ4 − 2µ2

〈c4〉
〈c2〉

}
= (d + 2)δµ̃2 − δµ4, (46)

La2

{
µ4

〈c4〉 − 2
µ2

〈c2〉
}

= 4

d(d + 2)
[(d + 2)δµ2 − δµ̃4] .

(47)

The fact that aIb
2 = aIh

2 exhibits a better agreement with
simulations than aIa

2 in the high-inelasticity region obviously
implies that (d +2)δµ2 − δµ̃4 ≈ 0 is a better approximation
than (d + 2)δµ̃2 − δµ4 ≈ 0 in that region. In principle, this
does not necessarily mean that δµ2 ≈ 0 and δµ̃4 ≈ 0 are
better approximations than δµ̃2 ≈ 0 and δµ4 ≈ 0, respec-
tively, since a certain cancelation of terms might occur in the
difference (d + 2)δµ2 − δµ̃4. To clarify this point, Table 2
shows a2, µ2, µ4, δµ2, δµ̃2, δµ4, and δµ̃4 as obtained from
DSMC simulations for inelastic hard spheres (d = 3) [13].
We can observe that one typically has |δµ2| < |δµ̃2| and
|δµ̃4| < |δµ4|. Moreover, |δµ2| and |δµ̃2| are considerably
smaller than |δµ4| and |δµ̃4|, thus implying that the errors
made when linearizing µ4 or µ4/(1+a2) are generally larger
than those made when linearizing µ2 or µ2(1 + a2). There-
fore, the property |δµ̃4| < |δµ4| is sufficient to justify that
the estimate of a2 obtained by setting δµ2 → 0 and δµ̃4 → 0
in Eq. 47 is more accurate than the one obtained by setting
δµ̃2 → 0 and δµ4 → 0 in Eq. 46.

5 White-noise thermostat

Thus far we have assumed granular gases in the freely cooling
state. The scaled quantities in this state are fully equivalent to
those of granular gases kept in a steady state by a Gaussian
thermostat [13], i.e., by the action of a deterministic non-
conservative force proportional to the particle velocity. On
the other hand, a popular way of mimicking agitated granular
gases is by means of a stochastic force assumed to have the
form of a Gaussian white noise [26–29].

A simple estimate of a2 in the case of the white-noise ther-
mostat was derived by van Noije and Ernst [6] and shown to
be in excellent agreement with computer simulations [13].
However, to the best of our knowledge, an analytical expres-
sion for a3 has not been proposed so far. The aim of this sec-
tion is to fill this gap by applying linear approximations and
exploiting the knowledge of the coefficients Ai , Bi , and Ci

in Eqs. 16–18 [3,6,18,19]. The starting point is the moment
hierarchy, which now reads [6,13]

µ2p = p
d + 2p − 2

d
µ2〈c2p−2〉, p ≥ 2, (48)

or, equivalently,

µ2p

〈c2p−2〉 = p
d + 2p − 2

d
µ2, p ≥ 2. (49)

In the class-I approximation, one takes p = 2 and linearizes
with respect to a2, i.e.,

La2 {µ4 − (d + 2)µ2} = 0. (50)

This condition is independent of whether we linearize Eq. 48
or Eq. 49, in contrast to the free cooling case. The solution
of Eq. 50 is

aIa
2 = aIb

2 = B0 − (d + 2)A0

(d + 2)A2 − B2

= 16(1 − α)(1 − 2α2)

73 + 56d − 3(35 + 8d)α + 30(1 − α)α2 .

