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Abstract A strain-rate dependent rheology for granular
materials with a constant cohesion, is proposed and applied
in the case of a flow down an inclined channel. The results
obtained show that a plug flow zone appears below the free
surface and show that low cohesion may affect drastically the
flow behaviour when the inclination of the channel is close
to the repose angle. These results give also a basic unders-
tanding of hstop, the depth of the remaining granular layer on
an inclined channel, treating dilatancy like a cohesion-like
behaviour.

Keywords Granular materials · Cohesive materials ·
Surface flows

1 Introduction

Humid or fine granular materials exhibit a reduced flowability
as soon as the attractive forces between particles become
greater than their weight. The consideration of their flow
behaviour is of significance for a better design of industrial
processes or for the understanding of some geological flows
like humid snow avalanches.

To study quantitatively the effect of cohesion in the par-
ticular case of a flow on an inclined channel, we present
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here an extension of the semi-analytical description given in
the Part I joint paper [4]. The granular material exhibits a
coefficient of friction which depends on the inertial number
I = |γ̇ |d√

P/ρ
[2,7], and a residual constant cohesion c during

flow. P = σi i/3 is the mean pressure, σ is the stress ten-
sor. d is the diameter of the particles, ρ the bulk density,
γ̇ is the strain rate tensor and |γ̇ | = √

γ̇i j γ̇i j/2 its second
invariant.

This may be considered as a first simplified approach for
cohesive materials since the cohesion term is not expected to
be constant. The strength at yield is dependent on the consoli-
dation of the material [12], and close to zero when the system
is at the so-called critical state [13]. Recent numerical experi-
ments by Rognon et al. [10] suggest an another rheology for
cohesive materials, where there is no cohesion term, but the
friction coefficient increases dependently on two numbers,
the inertial number I , and the cohesion number η = fmax

Pd2 ,
where fmax is the maximal value taken by the attractive forces
between particles.

With this constant cohesion term, the stress-strain relation
then writes:

σi j = −Pδi j + (c + µ(I )P)
γ̇i j

|γ̇ | . (1)

We set-up the equations for a steady-state gravitational
flow along an incline in Sect. 2, then the constant friction
solution is discussed in Sect. 3, and the general solution in
Sect. 4.

2 Mathematical formulation

If we consider the same geometry than in the non-cohesive
case (see Fig. 1 in [4]), the Navier–Stokes equations for a
steady-state flow writes:
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−→∇ ·
⎛

⎝
P 0 (c + µP) sin α
0 P (c + µP) cosα

(c + µP) sin α (c + µP) cosα P

⎞

⎠

= −ρg

⎛

⎝
0

cos θ
sin θ

⎞

⎠ , (2)

where α is the local angle made by the iso-velocity line with
respect to the x-axis.

These equations lead to a hydrostatic mean pressure:

P = ρg cos θy, (3)

and to a momentum equation along the z-axis which writes:

∂

∂x
((c+µP) sin α)+ ∂

∂y
((c+µP) cosα)−ρg sin θ=0,

(4)

where q = P/ρg.
In the following sections, this system will be integrated

with a non-slip condition at the walls (w = 0 for x = ±a)
and a free surface (α|y=0 = π

2 ). First, the case of a constant
coefficient of friction will be considered (Sect. 3), then the
more general case will be developed (Sect. 4).

3 Constant friction

With the hypothesis of constant friction, Eq. 4 reduces to:

(
s + y)

(
cosα

∂α

∂x
− sin α

∂α

∂y

)
+ cosα − R = 0, (5)

where


s = c

µρg cos θ
(6)

is a cohesive length and R = tan θ
µ

. This equation can be
integrated as an ordinary differential equation along a s-
parametred curve:

dx

ds
= cosα(
s + y), (7)

dy

ds
= − sin α(
s + y), (8)

dα

ds
= R − cosα. (9)

Such a curve can be integrated from the point (0, h) for which
we have α = 0.The integration of the system (Eqs. 7, 8 and
9), using the same method than presented in the Annex 1 of
the companion paper [4], leads to the following parametric
equations for the iso-velocity curve:

x = (h + 
s)
s + R

k sin(ks)

1 + R
, (10)

y + 
s = (h + 
s)
R + cos(ks)

1 + R
, (11)

where k = √
R2 − 1.

