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Small and large scale granular statics

Chay Goldenberg, Isaac Goldhirsch

Abstract Recent experimental results on the static or
quasistatic response of granular materials have been inter-
preted to suggest the inapplicability of the traditional
engineering approaches, which are based on elasto-plas-
tic models (which are elliptic in nature). Propagating
(hyperbolic) or diffusive (parabolic) models have been
proposed to replace the ‘old’ models. Since several re-
cent experiments were performed on small systems, one
should not really be surprised that (continuum) elas-
ticity, a macroscopic theory, is not directly applicable,
and should be replaced by a grain-scale (“microscopic”)
description. Such a description concerns the interparticle
forces, while a macroscopic description is given in terms
of the stress field. These descriptions are related, but not
equivalent, and the distinction is important in interpret-
ing the experimental results. There are indications that at
least some large scale properties of granular assemblies can
be described by elasticity, although not necessarily its iso-
tropic version. The purely repulsive interparticle forces (in
non-cohesive materials) may lead to modifications of the
contact network upon the application of external forces,
which may strongly affect the anisotropy of the system.
This effect is expected to be small (in non-isostatic sys-
tems) for small applied forces and for pre-stressed systems
(in particular for disordered systems). Otherwise, it may
be accounted for using a nonlinear, incrementally elas-
tic model, with stress-history dependent elastic moduli.
Although many features of the experiments may be repro-
duced using models of frictionless particles, results dem-
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onstrating the importance of accounting for friction are
presented.
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1
Introduction

The modeling of granular materials has been a subject
of ongoing research in the engineering community (see
e.g., [1]). In recent years, this subject has found renewed
interest among physicists [2-5] (having been studied in the
distant past by great physicists such as Coulomb, Faraday,
Reynolds and others).

The behavior of “granular gases”, which are obtained
by e.g., sufficiently strong shaking or shearing (so that the
material behavior is dominated by interparticle collisions),
has been quite successfully modeled using approaches
based on extensions of the kinetic theory of gases [6]. How-
ever, the behavior of dense granular matter, which is domi-
nated by prolonged interparticle contact, has proven more
difficult for modeling. For the description of the quasi-
static behavior, elasto-plastic models are commonly used
by engineers [7,8].

This paper is concerned with the static behavior of
granular systems. In elasto-plastic models, one often uses
(linear) elasticity below yield (although parts of a static
system are sometime assumed to be at incipient yield [8]).
However, in recent years a very different class of models
has been proposed for describing the statics of granular
materials, based on the notion of “force propagation”, sug-
gested by the observation of force chains in experiments
on granular materials [9], as well as simulations [10,11].
These models (see e.g., [12-15]) typically yield hyperbolic
partial differential equations for the stress field, in contrast
with the elliptic, non-propagating nature of the classical
equations of static elasticity. It has been claimed that the
hyperbolic description tends to an elastic-like one at large
scales [16-18] (however, the physical interpretation of the
macroscopic fields in this case is not clear).

Recently, the response of granular slabs resting on a
horizontal floor to a ‘point force’ applied at the center of
the top of the system has been studied experimentally [19—
25]. In [19,22,23], the intergrain force distribution has
been measured in two-dimensional (2D) systems as a func-
tion of vertical and horizontal distance from the point of
application of the force. In [25], the particle displacements
for similar 2D systems have been measured. In [20,21,24],
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the vertical force acting on the floor has been measured in
three-dimensional (3D) systems. Prominent force chains
have been observed in ordered 2D systems; these force
chains fade out with increasing disorder. For pentagonal
particles in 2D arrangements the measured force distribu-
tion is single peaked and the width of the peak is linearly
related to the vertical distance, in conformity with elas-
ticity. The results for cuboidal particles obtained in [19]
appear to suggest a parabolic behavior, consistent with a
diffusive model, although the systems studied were quite
small. In [25], the width of the measured distribution of
displacements, as a function of the vertical distance from
the particle which is directly displaced, follows a square
root dependence (as expected from a diffusive model) for
small distances of a few particle diameters, crossing over
to a linear dependence at larger distances (consistent with
an elastic description). Ordered 3D packings exhibit mul-
tiple force peaks for shallow systems [24] and less structure
for deeper ones. Somewhat larger (in terms of number of
particles), disordered 3D systems [20,21] exhibit a single
peak in the force distribution measured at the floor, whose
width is proportional to the depth of the system.

