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Abstract The present contribution introduces enhanced
discrete element simulation methodologies (DEM) with a
special focus on a microstructure-based model environment.
Therewith, it is possible to represent the failure of cohe-
sive granular materials like concrete, ceramics or marl in
a qualitative as well as quantitative manner. Starting from
a basic polygonal two-dimensional particle model for non-
cohesive granular materials, more complex models for cohe-
sive materials are obtained by inclusion of beam or interface
elements between corresponding particles. In particular, we
will introduce an interface enhanced DEM methodology where
a standard ingredient of computational mechanics, namely
interface elements, are combined with the particle method-
ology contained in the DEM. The last step in the series of
increasing complexity is the realization of a microstructure-
based simulation environment which utilizes the interface
enhanced DEM methodology. With growing model complex-
ity a wide variety of failure features of cohesive as well as
non-cohesive geomaterials can be represented. Finally, the
plan of the paper is enriched by the validation of the newly
introduced and re-developed discrete models with regard to
qualitative and quantitative aspects.

Keywords Particle model · Discrete element method ·
Lattice model · Interface model · Geomaterial · Cohesive
frictional material · Microstructure

1 Introduction

From a physical point of view geomaterials like concrete,
ceramics or marl can be considered as cemented granulates
forming a heterogeneous macroscopic solid. In order to pre-
dict the remaining load capacity after reaching the ultimate
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load a substantiated knowledge of the underlying failure mech-
anisms is essential. Thereby, this knowledge may – for exam-
ple – be based on micromechanical observations. The failure
mechanisms of these materials are characterized by complex
failure modes and, furthermore, they show a highly aniso-
tropic bias due to their inhomogeneous microstructure. The
growth and coalescence of microcracks in cohesive geoma-
terials lead to the formation of macroscopic crack patterns.
Finally, this results in a fragmentation into separate particle
clusters forming a solid-granulates mix. Behaving quasi-brit-
tle under load these materials are characterized by a localiza-
tion of deformations in narrow zones. Since localization phe-
nomena like cracks or shear bands occur, the material cannot
be treated as continuous in the usual manner. If fracture and
fragmentation of the solid occurs, the creation and continuous
motion of the evolving crack surfaces apparently represent
discontinuous phenomena and are difficult to handle. There-
fore, most continuum models, and in particular those ones
based on continuum damage mechanics, cannot account for
the discrete nature of material failure in a natural way and
need some extension, confer [3,29,37]. Alternatively, dis-
crete particle models like discrete element methods (DEM)
have been developed. As the name DEM suggests, a solid is
replaced by a discontinuous particle composite which allows
for a detachment of bonds between particles (if initially pres-
ent) and a re-contact of open surfaces. In order to simulate
and quantify the full range of geomaterials from non-cohe-
sive ones like sand to cohesive ones like concrete, ceramics or
rock, starting from the pioneering work by [7] different types
of discrete element models have been elaborated, see [6] for
a recent review. Starting with a basic polygonal two-dimen-
sional DEM model for non-cohesive granular materials, more
complex models for cohesive materials are obtained by inclu-
sion of beam or interface elements between corresponding
particles. As the quantification of previously presented beam
enhanced DEM models is an arduous task, see [10,11,20,21,
22], the standard (non-cohesive) version of the DEM model,
see [36], is augmented by interface elements between the par-
ticle edges. The formulation and numerical implementation
of this interface enhanced DEM model will be presented in
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Fig. 1 a Geometry of the contact. b Interpretation of contact force logic in terms of plasticity law

detail in this paper. Thereby, tension and compression simula-
tions of cohesive rectangular particle composites are utilized
to validate the model. The next step is the realization of a
microstructure-based simulation environment which utilizes
the foregoing enhanced DEM models, confer [8]. The micro-
structure can be included, if different properties of the cohe-
sive components (beam or interface) are assigned with re-
spect to their position, i.e. inside the matrix, inside the aggre-
gate and between aggregate and matrix. With growing model
complexity a wide variety of failure features of geomaterials
can be represented. Furthermore, the inclusion of an artificial
microstructure which regards for stiffer aggregates embed-
ded in a less stiffer matrix enables a coherent quantification
of the model.

In a parallel line, adequate homogenization techniques
have been introduced since the 1990’s. These techniques al-
low to relate microscopic quantities, like the contact forces
and displacements, to corresponding macroscopic quantities,
like stresses and strains, compare [8,12,13,15] for a corre-
sponding application to the present DEM model. The devel-
opment and numerical implementation of adequate homoge-
nization approaches by means of a micro to macro transition
from the particle to the macro level supplements the formal
definition of the DEM models. Homogenization procedures
have been developed which allow for a transfer from a sim-
ple Boltzmann continuum based particle model to a more
complex continuum with microstructure, see [8] for a de-
tailed overview. However, for brevity no details concerning
this topic are given here. Interested readers are referred to the
noted literature.

The paper is organized as follows: section 2 provides
a brief outline of the theoretical background of a standard
(non-cohesive) form of the DEM model supplemented by a
discussion on the modeling of cohesion within particle mod-
els. In section 4 the extension to an interface enhanced DEM
model along with some representative simulation results is
sketched. Afterwards, section 5 presents the formulation of
a microstructure-based DEM environment which utilizes the
interface enhanced model according to section 4. Again, sim-
ulation results are used to validate the proposed method. We
conclude with a summary of the attained insights and an out-
look on future perspectives.

2 Standard DEM model

The starting point of our DEM model development is a two-
dimensional DEM code with convex polygonal particles
based on the work in [20,21,36]. As this standard DEM
model has been presented elsewhere in more detail, see the
references above or [8,10,11], the model is only briefly out-
lined here.

The individual particles can be considered as rigid bodies.
They are not breakable and not deformable, but they can over-
lap when pressed against each other. Three degrees of free-
dom, two translational and one rotational one, are assigned
to each particle center, confer Figure 1a. The local deforma-
tional behavior of the particles is approximated by an elastic
repulsive force related to the overlapping area of contact-
ing particles, grey shaded in Figure 1a. The contact force is
decomposed with respect to the local coordinate system of
the contact zone

fc = f c
n n + f c

t t . (1)

The normal and tangential components of the contact force
vector fc are defined by

f c
n = − E p Ap

dc
− meffγnvrel,n

f c
t = −min

(
meffγt

∣
∣vrel,t

∣
∣ , µ

∣
∣ f c

n

∣
∣) .