The solution is similar to the one obtained for a non cohe-
sive powder, with the exception that the y-co-ordinates are
shifted by 
s . This leads to more flow patterns.

If the slope of the incline is less than µ, then k is a pure
imaginary number and the iso-velocity is curved downwards,
then collide the wall, and the conclusion is that w = 0 eve-
rywhere.

If the slope of the incline is greater than µ, then the iso-
velocity lines are curved upwards. They touch the free surface
if y = 0 is solution of the Eq. 11, which leads to the condition:
h

s

≤ 2
R−1 . In such the case, the iso-velocity lines arrive at

the surface with an angle α|y=0 given by:

cosα|y=0 = 1 − h


s
(R − 1). (12)

From this equation, we conclude that only the iso-velocity
line starting at the depth h = 
s

R−1 presents no stresses at the
free surface. Then there is no steady-state flow solutions.
We even not have the solution which consists to the sliding
of two rigid bodies at the interface given by this particular
iso-velocity line since the forces are not balanced.

4 Strain-rate dependent friction coefficient

With an I -dependent coefficient of friction, the parametred
equations for an x-symmetric iso-velocity line passing
through the point (0, h) may be obtained the same way than
for the non-cohesive case [4]. This leads to:

dx

ds
= cosα(µs
s + µy), (13)

dy

ds
= − sin α(µs
s + µy), (14)

dα

ds
= tan θ − µ cosα − dµ

d I
I

(
B

y

h
− 1

2
cosα

)
. (15)

where B = h φ
′(h)
φ(h) , φ being the velocity gradient at x = 0

along the y-axis and the prime a derivation towards y.
These equations may be integrated once to obtain:

dx

ds
= µs
s + µ(h)h + (y − h) tan θ − B

h

y∫

h

dµ

d I
I ydy,

(16)
(

dy

ds

)2

= (µs
s + µy)2 −
(

dx

ds

)2

. (17)

In order to have an iso-velocity line going to free surface, we
must have:

dx

ds

∣
∣
∣
∣
y=0

= 0, (18)
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Part II: cohesive materials 363

which gives the following value for B:

B = h
h tan θ − µ(h)h − µs
s

∫ 0
h

dµ
d I I ydy

. (19)

With 
s = 0, we retrieve the result obtained in [4].
To attain the surface, the curvature of the iso-velocity line

must be oriented upwards, which gives a maximum value
Bmax for B given by:

Bmax = 1

2
+ tan θ − µ(h)

(
dµ
d I I

)
|y=h

, (20)

Equation 19 may be integrated in order to obtain the admis-
sible velocity profiles. For the next steps of resolution of these
equations, we will follow the same scheme developed in [4],
with the same µ(I ) relation:

µ(I ) = µs + µ2
Io
I + 1

, (21)

with Io = 0.28, µs = 0.38, and µ2 = 0.64. The equations
are made dimensionless by scaling the lengths with λ =
(

φd
Io

√
g cos θ

)2, leading to Io
I = √

Y , where Y = y
λ

.ψ is defined

as in [4] by H = e−2ψ . We then have B = 1
2 + dψ

d ln h .
The Eq. 19 gives an ordinary differential equation for ψ ,

which has been integrated for several values of the parameter
h

s

. A set of results are given in Fig. 1 in continuous lines. The
dashed line borders a zone where there is no valid solution
since B > Bmax in it. We observe that the behaviour for large
h tends to the one computed for a non-cohesive powder: ψ
tends to a constant ψ∗ and therefore the velocity gradient at
the centerline behaves like a Bagnold one (φ ∝ −√

h). This
means that the behaviour of large scale flows of cohesive
materials (compared to the cohesive length 
s) is similar to
the flow of a non-cohesive material.

4.0.1 Plug flow

For small h, ψ diverges positively or negatively. In the first
case, it leads to non-physical solutions since the velocity
gradient diverges for a finite value of the depth. In the second
case, the velocity gradientφ ∝ √

heψ tends to zero for a finite
value of h. These solutions are the ψ-lines which are located
between the thick and thin dashed lines in Fig. 1. Such a
plug flow behaviour has been recently observed in numerical
and physical experiments of cohesive granular flows down
an incline [1,11].