The experimental evidence appears to be contradic-
tory: different experiments seem to support fundamentally
different descriptions of the response of granular materials
(in the case of 2D systems, it has been suggested that there
may be a crossover from a hyperbolic to an elliptic behav-
ior with increasing disorder [22]). The thesis presented in
this paper is that these seemingly contradictory experi-
mental results (and theoretical explanations) are not nec-
essarily at odds with each other. This thesis is based on the
observation that most of the studies (perhaps all) reject-
ing the elliptic description have been devoted to small sys-
tems, of the size of a few dozen of particle diameters at
most, whereas many engineering studies consider rather
large granular systems. Since elasticity and other macro-
scopic descriptions are not valid on small scales, at which
local anisotropy and randomness play a major role, one
should not be surprised that such descriptions fail on small
scales. Indeed, simulations [26,27] reveal the existence of
a crossover from microscopic to macroscopic behavior of
granular assemblies (as well as other systems [28]) as a
function of system size or resolution. We argue that such
a crossover is observed in some of the experiments men-
tioned above. Strictly isostatic systems [29] have been
shown to be described by hyperbolic stress equations [15,
30], and numerical simulations suggest that systems of
frictionless spherical particles approach isostaticity in the
limit of infinite rigidity [31]). However, we argue that since
real granular systems have finite rigidity and usually expe-
rience frictional interactions, they cannot be generically
isostatic (the same presumably holds even for frictionless
non-spherical grains). The isostatic limit is a singular case,
whose physical consequences for real systems are at best
unclear. Therefore the controversy surrounding the cor-
rect description of granular statics is mostly a question
concerning the behavior of small granular systems. The
latter require a grain-scale (“microscopic”) description,
rather than a macroscopic one.

A second point stressed below is the distinction
between force and stress. Whereas interparticle forces can
exhibit force chains which look like they contradict elas-

ticity, the latter does not describe the nature of the forces
but rather that of the stress field. The stress field involves
an averaging over the forces (whose result is resolution
dependent) and leads to less pronounced structure than
the underlying force field. The small scale structure of the
interparticle forces cannot be taken to consist an argu-
ment against an elliptic description or in favor of it, since
it relates to small scales and does not deal with the ob-
jects with which elasticity or plasticity are concerned. The
large scale response of granular packings is shown to be
consistent with a (possibly anisotropic) elastic description.
The fact that in non-cohesive granular materials there is
no significant attraction among the particles may lead to
modifications of the contact network, which may strongly
affect the anisotropy of the system. This effect is expected
to be small for small applied forces (for non-isostatic sys-
tems) and for pre-stressed systems, in particular for disor-
dered systems. Otherwise, it may be accounted for using a
nonlinear, incrementally elastic model, with stress-history
dependent elastic moduli.

The third point made in this paper is that while
models employing frictionless particles can reproduce
some properties of granular packings, friction can be of
utmost importance for the description of granular matter
(a rather intuitive fact). Results demonstrating the impor-
tance of accounting for frictional interactions are pre-
sented in Sec. 5.

2
The microscopic picture: forces

In attempting to describe granular materials in terms of
continuum mechanics, by analogy to “regular”, atomic
materials, one usually considers the “microscopic” scale to
be that of the individual particles (whose internal dynam-
ics should be well described by continuum mechanics).
One of the simplest granular systems is a collection of
frictionless spherical particles. A typical microscopic (par-
ticle scale) description of such a system is given by the
particle’s radii, {R;}, their masses, {m;}, center of mass
positions, {7;(t)}, and velocities, {7;(¢)}, at time ¢. It is
typically assumed (e.g., in the context of simulations of
granular materials [10,32,33]) that the particles are quite
rigid, so that the interaction between two particles (in
the frictionless case) depends only on their respective dis-
tance, or, more conveniently, on their imaginary overlap
&j (t) = Rl—f—RJ - |7_"Z] (t)|, where ’F;'j (t) = T_';(t) - TT}(t) The
contact interactions are usually modeled by treating the
particles as macroscopic objects, described by the equa-
tions of continuum mechanics (see e.g., [34,35]). For two
frictionless elastic spheres, a classical result by Hertz (see
e.g., [36]) is that the force is proportional to £3/2, while
for cylinders, it is linear in the overlap. For noncohesive
particles, only repulsive forces are possible. Even for fric-
tionless particles, internal dissipation as in e.g., viscoelas-
tic particles, gives rise to a dependence of the force on
the relative velocity f as well (for some examples of force
schemes commonly used in simulations, see e.g., [37-39]).
The interparticle forces for a given configuration of
such particles subject to given boundary conditions (e.g.,
specified displacements of the particles on the boundary,



or forces applied to them) and body forces such as gravity
can be determined, for a static system, using the equations
of equilibrium (Newton’s laws) and the force-displacement
relation. We reiterate that when full force laws for par-
ticle interactions are known or modeled, the statics and
dynamics of the system are fully determined (they may
be history-dependent for history-dependent force laws, as
commonly used for frictional interactions).