(2)

The coefficients γN and γT refer to the viscous dissipative
damping and µ is chosen according to Coulomb’s friction
law. Thereby, forµ > 0 the present scheme allows for a non-
associated plasticity law, as schematically shown in figure 1b
for three characteristic situations. If the grey shaded flow sur-
face is left as for force point 3©, the force state is reflected
back in vertical direction onto the surface confined by the
Coulomb criterion µ f c

n . E p denotes the elastic modulus of
the particles and Ap the overlapping area of two contact-
ing polygons. This overlap represents up to some extent the
local (reversible and non-reversible) deformation of the poly-
gons, comparable with the Hertzian contact law for spherical
particles. Please note that this representation of the Coulomb
friction is a simplification in that the quasistatic limit may not
be appropriately captured, since the tangential force tends to
zero as the velocity decreases. Alternatively, the tangential
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force could be handled via a Cundall–Strack spring, compare
[7]. This version has been widely used in the literature, espe-
cially in the context of circular particles, because it allows
to carry load even if a particle sample, e. g. a heap, is in
rest [26]. Since in the present paper the focus lies on polygo-
nal shaped particles that, furthermore, are mostly cohesively
bonded together, we believe that the corresponding effect
is not so dominant to take it into account. However, future,
careful quantitative studies are needed in order to test the
validity of the above simplification by comparing simula-
tions with and without friction. A more extensive discussion
on the choice of the tangential forces in the context of DEM
simulations may for example be found in [4,23]. The relative
velocity at the contact zone and the effective mass of two
contacting particles i and j are given by

vrel = v j − vi , meff = mi m j

mi + m j
. (3)

Since our focus is more on cohesive granular materials than
non-cohesive ones, we believe that the rotations of the parti-
cles play a subordinate role and, therefore, the angular veloc-
ities in equation (3)1 are neglected. The characteristic length
of the contact region is defined by 1/dc = 1/di + 1/d j ,
where di and d j define the diameters of circles of equiva-
lent areas as the polygons i and j . The forces and resulting
moments are inserted into the equations of motion, which are
solved numerically for each particle with the aid of the Gear–
Predictor–Corrector time integration scheme, confer [1]. The
dynamical basis of the DEM implies the solution of the equa-
tion of motion at discrete time steps t +�t for each particle i
of all particles N within the sample. Upon definition of f i for
all interaction forces between two contacting particles and
gi for the gravitational forces of a particle i , the generalized
equation of motion holds for each individual particle i

Mi ẍi = f i + gi with

Mi =



mi 0 0
0 mi 0
0 0 θi



 and f i =
n p∑

j=1
f p

i j .
(4)

Mi represents the diagonal generalized mass matrix and ẍi
the generalized acceleration of particle i . mi describes the
mass of polygon i (translational degrees of freedom) and
θi describes the mass moment of inertia of polygon i (rota-
tional degree of freedom). In the case of a simple (non-cohe-
sive) particle contact f i is expressed by equation (4)3, i.e. the
generalized interaction force vector f i contains solely con-
tact forces. Thus, in the present case it is represented by the
generalized particle force vector f p which is expressed by
f p = [

fc mc
]T and includes the moment mc of the con-

tact forces fc with respect to the center of mass. Thereby,
n p denotes the number of particle contacts of a particle i .
Cohesive forces, as introduced in the coming sections will
be simply added on the right hand side of equation (4)3.

The application of this basic (non-cohesive) DEM model
has proven to be capable to qualitatively picture the behav-
ior of cohesionless granular materials like sand. The locali-
zation of shear bands along with the formation of complex

failure pattern was studied by means of dense and porous
samples and reflected experimental observations in an aston-
ishing manner. More information on the applied model can
be found in [10,11] and descriptive simulation results on
cohesionless particle samples can be found in [8,13,15].

3 Modelling of cohesion in particle models

The model presented so far allows for the application to non-
cohesive granular materials like sand, stone or rock heaps.
Since most geomaterials are more or less cohesive, a model
is demanded for which is capable to represent cohesion. In
other words, attractive forces between particles are neces-
sary to bond these particles together to some extent. Usually,
the physical effect of cohesion is limited for tension. Several
ways of incorporating cohesion into particle models are fea-
sible. The implementation strongly depends on the chosen
particle shape and problem class. The easiest way in the case
of circular particles is the introduction of attractive poten-
tials like in Molecular Dynamics (MD). In this regard, the
most prominent law that accounts for attractive action be-
tween particles is the Lennard–Jones potential adopted from
physical chemistry, see the description in [1]. Another way,
only reasonable for circular particles, is based on an extension
of the Hertz contact law for “negative” overlaps. An imple-
mentation is rather straightforward as the primary geometric
variable defining the contact of circles is the distance between
the particle centroids, compare [14,24,30,40]. Following this
line in [25] an alternative model was proposed where an ini-
tial overlap of circular particles accounted for the attracting
force law. In contrast to “easy” geometries like circles, the
geometric definition of polygonal particles in contact is by
far more complex. This is the case as more than one geo-
metric variable describing the contact and the position of the
individual bonded edges is involved. The distinction between
a point contact (circles) and line contact (polygons) must be
drawn. Therefore, alternative options have to be considered.
Two different approaches that account for cohesive bonds
between two polygon edges have been implemented in the
present DEM model: In the first approach beam elements be-
tween the centers of mass of neighboring particles are intro-
duced and constitute a beam enhanced DEM model. This
approach will not be given in detail here as it was extensively
discussed in the past, see [10,11,20,21,22]. The simulation
results with a beam enhanced DEM model show that the
general failure behavior of cohesive frictional materials like
concrete is qualitatively very well represented. In particular,
the beam enhanced DEM model is capable to represent typ-
ical inherent failure mechanisms of cohesive geomaterials.
Furthermore, it has proven to be very well suited for a visu-
alization of these mechanisms which are technically difficult
to observe in experiments, [8,10,11]. However, a realistic
softening behavior cannot be obtained in simulations with
beam enhanced DEM models, due to the presently included
breaking law of the beam elements, i.e. the failure appears
mostly brittle in the context of normalized load–displace-



162 G. A. D’Addetta, E. Ramm

(a) (b)

Fig. 2 Idealization of interface in a undeformed stage and in b deformed stage

ment diagrams. Summarizing, the qualitative picture of the
beam enhanced model is satisfactory, but the quantification
remains still a demanding task. As an alternative, an inter-
face enhanced DEM model was introduced where continuous
interfaces along common particle edges represent the bond-
ing component. The next section is dedicated to this topic.

4 Interface enhanced DEM model

In order to represent the cohesion between particles in a DEM
model, an approach borrowed from the Finite Element Meth-
odology (FEM) is adopted. It makes use of so-called inter-
face elements that are directly defined at the particle edges.
In that, the model is made more complex: Instead of simple
elastic beams with an oversimplified brittle failure law as in
earlier versions of this DEM model, see the references in the
previous section, more elaborate interface elements with a
popular constitutive law on the basis of the plasticity the-
ory are used here. The realization of this interface enhanced
model is influenced by a former work of [39] and follows the
plasticity formulation introduced therein. The motivation to
use this material law in the context of the DEM follows the
principle that a proven and established macroscopic material
law may be at least much that successful in modeling the
failure on a smaller scale as in a continuum model (used typ-
ically for a higher scale). Apparently, this approach pictures
the real physics involved in the debonding process of bonded
granulates far better than the beam enhancing approach.