These feasible solutions end to a plug zone at a depth hplug,
which is bounded by:

1 <
hplug


s
(R − 1) <

2 − m
2

1 − m
2

. (22)

The upper limit is obtained by looking the limit behaviour
of the equality B = Bmax, when φ goes to zero. It is written

Fig. 1 ψ ∝ log φ√
h

versus log( h

s
), for θ = 22.6◦ and µ given by

Eq. 21. Continuous lines profiles for different initial conditions. When
h → ∞, then we recover the non-cohesive behaviour and ψ → ψ∗.
Thin dashed line borderline for the existence of iso-velocity lines curved
upwards; the asymptote for this thin dashed line is h


s
= 3/(R − 1).

Thick dashed line limit between positive or negative divergence for ψ ;
the asymptote for this thick dashed line is h


s
= 1/(R − 1). Thick line

equilibrated profiles

in the generic case where m is the power-law exponent cha-
racterizing the behaviour of the coefficient of friction versus
the strain rate when this strain rate tends to zero (µ(I ) ∼

I→0
µs + I m). In the case of Eq. 21 [7], or from the observa-
tions by Da Cruz et al. [2] or Rognon et al. [10], we have
m = 1. Hatano et al., from numerical results and theoretical
considerations, derive µ(I ) ∼ I

1
5 [6].

Among these solutions, there is only one for which the
force balance at the boundary of the plug zone is respected.
The Appendix gives the value hplug of the plug flow depth
for this unique solution. It scales with the cohesive length

s and only depends on the ratio R between the slope of the
incline and the static coefficient of friction. Figure 2 gives
this depth hplug, scaled by 
s

R−1 versus the relative difference
between the slope and the static coefficient of friction (conti-
nuous line). In the same figure, the dashed line gives the ratio
between the depth and the half-width xplug of this plug zone.

The asymptotic behaviour for the depth of the plug zone
when the inclination angle tends to the repose angle is:
hplug −→

R→1

3
2

s

R−1 . There is also a maximum limit for the

incline slope above which there is no more equilibrated solu-
tion within the range given by Eq. 22. Figure 3 gives the
limit ratio Rlim we obtain for each value of m between 0
and 2 (continuous line), and the plug depth scaled by 
s

R−1
(dashed line). We observe in this figure a divergence for
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Fig. 2 Continuous line depth of the plug zone hplug, scaled by 
s
R−1

versus the relative difference between the slope and the static coefficient
of friction; Dashed line hplug scaled by the half width of the plug zone
xplug

Fig. 3 Maximal value for steady-state flow Rlim for the slope scaled
by the static coefficient of friction versus the exponent m (continuous
line) and the plug depth hplug scaled by 
s

R−1 at this limit (dashed line)

m = 2, which corresponds to a shear friction going
to a constant value when the mean pressure goes to zero
(µP −→

P→0
cst). The coefficient of friction diverges at low

pressure and the the friction shear stress presents a threshold
value. The other constraint for the incline slope is that it
should remain below µ2, the maximum value of µ(I ).

Fig. 4 ψ Vertical velocity profile at x = 0 for θ = 22.6◦, µs =
arctan(20.9◦) and µ2 = arctan(32.6◦). Continuous lines non-cohesive
case (lower) and cohesive case (upper, 
s = 0.02a). Dashed lines: Slip
velocity at wall: non-cohesive case (lower) and cohesive case (upper).
The circles gives the beginning of the matching (w = w(±a, 0)). The
square gives the end of the plug flow

4.0.2 Matching with slippage at the walls

Finally, the flow layer composed by the iso-velocity lines
going to the free surface is matched with the flow layer
formed by the iso-velocity lines going to the walls, like in
the non-cohesive case [4]. We have also chosen the rough
walls boundary conditions to obtain the flow profile given
in Fig. 4, which compares the depth velocity profiles at the
center (continuous lines) and at the walls(dashed lines). The
lower curves describe the non-cohesive behaviour and the
upper curves are for a cohesion corresponding to a cohesive
length 
s = 0.02a, where a is the half-width of the channel.
The inclination of channel is θ = 22.6◦ and µ(I ) is given by
Eq. 21.