In the case of frictionless isostatic systems (in which
the mean coordination number is exactly z = 2d, where d
is the dimension of the system) the forces can be deter-
mined from the equations of equilibrium alone (and are
therefore independent of the force-displacement law; how-
ever, the particle displacements certainly depend on this
law). It has been suggested [40,41] that frictionless gran-
ular systems become isostatic in the limit of infinite rigid-
ity (giving rise to a macroscopic behavior which is very
different from elasticity), and this appears to be borne
out by numerical simulations [31,42]. However, the rele-
vance of this limit to real materials is questionable, since
real materials cannot be infinitely rigid. Any additional
contacts created if the rigidity is allowed to be finite will
render the system hyperstatic (so that there is a “phase
transition” to an isostatic behavior only at infinite rigid-
ity [40]). The rigidity should of course be compared to the
confining forces or body forces (in a system under grav-
ity and confined by walls, the confining force is related to
gravity). If the confining forces are very small, the system
would indeed be expected to be close to marginal stabil-
ity. As mentioned above, the static indeterminacy asso-
ciated with hyperstatic systems simply means that the
equations of equilibrium are insufficient for determining
the forces, so that additional equations (e.g., force-dis-
placement laws) are required. Static indeterminacy does
not mean that there’s no unique solution for the forces
in a real system. A similar situation occurs on the mac-
roscopic, continuum level (see e.g., [8]). The rigid limit
can be approached in many different ways (e.g., the stiff-
ness of each interparticle contact may be different), and,
even if assuming that the same (isostatic) contact network
is obtained for different distributions of the interparticle
stiffness, yielding the same interparticle forces, the par-
ticle displacements will certainly be different, hence the
rigid limit in not unique, at least in this sense.

In several experiments, photoelastic particles were
used in order to measure the stress in granular systems [9,
19,22,23,43]. These measurements probe the intraparticle
stress, i.e., the stress inside each particle. Following the
above, these should be interpreted as measurements of
microscopic fields (the macroscopic description of gran-
ular systems regards the particles as microscopic, and
does not resolve any details below the particle scale). The
microscopic fields corresponding to these measurements
are the interparticle forces, which can be deduced from
these internal stress measurements (as described in [23]).
As mentioned, these forces should be distinguished from
the “macroscopic” stress field in the system.

The distribution of force magnitudes in a static gran-
ular packings is a microscopic quantity which has been
extensively studied in experiments [44,45] and simula-
tions [46]. An exponential behavior of the distribution
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at large forces appears to be quite universal in exper-
iments on granular systems, independent of the degree
of disorder [45], the friction coefficient [45], or the rigid-
ity of the particles [47], and has also been observed in
simulations of granular systems with different models for
the interparticle forces (e.g., [48,49]). The universality of
the force distribution appears to extend to other systems
such as foams, glasses, colloids etc. (see [50] and refer-
ences therein). The exponential tail of the distribution is
reproduced in simple models such as the (parabolic) g-
model [51,52]. The distribution for smaller forces appears
to be less universal, and it has been suggested that the
appearance of a peak in the force distribution near the
mean force may signal the onset of jamming or a glass
transition [53].

Interestingly, a qualitatively similar force distribution
is obtained in purely harmonic networks: Fig. 1 shows the
force distribution obtained for an ensemble of random net-
works of linear springs constructed as follows. Points are
placed on a 2D triangular lattice with spacing d (with
square-shaped boundaries), and then their  and y coor-
dinates are randomly displaced by +0.04d. Points whose
distance is less than 1.02d are connected by linear springs
(whose equilibrium length is equal to this distance) with
equal spring constants (this results in an average dilu-
tion of about 12% of the springs compared to the perfect
lattice). A uniform isotropic compression of 1% is applied
to the boundary particles, and the interparticle forces are
calculated. The force distribution presented in Fig. 1 is
obtained from an average over the force histograms of 100
systems of 1085 particles. The force was normalized by
the mean force in the ensemble (a similar distribution is
obtained for a normalization by the mean force for each
system; the variation in mean force among different sys-
tems is relatively small, which may indicate that the sys-
tem is far from ‘jamming’ [53]). The tail of the logarithm of
the distribution is fit quite well with a line of slope —3.8,
similar to the slope obtained in experiments on highly
compressed disordered packings of soft rubber spheres [47]
(similar distributions were obtained for a scalar harmonic
network of unequal springs in [48]). For the case of net-
works with no force dilution (the same connectivity as
in the perfect lattice), the force distribution is Gaussian
with a half-width of a few percent of the mean, i.e., a
much narrower distribution. These results indicate that a
random connectivity should be consequential for the force
distribution, which may be the reason that even for highly
compressed disordered spheres (whose contact network is
still disordered), the distribution is qualitatively similar
to that observed in less compressed systems [47]. A sim-
ilar effect has been observed in simulations of granular
systems under different applied pressures [48].