A variety of models for the representation of the interac-
tion between the constituents of two- and more-phase par-
ticle composites via interface elements have been proposed
since the late 1960s. The works by [17] and [31] have been
pioneering as they were among the first ones to introduce dis-
continuities into numerical models in the context of the FEM
either as continuous or lumped interface elements. On the

one hand, lumped interface elements evaluate a force–rela-
tive-displacement constitutive relation at a nodal point. Inso-
far, to a certain extent they exert a similar behavior as simple
springs. No further assumptions with regard to tractions and
relative displacement distributions across the interfaces are
made. On the other hand, the formulation of continuous inter-
face elements (line, plane or shell type) implies a continuous
relative displacement field and a traction-relative displace-
ment constitutive relation.

Following these lines interface elements have been the
focus of intensive studies in the context of FEM in the past.

4.1 Basic idea

The interface layer is regarded as infinitely thin in the ini-
tial stage.Since the particles are undeformable by definition,
use is made of the key assumption that the deformation of
the interface is constrained to be linear. In analogy to the
previously introduced beam model this fact represents the
Bernoulli-hypothesis of a planar cross-section to some ex-
tent. The interface can be discretized and is represented in
a lumped sense by a fixed number of normal and tangen-
tial spring sets with stiffnesses kn and kt . These springs are
attached along the common edge of two initially bonded par-
ticles i and j , as shown in Figure 2a. The current location
of start and end points of the springs relative to the bond are
initially fixed and evaluated after each time step. It is impor-
tant to note that the interface shown in Figure 2a has a visible
initial thickness for visualization reasons only. Ongoing rel-
ative motion of the particles leads to a finite value of relative
deformation for each spring, i.e. overlapping of particles and,
thus, contraction of springs (negative relative deformation)
is also allowed. The relative deformation of the bonds is rep-
resented by the extension and contraction of the springs, as
indicated in Figure 2b.



A microstructure-based simulation environment on the basis of an interface enhanced particle model 163

As further assumption the numerical integration of the
constitutive law of the spring sets, which are noted integration
points in the sequel, yields an approximated stepwise con-
stant stress distribution over the edge. This procedure com-
pares that for the computation of stress resultants in beams.
The constitutive law used throughout this chapter is a non-
associated Mohr–Coulomb type softening plasticity model
defined by two yield surfaces according to [39] and is dis-
cussed in more detail in section 4.2. A failure, or more pre-
cisely detachment, of the bonds is achieved, if all integration
points of the interface layer are completely softened. It should
be kept in mind that no extra contact force according to equa-
tion (1) is created, as long as a bond between two particles
exists. This means that once the bond is completely detached,
a “standard contact” according to section 2 is assumed to con-
trol the interaction between two particles. The forces evalu-
ated in the integration points can be combined to a bond force
vector and transferred to the mass centers of the involved par-
ticles, thus, giving rise to a moment. The bond force vector
then takes the form fbond = [ f bond

x f bond
y mbond]T and enters

the equation of motion in (4). The generalized interaction
force vector f i then takes the form

f i =
n p∑

j=1

f p
i j +

nbond∑

k=1

fbond
ik . (5)

Additionally to n p, noting the number of particle contacts
of a particle i , nbond denotes the overall number of existing
bonds of a particle i .

4.2 Mohr–Coulomb plasticity model

The principal ingredients of a plasticity formulation are the
yield condition, the flow rule and the hardening law (if needed),
e.g. compare [19]. In the present context the basic idea of a
strain-driven formulation from classical plasticity is straight-
forwardly transferred to a “relative displacement-driven” for-
mulation. The actual state of the spring set is determined
by the total relative displacement u, the plastic relative dis-
placement up and the softening variable κ . Here, the range of
validity is restricted to small strains and, following the above
logic, small relative displacements. Hence, an additive elas-
tic–plastic split of the relative deformation u of one spring
set is admissible

u = ue + up with u =
[

un

ut

]

. (6)

The stress-relative deformation law for the elastic part yields

σ tr = σ 0 + Kbond · u with Kbond =
[

kn 0
0 kt

]
, (7)

where σ tr is the trial stress state, that may lie outside the
flow surface f . kn and kt represent the normal and tangential
spring stiffnesses. The flow rule is denoted by

u̇p = λ̇ g(σ , κ) (8)

with the plastic multiplier λ̇. g(σ , κ) represents the direction
of the plastic flow, which in the present case is assumed to
be non-associated, i.e. the direction of plastic flow is pre-
scribed by the gradient of the plastic potential g in the form
g(σ , κ) = ∂g/∂σ . In general, plastic flow occurs if the yield
function f (σ , κ) and its derivative both vanish: f = 0 and
ḟ = 0. The consistency condition ḟ = 0 then yields
[
∂ f

∂σ

]
σ̇ −hλ̇=0 with h =−

[
∂ f

∂κ

][
∂κ

∂up

]
·
[
∂g

∂σ

]
, (9)

where h expresses the hardening parameter. Further elabora-
tion, including a combination of equations (6) to (9) results in
a relation between stress and relative displacement rates and,
finally, in the corrected stress state σ along with the plastic
multiplier λ̇

σ = σ tr − f (σ tr, κ)

−
[
∂ f

∂κ

] [
∂κ

∂up

]
·
[
∂g

∂σ

]
+
[
∂ f

∂σ

]
· Kbond ·

[
∂g

∂σ

]

︸ ︷︷ ︸
λ̇

Kbond ·
[
∂g

∂σ

]
. (10)

The procedure in equation (10) operates as a one-step return
mapping algorithm, so that no iteration is needed. However,
a simple one-step algorithm that yields an explicit solution
for the corrected stress state is only possible if linear yield
surfaces, linear plastic potentials and linear softening evolu-
tion laws are chosen. The bracket terms in equation (10) are
either of scalar or vectorial order.

The initial behavior of the spring sets is assumed to be
linear elastic and to depend on the spring constants kn and
kt . Therefore, no coupling of the springs in the elastic regime
is assumed. The softening of a spring set starts when the
stress state σ = [σn σt ]T reaches the yield surface that in
the present context could be viewed as a failure surface. The
initial failure surface in the biaxial stress plane is given in
Figure 3a by graph 1© and is symmetric with respect to the
normal stress. Since the failure mechanisms dominated by
shear and tension differ substantially in geomaterials, it is
advisable to model them separately even on the grain scale.
This implies the bounding of the elastic domain by two dis-
tinct failure surfaces, usually termed two- or in the general
case multi-surface plasticity. Indeed, this does not substan-
tially change the treatment presented above for one single
surface, except the singularities in the failure surface at the
segue of different failure surface segments, i. e. a unique flow
direction cannot be specified. The solution of this problem
has been treated by [18] or [2], confer [8] for more details.
In analogy to equation (8) the flow rule

u̇p = λ̇1
∂g1

∂σ
+ λ̇2

∂g2

∂σ
(11)

is adapted to capture the flow directions defined by the two
plastic potentials along with the essential constraints λ̇1 ≥ 0
and λ̇2 ≥ 0.