The consequence of the cohesion is to reduce the velocities
and to create a plug flow under the surface. This behaviour
is noticeable including for cohesive lengths small compared
to the size of the channel. In the case of Fig. 4, the cohesive
length c/ρg is more than one hundred times lower than the
width of the channel.

5 Discussion

The introduction of a constant cohesion in the rheology des-
cribed in [7] has led to modified velocity profiles compared to
the ones obtained with no cohesion. Below the free surface,
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Part II: cohesive materials 365

we have a plug flow of depth proportional to the length
c
ρg , with a constant of proportionality (cos θ(tan θ −µs))

−1

which diverges when the slope of the incline approaches the
angle of repose.

5.1 Remaining cohesion during flow

The constant cohesion hypothesis is a crude approximation
since it is observed a huge decrease of the strength when the
flow starts and the existence of a remaining cohesion during
flow remains to be assessed [13]. To check that point, we
have performed some yield and steady-state shear experi-
ments of dry and wetted glass beads of diameter 200 µm.
The beads have been wetted by poly-ethylene glycol (PEG)
of molecular weight 200 g with a volume ratio of 1.5%. In
our experiments, the cohesion number η is < 5.

The shear stress at steady-state versus the normal stress is
displayed on Fig. 5 for both beads. The dry beads (crosses)
have a cohesion-less behaviour with a shear stress propor-
tional to the normal stress. The wet beads, which have a
cohesion around 500 Pa at yield (not shown) do not present
a measurable cohesion at steady-state (see circles in Fig. 5).
There is a slight shift between the two curves indicating that
the friction coefficient of the wetted beads is higher than the
friction coefficient of the dry ones. We also observe a slight
curvature at low stresses on the τ–σ curve for the wetted
beads indicating that, if there is a remaining cohesion, its
order of magnitude is lower than 100 Pa. Such a low value
gives cohesive lengths 
s around a few millimeters and we
do not expect consequences on the flow behaviour when this
flow occurs at a much larger scale. Nevertheless, if the depth
of the plug flowscales with 
s , the coefficient of proportiona-
lity 1/(tan θ − µs) diverges when the inclination of channel
approaches the angle of repose. The consequence is that very
small cohesion may have a measurable effect on the flow at
the threshold of sliding on an incline. In Fig. 4, the surface
velocity is divided by a factor of 2 for a cohesive length 70
times lower than the width of the channel and 1.7◦ of diffe-
rence between the repose angle and the channel inclination.
This situation corresponds to a 20 cm width channel for our
wetted glass beads. As a conclusion, flows in inclined chan-
nels are very sensitive to low cohesions when their slopes
are close to the static coefficient of friction, the so-called
repose angle. This behaviour may become a convenient tool
to estimate them.

5.2 Cohesion-like dilatancy

This constant cohesion modeling may also be applied for
a non-cohesive material with dilatancy effects in order to
obtain hstop, the thickness of the remaining granular layer on
an incline [9]. This cohesion-like term should be the specific
energy dissipated to maintain the dilated state and scales:

Fig. 5 Steady-state shear stress versus the normal stress for dry
(crosses) and wet glass beads (circles) of diameter 200 µm. 15 ml/l
of poly-ethylene glycol of molecular weight 200 g have been used for
these experiments

c � ρg cos θ∆, (23)

where ∆ is the displacement of the barycentre normal to
the flow direction. A rough estimate of this length is that it
scales like the size of the particles and should vanish when
the slope of the incline approaches the maximal value for
µ(I ).

To validate this hypothesis, we have calculated the quan-
tity:

∆

d
= µs

hstop/d

hplug/
s
. (24)

In Eq. 24, the numerator is taken directly from the experi-
mental data by Forterre and Pouliquen [5] and Daerr and
Douady [3]. The denominator comes from Eq. 26 in the
Appendix, with R being built from the experimental slope
of the incline divided by µs , the coefficient of friction when
hstop goes to infinity.