The forces in one of the realizations of the ensemble
are shown in Fig. 2. Force chains are clearly observed (note
that there are very few tensile forces, so that they do
not significantly affect the force distribution in this case).
Similar force chains have been observed in a polydisperse
Lennard-Jones system [28] (incidentally, the concept of a
force chain is not well-defined: in the case of a homoge-
neous strain applied to a near-uniform lattice, the forces
are nearly equal, so that it is reasonable to define the force
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Fig. 1. The distribution of force magnitudes in bond-diluted
distorted triangular networks of linear springs (see text)

chains to contain forces whose magnitude is larger than
a uniform cutoff, e.g., the mean force, as used in Fig. 2;
However, for a non-uniformly strained system, e.g., sys-
tems subject to gravity, in which the mean force increases
with depth, such a global cutoff makes little sense). The
results shown in Fig. 2 indicate that force chains are not
specific to granular systems. Force chains are microscopic
features of microscopically disordered systems (or even
inhomogeneously strained ordered systems, as described
below), and their presence does not necessarily indicate
any macroscopic inhomogeneity, or inconsistency with a
macroscopic elliptic, or elastic, description. It is quite cer-
tain that if one could observe the individual interparticle
forces in atomic systems (which may not be quite well
defined, since a quantum description is appropriate for
such systems), one would also observe force chains.

It is important to note that a significant portion of
the stress (even in a homogeneously strained system) is
carried by forces which do not belong to the force chains.
An example is provided by a system of frictionless polydis-
perse disks (with radii uniformly distributed within 10% of
the maximum radius) which is confined by side walls and
a floor, with a uniform force applied to the particles of the
“top” layer (without gravity). The interparticle forces are
taken to be linear in the overlaps. Fig. 3 shows the forces
in the system. Fig. 4 shows the fraction of the applied ver-
tical force carried by the forces whose magnitude is greater
than the mean (i.e., those belonging to force chains, using
the definition mentioned above), compared to that carried
by all the forces (which is of course equal to 1), for forces in
horizontal “slices” of the system, as a function of the verti-
cal coordinate, z. As seen in Fig. 4, only about 80% of the
applied force is carried by the force chains. Furthermore,
the force carried by the chains fluctuates with depth, so
that the forces in the chains do not obey the conditions
of force equilibrium. It is therefore questionable whether
a model which describes the stress exclusively in terms of
the force chains is justifiable.

. n -y, %
w

Fig. 2. The forces in a bond-diluted distorted triangular net-
work of linear springs. Forces with magnitude larger than the
mean are indicated by solid lines whose width is proportional
to the force magnitude; smaller forces are indicated by thin
dotted lines. Compressive forces are indicated by gray lines;
tensile forces by black lines

’ AT
&'A" Ya

A ‘ w .i' AYAY. 'A

The (near-)universality of the force distribution, in
particular the fact that it is observed in simulations of ran-
dom systems with harmonic interactions, does not make
possible the differentiation between different models on
the basis of the force distribution (in particular, the obser-
vation of such a distribution does not preclude an elliptic
description). The same statement applies to the obser-
vation of force chains. A more sensitive and direct test
should be rendered by the response of a granular system
to inhomogeneous external forcing, such as that provided
by localized forces. The latter seems to be consistent with
elasticity, as described below.

3
Macroscopic fields and continuum equations
in terms of microscopic quantities

Continuum descriptions of materials are often based on
phenomenological arguments (usually motivated by exper-
imental findings), rather than on derivations from the
underlying microscopic dynamics. A unique feature of
granular materials is that due to the typically large sizes of
the constituents, it is relatively easy to access the “micro-
scopic” scales experimentally. On the other hand, in most
practical applications, the number of particles is such that
a detailed particle-level description becomes intractable,
and a continuum description is required. The fact that
experiments on granular systems can yield both micro-
scopic information and macroscopic information (possibly
even in the same experiment) is useful to the elucidation
of the connection between these two descriptions.
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Fig. 3. The forces in a system of polydisperse frictionless
disks with a uniform force applied to the top layer (no grav-
ity). Line widths are proportional to the force magnitudes.
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Fig. 4. The fraction of the applied vertical force carried by all
the forces and by the forces whose magnitude is larger than the
mean (i.e., those belonging to force chains), as a function of the
vertical coordinate, z, scaled by the mean particle diameter, d,
for the system shown in Fig. 3

In order to obtain a macroscopic description of a sys-
tem in terms of the microscopic fields, we employ a spa-
tial coarse-graining approach [27,54]. We stress that the
only averaging considered here is spatial (the approach
can be extended to include temporal coarse-graining as
well [54], but here we consider static configurations). Since
static granular packings are typically found in metastable
states, far from equilibrium, and thermal energy scales are
negligible, such systems do not explore any phase space
so that it is hard to justify the kind of ensemble aver-
age commonly used in statistical mechanics. An average
over configurations (i.e., average over different disordered
systems which are presumed to be prepared in the same
way) is commonly performed when analyzing experimen-
tal data, due to the large fluctuations obtained in many
experiments. However it is not a-priori clear if self-aver-
aging occurs, i.e., that at least for large enough scales the
macroscopic behavior of a single “typical” realization is
the same as that of the average behavior over many real-
izations. Self-averaging may be valid for some quantities
and not for others. Therefore we choose not to assume
a-priory that any ensemble averaging is justified; instead
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Left: all forces, right: only the forces whose magnitude is larger
than the mean

we relate the macroscopic and microscopic fields in a way
that is relevant for single realizations.