(51)

This is the result obtained in Ref. [6]. Once a2 is known, a3

is determined from

La2,a3

{
µ6 − 3

d + 4

d
µ2〈c4〉

}
= 0 (52)

in the approximation “Ia” or from

La2,a3

{
µ6

〈c4〉 − 3
d + 4

d
µ2

}
= 0 (53)

in the approximation “Ib”. The results are

aIa
3 (α) = Ga(α, aIa

2 (α)), (54)

aIb
3 (α) = Gb(α, aIa

2 (α)), (55)
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where

Ga(α, a2)≡
{

C0 − 3

4
(d + 2)(d + 4)A0 +

[
C2 − 3

4
(d + 2)

×(d + 4)(A0 + A2)

]
a2

}/[
3

4
(d + 2)(d + 4)

×A3 − C3

]
, (56)

Gb(α, a2)≡
{

C0 − 3

4
(d + 2)(d + 4)A0 +

[
C2 − C0

− 3

4
(d + 2)(d + 4)A2

]
a2

} /[
3

4
(d + 2)

×(d + 4)A3 − C3

]
. (57)

In the class-II approximations both a2 and a3 are simulta-
neously obtained from

La2,a3 {µ4 − (d + 2)µ2} = 0 (58)

and either Eq. 52 (approximation “IIa”) or Eq. 53 (approxi-
mation “IIb”). The solutions are

aIIa
2 (α) = Na(α)

Da(α)
, aIIa

3 (α) = Ga(α, aIIa
2 (α)), (59)

aIIb
2 (α) = Nb(α)

Db(α)
, aIIb

3 (α) = Gb(α, aIIb
2 (α)), (60)

where

Na(α) ≡ C3 B0 − C0 B3

+(d + 2)(A3C0 − A0C3) + 3

4
(d + 2)

×(d + 4)(A0 B3 − A3 B0), (61)

Da(α) ≡ C2 B3 − C3 B2 + (d + 2)(A2C3 − A3C2)

+3

4
(d + 2)(d + 4)[A3 B2 − A2 B3

+(d + 2)A0 A3 − A0 B3], (62)

Nb(α) = Na(α), (63)

Db(α) ≡ (C2 − C0)B3−C3 B2+(d + 2)[A2C3 − A3(C2

−C0)]+ 3

4
(d+2)(d+4)(A3 B2− A2 B3). (64)

Figure 3 shows the α-dependence of aIa
2 = aIb

2 , aIIa
2 , and

aIIb
2 . The three curves are very close each other, which indi-

cates that a2
2 and ak with k ≥ 3 are indeed small enough

to be neglected in µ4 = (d + 2)µ2. It is interesting to note
that aIIa

2 and aIIb
2 are practically identical in the region 0.6 ≤

α ≤ 1, where they are slightly more accurate (at least in
the three-dimensional case) than aIa

2 = aIb
2 . On the other

hand, aIa
2 = aIb

2 and aIIb
2 are practically indistinguishable in

the region of small α. The theoretical predictions aIa
3 , aIb

3 ,
aIIa

3 , and aIIb
3 are displayed in Fig. 4. Although there are no

simulation data to compare with, it seems plausible to con-
jecture that the trends observed in Fig. 2 are repeated now:

Fig. 3 (Color online) Plot of the second Sonine coefficient a2 as a
function of the coefficient of restitution α in the case of the white-noise
thermostat for d = 2 (top panel) and d = 3 (bottom panel). The circles
in the bottom panel represent DSMC results from Ref. [13], while the
lines correspond to aIa

2 = aIb
2 (- -•- -), aIIa

2 (—•—), and aIIb
2 (——)

the two class-II approximations are more accurate than the
two class-I approximations for small dissipation, aIIa

3 being
possibly better than aIIb

3 , while the two “b” approximations
are rather poor at high dissipation. Note that, since aIa

2 = aIb
2

in the case of the white-noise thermostat, the hybrid approxi-
mation “Ih” coincides with “Ia”, i.e., aIh

3 = aIa
3 . A feature that

becomes apparent when comparing Figs. 1 and 2 with Figs. 3
and 4, respectively, is that the magnitudes of a2 and a3 in the
white-noise case are about twice and ten times, respectively,
smaller than those in the freely cooling state. This is closely
related to the fact that the overpopulation of the high-energy
tail is much smaller in the former case than in the latter. More
specifically, instead of Eq. 10, now we have [6]
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Fig. 4 (Color online) Plot of the third Sonine coefficient a3 as a func-
tion of the coefficient of restitution α in the case of the white-noise
thermostat for d = 2 (top panel) and d = 3 (bottom panel). The lines
correspond to aIa

3 (- -•- -), aIb
3 (- - -), aIIa

3 (—•—), and aIIb
3 (——)

F(c) ∼ e− 2
3

√
2ξc3

, (65)

where ξ is the same quantity as in Eq. 10.