In the present case the failure surface resembles a two-
surface Mohr–Coulomb type plasticity criterion. The tensile
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(a) (b)

Fig. 3 a Failure surface. b plastic potential of interface constitutive law in biaxial stress plane

failure is governed by σmax
n > 0 and an angle γ which define

the yield surface f1. Whereas the shear failure is controlled
by a classical Mohr–Coulomb failure envelope with cohesion
σmax

t > 0 and friction angle ϕ > 0 which define the yield
surface f2. In the compressive regime (for negative σn) the
trapezoidal or triangle (in the final state) formed by the flow
surfaces is open, as no failure is possible in pure compression.
With ongoing softening the failure surface shrinks to an inter-
mediate stage ( 2© in Figure 3a) and ends up on the classical
Mohr–Coulomb failure surface without any cohesion σt = 0
and tension limit σn = 0, expressed by 3© in Figure 3a. The
functional representation of the failure surfaces is given by

f1 = σn + σt tan γ − (1 − κ)σmax
n ≤ 0 ,

f2 = σn tan ϕ + σt − (1 − κ)σmax
t ≤ 0 . (12)

In order to describe a non-associated plasticity along the lines
of the two-surface formulation, two plastic potential surfaces
are introduced:
g1 = σn − (1 − κ)σmax

n = 0 ,
g2 = σn tanψ + σt − (1 − κ)σmax

t = 0 . (13)

The plastic potential surfaces are also symmetric with respect
to the normal stress, as visualized in Figure 3b.

The softening of the spring set is described by the param-
eter κ which represents the actual state of damage: κ ranges
from 0 in the undamaged state to 1 in the fully damaged state.
The softening behavior is driven by the plastic deformation
u p

n and u p
t of the spring sets in form of predefined fracture

energies G f,n and G f,t . In the case of a two-surface plastic-
ity this involves two different softening evolutions for tension
and shear either, see Figure 4a and b. Pure tensile softening
ends after a fracture energy G f,n has been released and pure
shear softening ends after a fracture energy G f,t has been
released. In the decoupled case, i.e. if only one mechanism is
active, the softening variable for the tensile and shear loading
is defined by

κ = 1

umax
n − u∗

n
u p

n , κ = 1

umax
t − u∗

t
u p

t , (14)

with u∗
n = σmax

n /kn and u∗
t = σmax

t /kt , see Figure 4. The
plastic part of the deformation starts at u∗

n and u∗
t .

These evolutions are coupled in that, both tensile strength
σmax

n and cohesion σmax
t decrease at the same time and at the

same rate. This yields an isotropic shrinkage of the failure sur-
faces, as shown in Figure 3a. A simultaneous tensile and shear
softening is treated as linear combination of both, as depicted
in Figure 4c. Therefore, the definitions in equation (14) are
formally coupled

κ = 1

umax
n − u∗

n
u p

n + 1

umax
t − u∗

t
u p

t ≤ 1 . (15)

By definition, in combined softening u p
n is solely determined

by the plastic deformation due to tensile loading (surface 1
– f1 and g1) and not by the normal part of the plastic shear
deformation. For this reason, the dilatant behavior with shear
loading does not influence the softening since it is physically
not justified in combined softening. The predefined fracture
energies for mode I and II softening enter the above equations
through the integral expression of the graphs in Figure 4a
and b. This formalism may be interpreted in the sense of the
cohesive crack concept, see e.g. [27], where the crack open-
ing is replaced by the components of the plastic relative dis-
placement. The evolution laws of the normal and tangential
stresses

σn(u
p
n ) = σmax

n

(

1 − u p
n

umax
n − u∗

n

)

,

σt (u
p
t ) = σmax

t

(

1 − u p
t

umax
t − u∗

t

)

,

(16)

are inserted into the conditional equations of the fracture
energies

G f,n =
umax

n −u∗
n∫

0
σn(u

p
n ) du p

n = 1

2

(
umax

n − u∗
n

)
σmax

n ,

G f,t =
umax

t −u∗
t∫

0
σt (u

p
t ) du p

t = 1

2

(
umax

t − u∗
t

)
σmax

t .

(17)

4.3 Numerical realization

The numerical realization of the plastic interface model in the
context of the DEM model is a straightforward task. Each
spring set is described by the material law and along each
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(a) (b) (c)

Fig. 4 a Evolution law for tensile, b shear and c combined softening

common edge a fixed number of spring sets, termed integra-
tion points, are chosen. From there, it is important to define
a reference edge where the corresponding relative displace-
ment-force law is evaluated. Different possibilities are feasi-
ble, confer [8,9].

Here, the way displayed in Figure 5 is followed: One
bond is chosen as reference edge and the local coordinate
system with the normal vector n is fixed along this bond.
Particle i can be considered as the master and the other one
as the slave particle. For this case, the relative deformation
of the start and end point of the reference edge are split up
into a normal and tangential part. The normal and tangential
relative deformation distribution between the start and end
point of the reference edge are linearly approximated. The
actual complete relative deformation u is evaluated at each
integration point and is processed in an incremental format
�u by subtracting the complete relative deformations of two
successive time steps. The straightforward implementation
of the elastic predictor step for the calculation of the trial
stress state in equation (7) implies the determination of the
spring forces at each integration point k of the bond

f tr
n,k(ξ) = 1

nip

[
f old
n,k (ξ)+ kn�un,k(ξ)

]
,

f tr
t,k(ξ) = 1

nip

[
f old
t,k (ξ)+ kt�ut,k(ξ)

]
.

(18)

nip denotes the number of integration points along the
reference edge and is fixed for all polygon’s bonds. The
position of the integration point k is determined in the lo-
cal coordinate system by the normalized coordinate ξ rang-

Fig. 5 Numerical integration – Definition of reference edge

ing from [−1, 1]. In order to evaluate the yield conditions
f1/2(σ

tr (ξ), κold(ξ)) ≤ 0 in equation (12) the local stresses
at each integration point are computed

σ tr
n (ξ) = f tr

n (ξ)

h/nip
, σ tr

t (ξ) = f tr
t (ξ)

h/nip
. (19)

If the yield surfaces f1/2 are left, a plastic corrector step
is necessary. Therefore, the type of back projection mode
(determination which yield surface/s is/are active) has to be
evaluated. Equation (10) yields the corrected stress state at
the integration point. Afterwards, an a posteriori check is
performed, because it cannot completely be excluded that
erroneously a corner regime is predicted, although this is
actually not the case. This behavior may appear, as the final
position of the yield surface is not known a priori, see [2].
In particular, for stress states in the influence region of the
corner a transition from a tensile to a shear state may be
obtained. Thereafter, the corresponding forces at the integra-
tion points are calculated via an inversion of equation (19).
The new forces, the actual relative deformation and the state
of softening are saved as history variables for the next time
step. All forces along a bond are summed up and transferred
to the center of the master particle giving rise to a moment. A
force and moment with the same absolute values are applied
to the slave particle. An interface is detached or eliminated,
if at all integration points of this interface the softening is
completed, i.e. 〈κ〉 = 1 according to

〈κ〉 = 1

h

1∫

−1

κ(ξ) dξ = 1

nip

nip∑

k=1

κ(ξk) . (20)

When the softening at all integration points has reached its
limit, the bond is detached. For a detailed chart of the inter-
face plasticity law algorithm for one interface with k integra-
tion points interested readers are referred to [8]. A standard
contact as described in section 2 is assumed whenever two
initially bonded particles with broken bond come again into
contact.