Following [54], define the coarse-grained (CG) mass
density p(7,t) and momentum density p(7,¢) at position
7 and time t as

p(7,t) = me[F— 7i(t)], (1)

P ) = (2)

Z mv; () o[ — 75(t)],

where ¢(R) is a non-negative coarse-graining function
(with a single maximum at B = 0) of width w, the coarse-
graining scale, and [ ¢(R)dR = 1.

Upon taking the time derivative of the macroscopic
fields p and p, performing straightforward algebraic
manipulations [54] and using Newton’s laws, one obtains
the equation of continuity and the momentum conserva-
tion equation, respectively:

—div(pV) (3)

p:
. 0
Pa = *Zﬁ: 87713 ALCE Uaﬁ] )

where the velocity field is defined by V= P/ p, Greek indi-
ces denote Cartesian coordinates, and the explicit depen-
dence of the CG fields on 7 and ¢ has been omitted for
compactness. Since this paper focuses on the stress field,
we have omitted the energy equation, which can be derived
in a similar way [27].

In addition to obtaining the standard equations of con-
tinuum mechanics from microscopic consideration, this
coarse graining procedure provides an expression for the
stress tensor o, in terms of the microscopic entities:

Gapll) = = 30 mi vl (F1) (R OSF-T0) ()

1 B P ,
5 3 Foal®a(t) [ dsolr - (o) + 575 (o),
ig3i] 0

where V(7 t) = 0;(t) — U(7, t) is the fluctuating velocity,
fij(t) is the force exerted on particle ¢ by particle j, and

7ij () = 75(t) = 75(t).
The first term in Eq. (4) is the kinetic stress (which
vanishes for static configurations), and the second term is
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known as the contact stress. Note that the standard Born-
Huang expression [55]: 043 = f% ZijEV;i;éj fijaTijp is
equivalent to the expression for the contact stress in
Eq. (4) if the coarse-graining function is taken constant
inside a volume V and zero outside it, provided that the
interparticle separation is much smaller than the coarse-
graining length scale (typically V/V).

The above expressions can be used to calculate the
macroscopic fields from the microscopic ones (obtained
e.g., from simulations or experiments), and compare them
to the predictions of macroscopic models or direct exper-
imental results. In order to close the set of continuum
equations [Egs. (3)] the stress and energy flux (the lat-
ter is not related to the considerations below) need to
be expressed as functionals of the pertinent macroscopic
fields. As mentioned, such constitutive relations are often
obtained empirically or conjectured. In some cases they
are derived from the microscopic dynamics. The above
exact expression for the stress field provides a framework
for a systematic derivation of constitutive relations (as
suggested for elastic networks in [27]).

Here, we are concerned with the interpretation of exper-
imental data in terms of microscopic variables and mac-
roscopic fields. The fact that the contact stress includes a
sum over all contacts for each particle (i.e., even for very
small CG scales the stress components correspond to spe-
cific “averages” over the forces on each particle) already sug-
gests that a “picture” of the forces in the packing does not
correspond directly to the macroscopic stress field (they are
certainly related, i.e., one would usually expect large stress
components in regions where large force magnitudes are
observed). In particular, as shown in Sec. 2, and further dis-
cussed below, force chains do not necessarily indicate mac-
roscopic anisotropy or inhomogeneity.

4
Numerical results for model frictionless systems

Consider a two-dimensional system of uniform disks
(arranged on a triangular lattice) subject to a vertical
external force at the center of the top layer [26]. Experi-
ments on such systems are described in [22,23]. Consider
first the case of nearest neighbor harmonic interactions,
i.e., the disks are coupled by equal linear springs (whose
rest length is the diameter of a disk). Clearly, real cohe-
sionless particles do not experience any significant attrac-
tive interactions; however, there are a few insights to be
obtained from the study of this system. Fig. 5 presents
the forces in the system. Force chains are evident.

A contour plot of the “vertical stress component” o,
[computed using Eq. (4)] for the same system is shown in
Fig. 6 (with ¢(r) = #e*“r'/w)g, and w = d, the particle
diameter, i.e., a fine resolution). The force chains are not
evident any more. The model described above corresponds,
in the continuum (long-wavelength) limit, to an isotropic
2D elastic medium [56]. The observed force chains, which
break isotropy, can be attributed to the fact that the local
environment of a particle in contact with a finite number
of other particles cannot be isotropic. Under homogeneous
macroscopic deformation, all forces would be equal in a lat-
tice configuration. However, the concentrated applied force

AANAAAANANAAANANAAANARNAAANNAI

Fig. 5. Force chains in a 2D triangular lattice. A vertical force
is applied at the center of the top layer. Line widths are pro-
portional to the force magnitudes. Only the central part of the
system is shown; reproduced from [26]