6 Conclusions

The second and third coefficients in the Sonine polynomial
expansion of the (scaled) velocity distribution function F(c)
of a granular gas characterize the deviation of F(c) from the
Maxwellian and are important, for instance, in the precise
determination of transport coefficients. While for practical
purposes an interval 0.8 � α < 1 for the coefficient of
normal restitution is sufficient, it becomes necessary from

a more fundamental viewpoint to consider the whole range
0 < α < 1.

The Sonine coefficients a2(α) and a3(α) can be measured
in computer simulations (e.g., DSMC), so one could in prin-
ciple make a least-square fit to certain functional forms. How-
ever, this would not be satisfactory from a fundamental point
of view and would not provide any insight into the intri-
cacies of F(c) and its Sonine expansion. It is then much
more challenging to devise theoretical approximations that
can be subsequently assessed by comparison with simulation
results.

In this paper we have been mainly concerned with a family
of linear approximations to estimate a2(α) and a3(α) in the
freely cooling state. We have found that a good compromise
between accuracy and simplicity is represented by the hybrid
approximation here denoted as “Ih”, in which the second and
third Sonine coefficients are given by Eqs. 27 and 33, respec-
tively. For the benefit of the reader here we quote the final
and complete expressions:

a2(α) = 16(1 − α)(1 − 2α2)

25 + 24d − (57 − 8d)α − 2(1 − α)α2 , (66)

a3(α) = −16a2(α)

1 − 2α2

PHCS(α)

QHCS(α)
, (67)

where

PHCS(α) = 167 + 50d − (191 + 26d)α − 2(307+100d)α2

+2(339 + 68d)α3 + 32(16 + 7d)α4

−32(18 + 5d)α5 + 144(1 − α)α6, (68)

QHCS(α) = 521 + 1396d + 368d2 − (1481 + 820d

−16d2)α + 4(583 + 262d)α2

−20(155 + 14d)α3 + 280(1 − α)α4 (69)

However, if more precise values in the domain 0.6 ≤ α < 1
are really needed, it might be preferable to consider the more
complicated approximation “IIa” given by Eqs. 34 and 37
[18,19].

On the other hand, It is known that in the high-
inelasticity region α � 0.6 (i.e., once a2 becomes positive)
the higher-order Sonine coefficients are no longer negligible
[9,15,18,19], so that the linear approximations based on the
neglect of nonlinear terms and of ak with k ≥ 3 or k ≥ 4
are not a priori reliable. This is made evident by the lack of
self-consistency of different linear approximations used to
estimate a2 from the first non-trivial equation of the moment
hierarchy, as shown in Fig. 1. What is indeed surprising is
that the simple linear approximation (66) provides such an
excellent estimate both for d = 2 and d = 3. This means
that, even though a2

2 , a3, a4, …are not negligible at all if
α � 0.6, somehow they practically cancel out in the combi-
nation µ4/〈c4〉 − 2µ2/〈c2〉, while still playing a significant
role in the combination µ4 − 2µ2〈c4〉/〈c2〉. This is clearly
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Fig. 5 (Color online) Plot of La2 {µ4 − (d + 2)µ2(1 + a2)} (◦),
La2,a3 {µ4 − (d + 2)µ2(1 + a2)} (•), La2 {µ4/(1 + a2) − (d + 2)µ2}
(�), and La2,a3 {µ4/(1 + a2) − (d + 2)µ2} (�) for d = 2 (top panel)
and d = 3 (bottom panel). The symbols are obtained from DSMC
results of a2 and a3 (d = 2: this work; d = 3: Ref. [18,19]). The lines
are guides to the eye

seen in Fig. 5, where we plot La2 {µ4 − (d + 2)µ2(1 + a2)},
La2,a3 {µ4−(d+2)µ2(1+a2)},La2 {µ4/(1+a2)−(d+2)µ2},
and La2,a3 {µ4/(1 + a2) − (d + 2)µ2} by using the simula-
tion data of a2 and a3. While the magnitude of the other
three quantities rapidly increases with increasing inelasticity
if α � 0.6, that of La2 {µ4/(1 + a2) − (d + 2)µ2} remains
small and practically constant. This property might be useful
to contribute to a better understanding of the full velocity
distribution function F(c).