4.4 Numerical results

The interface enhanced DEM model is involved in the sim-
ulation of standard loading setups. The structured validation
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Fig. 6 a Stress–strain and b stress–displacement diagram of tension test

of this model, first, on the integration point level and, second,
by simple loading setups of quadratic rows with a thickness
of one particle are presented elsewhere, see [39] and [8]. As
these preliminary test programs have been successful, larger
samples with variable particle shapes are simulated in uniax-
ial tension and compression.

4.4.1 Tension simulations

As mentioned earlier, a parameter identification of the beam
enhanced DEM model parameters with respect to a quantifi-
cation of the load-displacement behavior of geomaterials is
not convincing at all. The following examples will highlight
that the bond description via interfaces is capable to represent
the softening not only in very simple tests, as shown before,
but also in the context of standard experiments. The soften-
ing behavior is investigated by means of a comparative study
of rectangular plates with a width of 40 cm and a variable
height of 10 cm 1©, 20 cm 2©, 30 cm 3©, 40 cm 4©, 64 cm 5©
and 72 cm 6©. Thus, the amount of included particles ranges
from 400 to 2880. First, the results of a uniaxial tension sim-
ulation are presented. The specimens are vertically loaded
under constant strain rate conditions by applying the load in
a strain driven format via a constant increase of the velocity
of the particles at the top and bottom of the plate. Thereby, we
follow the procedure firstly described in [33], as it ensures
that disturbing initial dynamic effects are reduced to a tol-
erable level, see the discussion in [22]. The parameters and
material properties of the model have been chosen in order
to obtain results that are as close as possible to experimental
results obtained from the literature. However, only limited
information on the “real” values of the bond strength and the
corresponding softening behavior is available in the litera-
ture. Therefore, no attempt was undertaken to fit the material
parameters more closely than needed, since the needed con-
siderable time amount is disproportionate to the additional
insight obtained from such a fitting!

Uniaxial tension experiments on concrete by [16] as well
as [27] are considered for a quantitative comparison. The
normal and tangential stiffness of the interfaces are chosen

as kn = 1, 200 kN/cm2 and kt = 360 kN/cm2. Moreover,
the density was chosen as ρ = 2.5 g/cm3 and the time step
as �t = 5 · 10−7 s. The shape parameters of the plasticity
model are ϕ = 26.6◦, γ = 10◦ and ψ = 0◦, except the
maximum yield stress σmax

n = σmax
t = 0.12 kN/cm2 and

the softening parameters G f,n = 5.94 · 10−4 kN/cm2 and
G f,t = 2.98·10−3 kN/cm2. The yield stresses for each inter-
face are statistically distributed around ±10% the average
value defined above. Parameters of the contact model accord-
ing to section 2 like those concerning the viscous damping
and friction are set to zero (γN = 0, γT = 0, µ = 0)
and the contact stiffness to E p = 100 kN/cm2. The stress-
strain curves for the six simulations 1© to 6© are plotted in
Figure 6a along with the experimental results by [16], which
are included as a grey shaded band.

It becomes clear that the stress-strain relation is a non-
objective measure of the softening, i.e. the longer the speci-
men the steeper is the post-peak behavior. Nevertheless, the
normalized load-displacement relations in Figure 6a gener-
ally elucidate the transition from a linear relation to a horizon-
tal tangent up to a complete overall softening of the sample.
The stresses are measured in the form of a normalized load
as ratio of the reaction force of the boundary particles and the
specimen width. The strain is measured via a determination
of the ratio of the actual length and the initial length of the
specimen. The mesh/length dependence of the strain is one of
the main reasons why data of tension tests (of experimental as
well as simulation nature) is typically displayed by a stress or
load versus. crack width diagram in the literature. The axial
deformation is evaluated in a comparable format as in exper-
iments by a measuring device of fixed length lme = 5 cm
for all simulations. This means that not the elongation of
the complete specimen, but the extension of a fixed area of
the specimen containing the macroscopic crack is evaluated.
The extension of this fixed area compares to the crack width
�w, see the inset of Figure 6(b). Thus, if a stress–�w dia-
gram is plotted, all curves coincide and the softening effect
is the same regardless of the height of the sample, compare
Figure 6b. Moreover, these results have been compared with
experimental results in the form of the stress-average-crack
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Fig. 7 Simulation output in the post-peak regime: a Final stage d©. b Detail of macroscopic crack of stages a© to d©

opening diagram of a concrete with a maximum aggregate
size dmax = 1.6 cm according to Figure 3.49 of [27]. The
numerical results fit qualitatively as well as quantitatively
well the experimental ones. However, the height of the tail
in the softening region could not completely be recast, as the
stress drops below the experimental value in the later simula-
tion stages. In the experiments still a considerable stress trans-
fer is obtained in the later softening regime. The reason for
this is quite conceivable and can be traced back to the maxi-
mum size of aggregates contained within a sample. Moreover,
following the discussion in [27] this behavior is an indirect
effect of crack face bridging which provides a crack toughen-
ing mechanism. In order to enclose the feature of crack face
bridging and a corresponding stress transfer even in a later
softening stage, one may include a distinct microstructure
which for example regards for stiffer aggregates embedded
in a less stiffer matrix. This path will be followed in the next
section.

An alternative concept takes into account a higher disper-
sion of bond stiffness and/or yield stresses.

A cutout of the deformed sample 4© in figure 7 at four
different time steps a©, b©, c© and d© according to the stress–
strain curve in Figure 6a emphasizes the distinct macroscopic
crack opening as well as the evolution of softening. The bonds
are represented by a line between the respective particles.
The scale defines the transition from a non-softening stage
to a fully softened stage just before elimination of the bond
(black). The state of softening of the bonds 〈κ〉 in Figure 7b
is computed based on equation (20) as the average of the
softening of all springs (i.e. integration points) representing
this bond. One can see that at stage d© the macroscopic crack
has completely formed. However, three interfaces positioned
perpendicular to the primary load transfer direction (marked
by circles) sustain the load and yield a non-vanishing stress
of curve 4©.