Fig. 6. Contour plot of ho ., corresponding to Fig. 5 (h is the
slab height); reproduced from [26]

yields an inhomogeneous deformation, which leads to the
local anisotropy being reflected in the distribution of the
forces. The elastic continuum description of the stress (to
linear order in the strain) is isotropic, and cannot be ex-
pected to reflect this microscopic anisotropy. For small sys-
tem sizes (in which the strain gradients on a particle scale
are relatively large), this anisotropy can be observed in the
stress field (a very clear example is shown in [26] for a mac-
roscopically isotropic 3D system, whose microscopic sym-
metry is cubic). These results, as well as those presented in
Sec. 1 for disordered elastic systems, show that force chains
do not necessarily indicate anisotropy or inhomogeneity of
the material on sufficiently large scales; more importantly
their existence does not require a non-elastic (microscopic)
interaction.

Note that only the forces between the particles and the
floor (a single such force per particle) are used in the calcu-
lation of the stress at the bottom of the packing. Hence on
the bottom (but not in the bulk of the system), the spatial
distribution of o, is equivalent (up to coarse-graining) to
that of the microscopic forces. For sufficiently large sys-
tems, the distribution of forces on the bottom corresponds
closely to the stress calculated using linear elasticity [26],
even “almost without coarse-graining”, i.e., for a micro-
scopic CG scale.
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Fig. 7. Force chains in a 2D triangular lattice of ‘one-sided’
springs. A gravitational force has been applied in order to sta-
bilize the system (the applied force is 150 times the particle
weight); reproduced from [26]

A more realistic force model consists of ‘one-sided’
springs, i.e., springs that snap when in tension. Fig. 7
presents the forces obtained for the same system presented
in Fig. 5, but with ‘one-sided’ springs. Compared to the
system of regular springs, the application of the concen-
trated force at the top of the packing leads to rearrange-
ments in the contact network: some horizontal springs in
the region under the point where the force is applied are
disconnected (as also observed in [57] for a pile geometry)
but the force chains in both systems are qualitatively sim-
ilar. The force distribution vs. the horizontal coordinate
at different depths is in good agreement [26] with experi-
ment [22,23]. For slightly disordered systems [26], the force
chains are qualitatively similar, though somewhat shorter.

The corresponding vertical stress field o, is shown in
Fig. 8. The stress field in this case is clearly quite different
from that obtained using ‘two-sided’, harmonic springs:
the response for ‘one-sided’ springs is double-peaked. This
is obviously related to the disconnected springs below the
point of application of the external force. In [26], it has
been shown that a model with harmonic springs in which
the spring constant for the horizontal springs, K7, is differ-
ent from that of the oblique springs, K», corresponds (in
the continuum limit) to an anisotropic elastic system. For
sufficiently large K5/K;, the response of such an elas-
tic system has two peaks [26] (see also [18] for a more
detailed analysis of the case of an infinite half-plane; the
results presented in [26] are for a finite slab on a rigid
floor). The absence of horizontal springs corresponds to
the limit K3/K; — oo, the extreme anisotropic limit,
which corresponds to an isostatic system. Note that the
stress field, but not the displacement, depends only on
K5/K;. In the case considered here, K1 = 0 and K3 is
finite; for Ko — oo, the rigid limit, the displacement is
zero. The double peaked stress distributions are similar
to those obtained from hyperbolic models. It follows that
hyperbolic-like behavior can be obtained using an aniso-
tropic (yet, still elliptic) elastic model (which becomes for-
mally ‘hyperbolic’ in the limit of very large anisotropy; see
also [58,18]).

The ‘stress-induced anisotropy’ [26] observed in the
case of ‘one-sided’ springs can be thought of as a non-
linear extension of the linear elastic continuum behavior

Fig. 8. Same as Fig. 6, for the case of ‘one-sided’ springs (for
which the forces are shown in Fig. 7); reproduced from [26]

obtained in a network of harmonic springs. While the (pos-
sibly position-dependent) elastic moduli in linear elastic-
ity are time-independent material properties, a possible
extension would be to introduce a stress history depen-
dence of the elastic moduli (i.e., the anisotropy induced
by the breaking of contacts in certain regions may be con-
sidered a result of a tensile stress in those regions). A simi-
lar type of stress-induced anisotropy has been suggested in
the context of plastic models for soil mechanics [59]. If the
particle positions do not change significantly, so that only
the contact network is modified in response to the applied
stress, the behavior can possibly modeled as ‘incremen-
tally elastic’. Under certain conditions (corresponding to
plastic yield), the system would no longer be able to sup-
port the applied stress without a major rearrangement
of the particles. Incipient plastic yield may possibly be
related to a local extreme anisotropy typical of a margin-
ally stable isostatic configuration.