The results are plotted in Fig. 6 versus the difference
between the inclination angle and its maximal value. The
error bars come from the fact that the determination of µs

is within 1◦ of angle precision. We observe first that ∆ is
experimentally of order the size of the beads used. We also
observe that the behaviour, for inclination angles close to
the maximal value, is similar for both experiments. Despite
the approximations used, we obtain a good evaluation for the
minimal thickness of the remaining layer of particles in an
incline with this cohesion-like behaviour for dilatant granular
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Fig. 6 hstop/d experimental data by Forterre and Pouliquen [5] (plus
symbol) and Daerr and Douady [3] (cross) scaled by hplug/
s versus
the difference between the inclination angle and its maximal value. The
error bars represents an incertitude of 1◦ in the determination of µs

materials. The fact that the rheological model is written for
non-dilatant granular materials has a low impact because the
flow is non-confined, then the mean pressure remains similar
with or without dilatancy and the previous heuristic argu-
ments remain valid.

A final remark is that a flow of non-cohesive material
should also exhibit a plug flow below the free surface, but
such a behaviour has not been reported. To explain that point,
we may calculate the plug flow depth at the onset of flow in
the case of a coarse wall.

At the onset of flow, the plug invades all the width of the
channel, therefore xplug = a, and the Eqs. 27 and 26 give
implicitely the depth of the plug zone honset, scaled by the
size d of the particles, using 
s = 0.25 d

µs
. The result is shown

in Fig. 7 using Eq. 21 and a
d = 5, 50, 500 and 5,000 from

bottom to top. We observe that, as soon as the inclination
angle exceed by 3◦ the onset inclination angle, the depth of
the plug flow is lower than a tens particles. As a conclusion,
this plug flow, for a non-cohesive granular material remains
small, except close to the onset of flow. It may be added that
the transition between the plug and the flow below it may
be softened by some creep motion, as observed by Komatsu
et al. [8]. Such a creep not taken into account by the rheology
employed.

6 Concluding remarks

The introduction of a constant cohesion in the rheology des-
cribed by Eq. 1 leads to a modified flow pattern compared to

Fig. 7 hplug/d versus the difference between the inclination angle and
its value at the onset of flow. µ is given by Eq. 21. From bottom to top,
the width of the channel is 10, 100, 1,000 and 10,000 d

the non-cohesive case. We obtain a plug flow under the free
surface. Its size scales like the cohesive length 
s , given by
Eq. 6, times the inverse of the relative ratio between the slope
of the incline and the static coefficient of friction. In order to
obtain a flow, the depth and width of the powder bed must be
greater than this typical length.

The flow behaviour is then highly sensitive to small cohe-
sion values when the inclination angle is close to the angle
of repose.

From the observation of this behaviour, we hypothesize
that the dilatancy effects of non-cohesive materials may be
taken into account by the rheological model with a cohesion
whose order of magnitude corresponds to a cohesive length
of the same order of size than the particles. This prohibits
flows at a size scale lower than the size of the particles and
gives hstop, the thickness of the remaining layer of grains on
an incline, to diverge when the inclination angle approaches
the angle of repose.
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Appendix: Determination of the plug zone depth

When the velocity gradient φ tends to zero, the iso-velocity
lines going to the free surface tends to the solution for a
constant coefficient of friction (Eqs. 10 and 11) (continuous
line in Fig. 8), when the angle α remains lower than π

2 .
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x

y

y*

x*

Fig. 8 Sketch of the constant coefficient of friction solution (conti-
nuous line) and I−dependent coefficient of friction limit solution when
the velocity gradient φ tends to zero (dashed line)

The constant friction solution attains α = π
2 at a point

(x∗, y∗) below the free surface for h > 
s
R−1 . This point is

attained for s = s∗, with cos(ks∗) = −1/R.
After that, the iso-velocity lines tends to reach the free

surface like a straight line normal to it, as sketched in Fig. 8
in dashed line.

hplug is obtained by equating the shear force acting on the
limit iso-velocity line with the weight in the z-direction. It
writes:

s∗∫

0

(
s + y|cst )
2ds +

y∗∫

0

(
s + y)dy

−R

s∗∫

0

y|cst
dx

ds
|cst ds = 0, (25)

where the cst-suffix means that we take the constant friction
solution. This leads to the solution:

hplug = 
s

R − 1

⎛

⎝1 +
√

1 + R2s∗
1 + s∗

⎞

⎠ . (26)

The half-width of the plug is:

xplug = 
s

⎛

⎝R +
√

1 + R2s∗
1 + s∗

⎞

⎠ 1 + s∗

R2 − 1
. (27)
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