4.4.2 Compression simulations

Next, uniaxial compression tests of plates with different geom-
etries using the same parameter set as for the tension sim-
ulation are carried out. Therefore, a similar load setup as
discussed before for the tension case but with interchanged
loading direction is applied and additionally different bound-
ary conditions are studied. Here, we will discuss the result of
a specimen with an unrestricted boundary which represents
a situation with very low friction at the boundary. Therefore,
the particles forming the upper and lower boundary of the
specimen are completely free to move, e.g. like a loading by
teflon platens or platens with brushes. For brevity, the stress-
strain diagram and a comparison with experimental result is
not given, compare [8] for more details. The failure evolu-
tion of the unrestricted compression simulation is visualized
by means of the output at two time stages 1© and 2© in
Figure 8, which capture the situation around peak load. Once
again, the bonds between the particles are represented by a
line between them. Time stage 1© refers to a situation just
before the peak and stage 2© to a situation after formation of
a failure pattern. The gradual development of inclined local-
ization zones, as shown in Figure 8b has started long before
the peak value is reached and yields a sudden breakdown
of the particle composite. This result agrees quite well with
the experimental results on cubical specimens by [38,39].
However, the softening behavior is less pronounced in com-
pression with respect to the experimental results by Vonk.
The simulation output of a restricted sample (high friction
case, not given here) resembles the same hourglass failure
mode coupled with en-enchelon cracks as observed in simu-
lations with the beam enhanced DEM model in [8,10,11] as
well as in experiments.

Note that the additional complexity of the bond descrip-
tion compared to the beam one is accompanied by a higher
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Fig. 8 Failure evolution of compression simulation

sensitivity of the parameter choice with respect to the post-
peak failure. This implies that the more or less “controlled”
failure in compression as obtained with the beam enhanced
DEM model, e.g. compare the results in [8,10,11], is not
reproducible with the interface enhanced DEM model in the
present form. For example, a continuation of the loading after
formation of a failure pattern like that presented in Figure 8
yields a complete disintegration of the initially bonded par-
ticle assembly. Thus, no conical rest pieces as in the exper-
iments, e.g. in the form of fragments composed by bonded
particles, remain after complete cracking. In the context of
this destabilizing effect the following two points are worth
to be further investigated: First, the formulation of the inter-
face model has to be enhanced. For example an inclusion
of a physical coherent damping or comparable stabilizing
contribution to the interface forces may provide for a sta-
ble simulation path in the later post-peak regime. Further-
more, a second, probable reason for the found behavior is
the missing rotational resistance of two bonded granulates in
the interface enhanced model compared to a consideration of
it in the beam enhanced model. There, the rotational resis-
tance is considered via the corresponding stiffness entry in
the Timoshenko stiffness matrix and the corresponding rota-
tional breaking parameter. The effect of the rotational resis-
tance inherent within the beam enhanced DEM model has
already been emphasized as a basic microdeformation mech-
anism for the simulation of geomaterials by [32].

4.5 Discussion of cohesion modeling

Two approaches that account for cohesion between two poly-
gon edges have been implemented in the context of the DEM
model according to section 2. In the first, rather simplistic ap-
proach (not presented in detail here) beam elements between
the centers of mass of neighboring particles have been intro-
duced, confer [10,11,20,21,22]. As an alternative, a model
based on continuous interfaces along common particle edges
was proposed in the past section.

The approach based on the introduction of beam elements
has shown to be capable to represent most inherent fracture
mechanisms of cohesive frictional materials, see the simula-
tion results in [8,10,11]. The simulations fit qualitatively well
experimental observations. However, the quantification of the
corresponding parameters with respect to the output of exper-
iments like stress-strain curves is still unsatisfactory, confer
the discussion in [8]. This is primary due to the choice of the
two beam breaking parameters. Although physically plausi-
ble from the micromechanical point of view, these param-
eters cannot be identified with any known (micro) material
parameters of geomaterials. Hence, at the present stage, a
pure parameter search would end up in a curve fitting with-
out winning any new knowledge on the physics behind it.
Anyhow, it should be kept in mind that this model is very
well suited for a visualization of typical failure mechanisms
appearing in the testing of cohesive geomaterials. The inter-
face enhanced DEM model shows the advantage to picture
the real physics involved in the debonding process of bonded
granulates far better than the beam enhanced one. However,
this is only possible at the expense of a higher computational
cost which is required due to the increased complexity of the
model and a higher sensitivity of the simulation results with
respect to the chosen parameters. The inclusion of the more
complex bond representation favors the quantification of the
model to experimental results, i.e. the post-peak softening is
better reproducible and quantifiable than in the case of the
beam enhanced DEM model. Though, still some features like
the softening behavior at a later simulation stage in tension
as well as a less pronounced softening in compression are to
be clarified. Therefore, the complexity of the enhanced DEM
model is further enhanced by defining a microstructure-based
simulation environment.

5 Microstructure-based DEM model

The inclusion of a microstructure is thought to remedy the
mentioned “problem” points. This section comprises simula-
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(a) (b)

Fig. 9 a Definition of particle properties (cohesive components suppressed). b Definition of properties of cohesive component

tions with the interface enhanced DEM model where the par-
ticle mesh represents an artificial microstructure. Therefore,
stiff macro particles that are composed by an agglomeration
of a finite number of particles are embedded in a soft matrix,
which is also represented by a composition of particles. Inso-
far, this so-called microstructure-based DEM model may be
seen as an extension of the previously introduced interface
enhanced DEM model. However, a realization of a micro-
structure-based simulation environment on the basis of the
much simpler beam enhaced DEM method is also conceiv-
able. In order to include a “real” microstructure correspond-
ing digital image processing software has to be connected to
the mesh generation module of the DEM program. However,
this way is not followed here, since at the present stage an
easily realizable implementation is sought. Instead, an alter-
native, approximative implementation is carried out by creat-
ing an “artificial” microstructure, see [8] for more details. In
that, the procedures proposed in the framework of the FEM
e.g. by [5,35,39] are principally paralleled, as these publi-
cations concern the creation of artificial two-phase materials
using polygonal aggregate shapes. Furthermore, the present
approach is related to that presented in [34], see also [27],
where circular aggregate particles are generated based on a
statistical distribution which is related to grading curves of
concrete. Thus, the composition of a real microstructure of
concrete-type materials is treated in an approximate and arti-
ficial way here. It is not thought that the simulation results
based on a “real” and an “artificial” two-phase microstructure
differ that much though. First, the procedure applied for the
creation of an artificial microstructure is given. Afterwards,
we will present simulation results of uniaxial compression
and tension load setups and a concluding discussion of the
attained insights.