The force chains obtained both for the harmonic case
and the ‘one-sided’ case are quite similar [26] to those
observed experimentally [22,23], as an average over differ-
ent realizations. This averaging is required due to experi-
mental variations: although the particles are arranged on
a lattice, there is still some disorder present due to some
variability in particle diameter, and possibly also in the
contact properties [60]. Indeed, while perfect atomic lat-
tices may be obtained at low enough temperatures, since
all atoms of the same isotope are exactly identical, mac-
roscopic particles are never truly identical, so that perfect
periodicity can never be obtained. It also appears that the
force chains obtained using the two models are quite simi-
lar (similar chains are also obtained in slightly disordered
systems [26]). The stress field appears to be more sensitive
to the anisotropy induced by the applied force.

In the experiments reported in [20,21,24], the forces
on the floor were measured. In [20,21], the width of the
pressure probe (which would correspond to the CG scale
of the measured stress) was 10 — 30 particle diameters.
The bottom stress profiles measured are quite consistent
with continuum elasticity (note that the depths of the
systems studied were 20 — 300 particle diameters). Exper-
imental deviations from the predictions of isotropic elas-
ticity [21] can be reproduced by anisotropic elasticity [26].
Narrower or wider peaks than those obtained for isotro-
pic systems can be obtained for small anisotropy, while
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for very large anisotropy, two peaks are expected (see
also [18]). An additional possible cause for deviations from
the isotropic elastic calculations presented in [21] is finite
rigidity of the floor [56]. The more shallow systems used in
the experiments may even be small enough for the finite
size effects [26] to be significant. Any anisotropy in these
experiments is obviously much weaker than the strong
anisotropy observed in the model ordered system of ‘one-
sided’ springs. Several effects may explain this: first, the
systems used in the experiment are highly disordered, so
that inhomogeneous, random anisotropy may be expected
on intermediate (already macroscopic) scales, presumably
averaging out to an isotropic, or nearly isotropic, behav-
ior at sufficiently large scales. In this case, the large-scale
effect of contacts breaking due to applied forces would
be significantly less pronounced than in the ordered sys-
tem described above. A second possibility is the effect of
frictional forces, which may prevent contacts from break-
ing, or reduce the anisotropy of the response. Third, the
model systems discussed above were unstressed before the
application of the force, while the experimental ones are
pre-stressed by gravity, which may compress some of the
contacts such that the tension due to the applied force is
insufficient to break them.

In [24], individual forces on the floor were measured,
and the results were averaged over realizations (which, as
mentioned, is not necessarily equivalent to spatial coarse-
graining). The regular packings used in [24] (FCC and
HCP) are macroscopically anisotropic. The fact that some
of the horizontal contacts (contacts among particles in the
same layer) may be absent increases the anisotropy fur-
ther (possibly in an inhomogeneous way; as mentioned
above, a granular packing cannot be perfectly periodic).
The extreme limit in which there are no such horizontal
contacts corresponds to an isostatic system. Such anisot-
ropy (possibly further enhanced by the applied force) may
explain the discrete peaks observed for relatively shal-
low systems composed of 9 layers of particles (and the
fact that they appear to be consistent with a picture
of “force propagation” appropriate for isostatic systems).
However, for deeper system (about 20 particle diameters),
there appears to be a crossover to a smoother behav-
ior, which should correspond to the crossover to the con-
tinuum limit (note that the depth of the systems used
in [24] was smaller than the depth required in our cal-
culations on 3D systems [26] for reaching the continuum
limit, so deeper systems may still show dependence on the
depth).

5
Effects of friction

As shown, some features of granular response may be
reproduced using models employing frictionless and even
harmonically interacting particles. However, it is clear
that friction is consequential for granular materials.

For frictional spheres, the microscopic description, as
described in Sec. 2, must be extended to include (at least)
the orientations of the particles, and interparticle torques
in addition to the forces. The description of static and
kinetic friction requires the use of more complicated force
models, which depend on the particle orientations and

their relative tangential velocities, and possibly on the his-
tory of contact deformation (see e.g., [37-39,61]).

In experiments performed on regular 2D packings of
photoelastic disks [23], the directions and “strengths” of
the force chains observed upon application of a localized
force to the top of the packing appear to depend quite
strongly on the angle of the applied force with respect to
the horizontal (in the following, all angles are given with
respect to the horizontal). A particularly intriguing effect
is that for some angles, force chains appear not only in
the lattice directions (0,460°, £120°,180° for a triangu-
lar lattice), but also, apparently, in new directions which
can be identified as +£30° (in fact, in individual realiza-
tions, rather than their average as reported in [23], it
appears that force chains appear also at +90°, i.e., the ver-
tical direction [60]). These directions correspond to next-
nearest neighbor directions in the triangular lattice. Since
interactions among the particles only exist for particles
in contact, there is no direct next-nearest neighbor inter-
action. The fact that the forces themselves, and not just
the contact points, appear to be aligned with these +30°
directions, suggests that frictional forces among the par-
ticles (tangential to the contact normals, which result in
interparticle torques) are necessary for obtaining forces
(and chains) at angles different from the lattice direc-
tions. For an applied force at £90°, it appears that the
frictional forces are small enough such that the results ob-
tained in this case [22,23] are described quite well by a
model of frictionless particles with linear force-displace-
ment laws [26].