Although this paper has focused on the HCS, the analysis
has been straightforwardly extended in Sect. 5 to a granular

gas heated by a white-noise thermostat. In that case, the opti-
mal combination of estimates is provided by Eqs. 51 and 54.
More specifically,

a2 = 16(1 − α)(1 − 2α2)

73 + 56d − 3(35 + 8d)α + 30(1 − α)α2 , (70)

a3(α) = −16a2(α)

1 − 2α2

PWN(α)

QWN(α)
, (71)

where

PWN(α) = 67 + 10d − 7(13 − 2d)α − 2(119 + 20d)α2

+2(151 − 12d)α3 + 32(8 + 3d)α4

−32(10 + d)α5 + 80(1 − α)α6, (72)

QWN(α) = 2569 + 2932d + 624d2 − (3529 + 2356d

+240d2)α + 4(583 + 262d)α2

−20(155 + 14d)α3 + 280(1 − α)α4. (73)

It would be interesting to test the accuracy of Eq. 71 against
computer simulations.

Appendix A: Expressions for Ai , Bi , and Ci

The explicit expressions of the coefficients Ai , Bi , and Ci as
functions of d and α are [3,6,18,19]

A0 = K (1 − α2), A2 = 3K

16
(1 − α2), A3 = K

64
(1−α2),

(74)

B0 = K (1 − α2)

(
d + 3

2
+ α2

)
, (75)

B2 = K (1+α)

[
3

32
(1−α)(10d+39+10α2) + (d − 1)

]
,

(76)

B3 = − K

128
(1 + α)

×
[
(1 − α)(97+10α2)+2(d−1)(21−5α)

]
, (77)

C0 = 3K

4
(1−α2)

[
(d + α2)(5+2α2) + d2+ 19

4

]
, (78)

C2 = 3K

256
(1 − α2)

×
[
1289+4(d+α2)(311+70α2)+172d2

]
+ 3

4
β,

(79)

C3 = − 3K

1024
(1 − α2)

×
[
2537+4(d+α2)(583+70α2)+236d2

]
− 9

16
β,

(80)
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where

K ≡ π(d−1)/2

√
2
(d/2)

,

β ≡ K (1 + α)
[
(d − α)(3 + 4α2) + 2(d2 − α)

]
. (81)

Appendix B: Other class-I linear approximations for a2

As a generalization of Eqs. 24 and 25, let us consider the
family of approximations

La2

{
µ1−z

4

〈c4〉xµ
y
2

− 2
µ

1−y
2 〈c4〉1−x

〈c2〉µz
4

}

= 0 (82)

and let us denote by a(x,y,z)
2 the associated solution. In partic-

ular, a(0,0,0)
2 ≡ aIa

2 and a(1,0,0)
2 ≡ aIb

2 . The eight possibilities
considered by Coppex et al. [17] correspond to x = 0, 1,
y = 0, 1, and z = 0, 1. It is easy to check that the solution
to Eq. 82 is

a(x,y,z)
2 = aIa

2

1 + hxyzaIa
2

, (83)

where

hxyz ≡ x + y
A2

A0
+ z

B2

B0
. (84)

Equation 83 is a generalization of Eq. 28.
Of course, other alternative possibilities exist. For

instance, one can generalize Eq. 82 to

La2

{

�

(
µ1−z

4

〈c4〉xµ
y
2

)

− �

(

2
µ

1−y
2 〈c4〉1−x

〈c2〉µz
4

)}

= 0, (85)

where �(X) is an arbitrary function. The corresponding
approximation for a2 will depend on the choice of �(X),
apart from the values of x, y, z.
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