5.1 Generation of a microstructure

The generation of an artificial microstructure is based on the
formulation of macro particles, i.e. one macro particle is com-
posed by an accumulation of a finite number of polygonal
particles which are denoted as micro particles. An initially
created polygon mesh is overlaid by a mesh composed of

larger particles. Certainly, the geometry of a known micro-
structure, e.g. by means of electron microscopy images, could
be included as an overlaying mesh. This option is not con-
sidered here, however, is in the realm of possibility in future
implementations. After generating a corresponding particle
assembly (dense or porous), the particles are scaled down
and rotated in a statistical fashion. The scaling down of these
(macro) particles by a variable factor is controlled by the
desired proportion of aggregate to matrix volume. In order
to obtain the overlaying mesh of larger particles the afore
mentioned mesh is scaled up. This scaling up depends on
the favored size of aggregates. Finally, this mesh is laid over
the (underlying) dense particle mesh and represents the pat-
tern for the definition of the macro particles. Based on this
information the (micro) particles of the underlying mesh are
flagged as being inside or outside the macro particles. The
macro particles represent the stiff aggregates and the remain-
ing particles define the matrix. As example the contiguous
particles colored in light grey in Figure 9a are identified as
the macro particles and the particles colored in dark grey as
the matrix material. The corresponding cohesive components
are classified as follows, compare also the sketch in Figure 9b:
Inside the aggregate (a) (middle grey), inside the matrix (m)
(light grey) and defining the “interface layer” between aggre-
gate and matrix (i) (black). This “interface layer” should
not be confused with the interface elements used within the
interface enhanced DEM model. The first one describes a
real material interface layer (between aggregate and matrix),
while the last one represents a model interface in form of a
component of the enhanced DEM model.

Finally, the values of the stiffnesses of the interface ele-
ment (kn, kt ), the corresponding fracture law (σmax

n , σmax
t ) or

both stiffness and fracture law parameters, are chosen accord-
ingly. In order to consider the microstructural properties of a
concrete-type material like concrete as best as possible, ben-
efit was made from the extensive knowledge of the group
of van Mier. This knowledge comprises the simulation of
microstructures via pure beam lattice models starting from
the first publication by [34], compare also [27]. The respec-
tive parameter ratios between (a), (m) and (i) are estimated
based on the corresponding ratios introduced in the context of
lattice models. In that, an analogous approach of calibrating
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Fig. 10 a Stress–strain diagram of simulations and Vonks’s experiments. b Eliminated bonds at stage 2©

the stiffnesses and fracture law parameters noted in [28] is
partially followed. In order to prevent aggregate (i.e. macro
particle) cracking at the present stage the ratios noted in [28]
are partly adopted. The following choices were made:

k(i)n

k(m)n
= 0.1, k(i)t

k(m)t
= 0.4,

σ
max,(i)
n,t

σ
max,(m)
n,t

= 0.25,

k(a)n

k(m)n
= 2.8, k(a)t

k(m)t
= 2.8,

σ
max,(a)
n,t

σ
max,(m)
n,t

= 100.
(21)

The matrix values (·)m are used as input values and the
other values, (·)a and (·)i , result from equation (21). Keep
in mind that the choice of parameters is only influenced by
the fitting of the softening behavior and without consider-
ation of a detailed, because unknown, knowledge of the “real”
micromechanical parameters. Despite the advanced measur-
ing devices and setups available in laboratories, the “real”
parameters of the phases (a), (m) and (i) actually remain in
the dark, i.e. no precise and experimentally verified values
of the phases’ stiffness, yield strength and softening law are
available. In order to fit experimental results of concrete-type
materials these parameters may be estimated on the basis of
a macroscopic view of the problem: One supposes that the
known macroscopic parameters of concrete are identical to
the microscopic ones. For example, the fracture energy of the
interface elements is identified as the experimentally mea-
sured, macroscopic one and so forth. An alternative and, in
the authors opinion, more promising way is the estimation
of these parameters on the basis of the insights of section 4
and utilizing the experience of the group of van Mier in the
context of the micromechanical simulations of concrete-type
materials.

5.2 Numerical results

It is a moot point whether the inclusion of a material descrip-
tion based on an artificial microstructure as introduced in the
previous section instead of the “model” material may help to
overcome the deficiencies of the beam and interface enhanced

DEM models. Recall that the “model” material in section 4
included nearly identical stiffnesses and failure laws of the
cohesive components. Compression and tension simulations
of an artificial microstructure based on the interface enhanced
DEM model presented in section 4 have been carried out. The
model parameters have been fit to the compression experi-
ments by [38] under consideration of equation (21).

5.2.1 Compression simulations

The load setup and measuring procedure was already dis-
cussed in the context of the tension simulation in section 4.4.
Note that the parameter choice is the result of a parame-
ter fitting to experimental results on concrete in absence of
more detailed information on the micromechanical parame-
ters. The following matrix parameters have been used: The
normal and tangential stiffnesses are chosen as
kn
(m) = 2,000 kN/cm2, kt

(m) = 600 kN/cm2 and the frac-
ture energies as G f,n

(m) = 4.996 · 10−4 kN/cm2, G f,t
(m)

= 5.988 · 10−3 kN/cm2. The yield stresses are statistically
distributed for each interface about ±10% the average value.
On average one gets σn

max,(m) = 0.04 kN/cm2, σt
max,(m)

= 0.12 kN/cm2. Corresponding values for the aggregate
and the interface layer between aggregate and matrix are
obtained via equation (21). The shape parameters are unal-
tered with respect to the choice in section 4 and are noted
ϕ = 26.6◦, γ = 10◦ and ψ = 0◦. The general parameters of
the DEM model are also unchanged: The density was cho-
sen as ρ = 2.5 g/cm3, the time step as �t = 5 · 10−7 s,
the viscous damping and friction are set to zero (γN = 0,
γT = 0, µ = 0) and the contact stiffness amounts to E p

= 100 kN/cm2.
Seven compression simulations with the same amount

of aggregates and almost identical aggregate/matrix ratios
have been carried out. The only difference between these
simulation sets is the starting number of the random num-
ber generator for the generation of the underlying particle
mesh. The quadratic 75 × 75 cm2 sample used in simulation
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Fig. 11 Graphical output of compression simulation

series sim∗1 is composed by 5501 particles and a total of
16,489 interface elements between all particles within the
sample. The microstructure is created by use of 46 macro
particles. The composition of the sample includes a total
of 2,896 particles representing the aggregates and a total of
2,605 particles representing the matrix. Thus, the fraction
of aggregate volume to complete volume is 0.525. The sim-
ulations are confronted with the experiments of [38,39] by
means of the nominal stress vs. nominal strain diagram and, in
particular, the associated softening branch. The stress-strain
curves of all simulation series sim∗i with i = 1, . . . , 7 are
averaged via a superposition of the corresponding data files.
This average curve is symbolically denoted by 〈sim∗i 〉. In
Figure 10a the comparison of 〈sim∗i 〉, simulation series sim∗1

and Vonk’s tests [38] on concrete with different boundary
conditions is presented. After linearly increasing in the first
part of the loading program the average stress–strain curve
〈sim∗i 〉 turns into a non-linear regime up to the peak. After-
wards, in contrast to the simulation results presented in the
previous chapters the softening regime is less pronounced,
i.e. it follows the predicted experimental results quite well.
The continuous failure of interface elements yields a de-
crease of the stresses with increasing strains. The average
simulation result 〈sim∗i 〉 lies near the limit curves of the
low friction boundary cases (teflon/brushes) in the post-peak
regime. In summary, the inclusion of artificial microstruc-
tures has proven to be an important feature for a realistic
representation of the post-peak softening behavior in terms
of the stress-strain relation.