In order to elucidate the role of frictional forces and
torques in the quasi-static response of granular materials
in general, and in particular in order to gain an under-
standing of the experimental results mentioned above [23],
we performed discrete element simulations with normal
and tangential linear spring-dashpot forces among the par-
ticles (see e.g., [10,32]), possibly the simplest model for
frictional disks. The simulation parameters were chosen
to correspond to those of the experimental system [60].
Experimentally, the force-displacement law for the photo-
elastic disks was found to be fit quite well by f oc £3/2 [60],
as predicted by the standard Hertz theory for elastic ellip-
soids in contact (see e.g. [36]), rather than the linear rela-
tion (with logarithmic correction) expected for cylinders
in contact [62], which appears to imply that the contact
region between the “disks” is elliptic rather than rectan-
gular. The simulation model described above employs a
linear force-displacement law, so that an effective mean
spring constant was estimated on the basis of the range
of forces used in the experiments. The tangential spring
constant was taken to be one-half the normal spring con-
stant (a rough estimate consistent with the Hertz-Mindlin
model [63] for oblique contact forces). The normal and
tangential spring constants used are k,, = 3000mg/R and
ki = 1500mg/R, where R and m are the mean particle
radius and mass, respectively, and g is the gravitational
acceleration. The friction coefficient used is p = 0.94 for
particle-particle contacts and "' = 0.35 for particle-
wall contacts. The systems studied here are composed of
polydisperse disks, with radii distributed uniformly in the
interval [R — 6R, R], where R/R = 8-1073 (i.e., a small
polydispersity).
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45°

Fig. 9. Force chains in 2D packings of slightly polydisperse
frictional particles. A force F' with magnitude 150 times the
mean particle weight is applied to the particle at the center of
the top layer. The angle of the force with respect to the hori-

The system is first relaxed to a static state under grav-
ity (until the total kinetic energy per particle is less than

10*977191%), and then relaxed again with an external force
applied at the center of the top layer (in some cases the
force was increased linearly with time from zero to prevent
the “buckling” of the top layer which leads to major rear-
rangements; these are beyond the nearly elastic behavior
considered here).

For comparison with the experiments presented in [23],
an external force of magnitude F' = 150mg was applied to
the center top particle at angles of 15°,30°,45°,60°,75°,
and 90°. The simulated systems consisted of 29 rows of 80
particles, which is similar to the size of the systems used
in the experiments [22,23,60]. Fig. 9 presents the forces
obtained for different applied force angles. The same par-
ticle configuration was used in all cases. No significant
particle rotation occurred except for the particles adja-
cent to the one on which the force is applied. For a force at
an angle of 15°, buckling occurred in the top row, causing
major rearrangements. Such buckling was also observed in
the experiments, where it was apparently stabilized, lim-
iting the rearrangements to a small region near the point
of application of the force, but we have not been able to
prevent major rearrangements in the simulation. As men-
tioned, tangential forces such as friction give rise to inter-
particle torques. Simulations with an applied torque (in
addition to the applied force) show that this torque does
influence the observed force chains [64].

The results are quite similar, qualitatively, to those
observed in the experiment [23]. Note that the results
shown in Fig. 9 are for a single configuration, while the
results presented in [23] are for an average over configu-
rations. The results obtained in simulations for different
realizations of the disorder are qualitatively similar [64].
The agreement of the results obtained using a relatively
simple force model with the experiments is encouraging. A
more detailed study of the effects of friction on the forces
and the stress field will be presented elsewhere [64].

30°

zontal is indicated below each picture. The same realization
of the packing was used in all cases. The region shown is the
central third of the upper half of the system

6

Concluding remarks

We have shown that the seemingly inconsistent results of
different kinds of experiments studying the static response
of granular packings to a concentrated force can all be
understood within the same framework of an essentially
elastic (elliptic) picture once the distinction between forces
and stress is made and the possible consequences of small
system size, as well as anisotropy, are taken into account.
The effect of applied stresses on the contact network may
be modeled as a nonlinear, incrementally elastic model
(which may be further extended to describe yielding).

Somewhat surprisingly, many aspects of the response
of such systems can be understood using models of fric-
tionless particles. However, some effects do require the
introduction of friction, as in the example of the force
chains obtained for oblique applied forces described in
this paper. We note, however, that the model for the fric-
tion used in the simulations described in Sec. 5 consists
of tangential springs (with the additional Coulomb condi-
tion). This indicates that even for static frictional systems
(below yield) an elastic continuum model, which probably
includes rotational degrees of freedom (e.g., a Cosserat
continuum model [65]), may be appropriate.

Another important issue which requires further study
is the effect of disorder, and the relation of spatial aver-
aging to averaging over the disorder.
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