In order to give a detailed view of the failure within
the specimen snapshots of simulation series sim∗1 are con-
sidered. The softening stadium of the interface elements is
monitored at two time steps 1© and 2© in Figure 11. These
simulation stages document the course of the non-linear and
softening branch of curve sim∗1 in Figure 10a. The sim-
plified picture of the composite structure of the sample in
Figure 10b highlights the crack propagation through the spec-
imen shortly after peak load. The dark grey color denotes the
aggregate particles and light grey the surrounding matrix.
Bear in mind that the aggregates are represented by a finite

amount of (macro) particles. For this reason, the shape of
the aggregates is irregular. The black lines represent the real
geometry of the interface elements that have been eliminated
in the course of the simulation, i.e. 〈κ〉 = 1. These lines
connect the start and end point of an eliminated interface
element and represent the corresponding particle edges. The
tensile splitting type failure, mostly along the boundaries of
the aggregates, is obvious. Two crack zones in the left and
right part of the specimen initiate the macroscopic failure of
the particle sample. In Figure 11, the brighter background
area represents the aggregates, while the darker background
displays the matrix. The scale included in this figure refers
only to the softening of the interface elements marked by the
line connections between bonded particles. Please note that
if an interface element reaches a stage 〈κ〉 > 1, the corre-
sponding line connection in figure 11 is eliminated. Thus, the
dark grey colored matrix particles become visible in regions
where the failure localizes, i.e. the overlaying interface ele-
ment mesh has been partially dissolved in these zones. In the
course of simulation at stage 1© two macroscopically fail-
ure zones form, see Figure 11a. The continuous debonding
results in the final failure mechanism in form of a complete
disintegration of the matrix material in these zones, compare
stage 2©, see Figure 11b. The final failure at stage 2© pictures
the reality quite well, compare the fractured samples by [39].

5.2.2 Tension simulations

The load setup and strain measurement of the tension simu-
lation is accommodated according to section 4.4.

Irrespective of the different material parameters of the tar-
get concretes to be compared with, the same DEM parameters
as used in the compression simulations are considered in the
tension simulations. In tension the experiments by [27] with
a concrete with a maximum aggregate size dmax = 1.6 cm
are considered, compare also Figure 6b. Simulations with
different aggregate sizes and varying dispersions of the yield
stresses have been performed. The yield stresses have been
statistically distributed for each interface element around
±10, ±50 and ±90% the average values. The exemplary
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Fig. 12 a Stress–displacement diagram of simulations and experiments by van Mier. b Eliminated bonds at stage 1©

results detailed below are concerned with a simulation series
with a dispersion of the yield stresses of ±50% and inclu-
sion of 220 aggregates. Thus, the aggregate size is smaller
compared to the compression simulations. Smaller aggre-
gate sizes have been considered to accommodate the smaller
maximum aggregate size of the target material in mind. In
the context of the realized implementation, the higher the
amount of aggregates is chosen, the smaller is the corre-
sponding aggregate size. This yields a higher volume fraction
of matrix particles and, finally, a smaller effective stiffness
of the composite sample. The 75 × 75 cm2 test sample was
composed by 2,145 particles representing the aggregates and
3,354 particles representing the matrix. The fraction of aggre-
gate volume to the complete volume amounts to 38.4% and
the ratio of aggregate to matrix volume to 0.623.

Figure 12a compares the described simulation series and
experimental results of a concrete with a maximum aggregate
size dmax = 1.6 cm according to [27]. The crack width �w
is measured as difference between the top and bottom parti-
cles, since two macroscopically observable cracks appear, see
Figure 12b. The sample height is assumed as a representary
crack zone with a finite width. The simulated peak stress is
less than the experimental one by a factor of 2, if the param-
eter set of the compression simulation is used.

One reason for this difference is the uncertainty of the
parameter choice, since the extraction of “real” parameters
from laboratory tests for a definition of the model parameters
is not straightforward. Another reason concerns the different
target concretes used for the comparisons in the compression
and tension simulations. Therefore, the corresponding curves
are given in a normalized format by scaling the stresses by
the respective maximum stress. Anyhow, the course of the
simulated and experimental curves agree qualitatively well.
The post-peak behavior is more ductile than predicted by
the experiments. Probably, the fracture energy choice was
slightly to high. This is not astonishing at all, as the parame-
ters have been pre-optimized for the compression simulations
and the corresponding material parameters. As the concrete
tested by Vonk differs from that used by van Mier with re-

gard to the different key material parameters, this behavior is
quite comprehensible. The snapshot in form of the simplified
picture of eliminated interface elements in Figure 12b high-
lights the crack propagation through the specimen. As ex-
pected, only cracks in the horizontal direction and, thus, per-
pendicular to the loading direction are obtained. The cracks
appear mostly at the “interface layer” between aggregate and
matrix and fit quite well to the cracking in concrete.

6 Conclusion

Starting from a basic DEM model for non-cohesive polygo-
nal particles, the complexity of the model was successively
increased in order to include a coherent representation of
cohesive particle assemblies which implied a qualitative as
well as quantitative reproduction of characteristic features of
cohesive geomaterials. As a quantification of beam enhanced
DEM models represents an arduous task, interface elements
between the particles have been inserted in order to form a
cohesive bond. The last step in the series of increasing com-
plexity was the realization of a microstructure-based sim-
ulation environment which utilizes the foregoing enhanced
DEM models. With growing intricacy and, therewith, flexi-
bility of the models a wide variety of typical features of cohe-
sive frictional materials could be represented in a satisfactory
manner. It was shown that the microstructure-based interface
enhanced DEM environment represents an effective approach
to remedy the deficiencies of the non-microstructure envi-
ronments. The inclusion of an artificial microstructure via
the definition of corresponding stiffnesses and yield stresses
has shown up to be an important feature for a realistic repre-
sentation of the post-peak softening behavior in terms of the
stress–strain relation. With increasing complexity all charac-
teristics of a cohesive frictional material can be represented.

As future perspective, the procedures for a quantification
of the parameters should be advanced by further elaborating
the relation between the micromechanical properties of
geomaterials and the corresponding model parameters. This
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implies a consideration of special experimental setups to gain
more knowledge on parameters like the micromechanical
yield strength or the corresponding ratios for the aggregate,
matrix and “interface layer” components. In order to achieve
this, very simple composite (model) materials should be cre-
ated, e.g. regular polygonal particles embedded in a soft ma-
trix with glue between matrix and particles. Due to the clear
knowledge of all micromechanical material and, therewith,
model parameters, a comparison of simulation and experi-
ment should get much easier. If this point is satisfactorily
solved, a real microstructure-based DEM environment may
be considered. Then, an interface module between a digi-
tal image processing tool that is capable to handle electron
microscopy images and the mesh generation module of the
DEM program may be incorporated.
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