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Dynamical properties of vibrofluidized granular mixtures
D. Paolotti, C. Cattuto, U. Marini Bettolo Marconi, A. Puglisi

Abstract Motivated by recent experiments we have car-
ried out an Event Driven computer simulation of a diluted
binary mixture of granular particles vertically vibrated in
the presence of gravity. The simulations not only confirm
that the kinetic energies of the two species are not equally
distributed, as predicted by various theoretical models,
but also seem to reproduce rather well the density and
temperature profiles measured experimentally. Rotational
degrees of freedom do not seem to play any important
qualitative role. Instead, simulation shows the onset of a
clustering instability along the horizontal direction.

Keywords Granular, Gravity, Mixture, Simulation,
Equipartition

1
Introduction
The present keen interest in the dynamical properties of
granular materials is motivated both by the challenge of
understanding the complex processes involved and by the
important practical applications in engineering, industry
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and technology [1]. These materials are peculiar in many
respects and display several intriguing phenomena such
as clustering [2], shear instability [3,4] and lack of energy
equipartition, which make their behavior different from
ordinary molecular fluids. The dissipation of kinetic en-
ergy during the inelastic collisions makes them special.
The main motivation of the present paper stems from two
recent experiments [5,6] which demonstrated that when a
mixture constituted by two different species of grains is
vibrated, each component attains its own “granular tem-
perature”, i.e. the average kinetic energy per particle does
not take on the universal value fKT , where f is the num-
ber of degrees of freedom and K a constant, as it occurs in
molecular gases. On the contrary, one observes that the
ratio T1/T2 varies with the number fraction x = N1/N
(where Ni is the number of grains of the i-th species and
N = N1 + N2 is the total number), inelasticity parame-
ters, particle sizes, masses and driving mechanism. Even
in the absence of energy injection, the inelastic gas cools,
but one observes that the temperature ratio asymptoti-
cally remains constant. On the other hand, it has been
demonstrated that while the only relevant hydrodynamic
field is the global temperature T = xT1 + (1 − x)T2 (be-
cause the partial temperatures T1 and T2 can be derived
directly from T ), transport properties depend on that
ratio [7].

These are of course manifestations of the on-equi-
librium nature of Granular systems, which can only be
maintained stationary by a continuous energy feeding to
compensate the energy losses due to the inelastic collisions
and to friction.

A theoretical understanding of such a behavior of gran-
ular mixtures has been achieved in the case of homoge-
neous driving mechanisms by means of a combination of
models and approximations including the pseudo-Maxwell
inelastic gas and the Inelastic Hard Sphere model treated
by means of the Boltzmann-Enskog equation. Both mod-
els have been studied analytically and numerically in the
free cooling [8,9] and in the driven case [10–13]. Apart
from the studies of ref [12,13] none of these investi-
gations considered the role played by the gravitational
field, by the strongly inhomogeneous boundary conditions
employed in the experiments of refs. [5,6], by the rough-
ness of the grains and by their rotational degrees of free-
dom. Moreover, there is still an open debate about the
“best” energy feeding mechanism. Whereas theoreticians
seem to favor a uniform thermal Gaussian bath, because it
lends itself to a great deal of analytical work, a numerical
computer experiment can test directly driving mechanisms
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which are closer to those employed in a laboratory. The
structure of the paper is the following: in section II we
illustrate briefly the model, leaving the technical details
to the appendix; in section III we discuss the results for
the geometry of ref. [5]. In sec. IV we consider a different
aspect ratio, namely a taller box, where gravity plays a
more relevant role. Finally in sec. V we present our con-
clusions.

2
Model system
We decided to remain as close as possible to a commonly
employed experimental set-up, by constraining the grains
to move on a vertical rectangular domain of dimensions
Lx × Lz. The gravitational force acts along the negative
z direction. The grains are assumed to be spherical and
free to rotate about an axis normal to the xy plane. They
receive energy by colliding with the horizontal walls, har-
monically vibrating at frequency ν. The side walls instead
are immobile and were chosen either smooth or rough
according to the numerical experiment. When side walls
are considered to be rough, they are assumed to have the
same friction coefficient µ as the particles. The normal
restitution coefficient with the walls is 1.

The collisional model adopted in the present paper cor-
responds to the one proposed by Walton [14]. It conserves
both the linear and the angular momentum of a colliding
pair, but allows energy to be dissipated by means of a
normal restitution coefficient and a friction coefficient µ.
The collision rule (given in detail in the appendix) takes
into account a reduction of normal relative velocity of the
two particles (Vn), a reduction of total tangential relative
velocity (Vr) and an exchange of energy between those
two degrees of freedom. The reduction of normal relative
velocity is modeled by means of a non constant restitution
coefficients αij ∈ [0, 1], whose dependence by the relative
velocity is of the form:

αij(Vn) =

{
1 − (1 − rij)

(
|Vn|
v0

) 3
4

for Vn < v0

rij for Vn > v0

where i and j are the numbers indicating the species of the
colliding particles, rij are constants related to the three
types of colliding pairs, v0 ≈ √

gd, where d is the average
diameter of the particles and g the gravitational accelera-
tion [15].

Simulated collisions are of two types: with sliding or
sticking point of contact. When the following condition is
satisfied (high relative tangential velocity), the collision
happens in a sliding fashion, otherwise it is sticking:
|Vr|
Vn

≥ l + 1
l

µ(1 + αij) (1)

where l is the dimensionless moment of inertia (equal to
1/2 for disks), while µ is a static friction coefficient charac-
terizing the surface roughness of particles, assumed equal
to the dynamical friction coefficient. The full dynamics
consists of inter-particle collisions, and wall-particle colli-
sions. The trajectories between collision events are para-
bolic arcs due to the presence of the gravitational field.

An efficient Event Driven (ED) simulation code was
employed to evolve the system [16].

The two species were chosen to be spheres of equal
diameters d = 0.16cm, and unequal masses m1 = 1.58 ·
10−2g and m2 = 5.21·10−3g, respectively. The driving fre-
quency was set to 50 Hz, the vibration amplitude A = 3.5
diameters so that the corresponding dimensionless accel-
eration � = Aω2/g = 56. These parameters correspond to
the experimental conditions of Feitosa and Menon [5].

All the averages quantities reported in the following
have been obtained by employing equally spaced data
points separated by time intervals �t = 10−1 s in order to
assure statistical independence of measures. We performed
a number n = 1.5 · 105 of vibration cycles.

Barrat and Trizac [13] have recently considered one of
the systems studied in the present paper. However, our
treatment presents some differences:

• The bottom and top walls of [13] move in a sawtooth
manner with a negligible excursion so that their posi-
tions are considered fixed, while our walls move sinusoi-
dally with a non-negligible amplitude.

• The walls are not smooth in our treatment, but have a
friction coefficient µ > 0.

• The collisional models of our treatment and that of
Barrat-Trizac are different (they do not distinguish be-
tween sticking and sliding collisions).

• We take into account gravity.

3
Results for a short system
The box dimensions were Lx = 48 d and Lz = 32 d. Simu-
lation runs were carried out using N1 = 150 grains of each
species. The static friction coefficient has been always cho-
sen as µ = 0.1. The stationary state is determined by the
balance between the energy input provided by the vibrat-
ing walls at a frequency of 50 Hz and the dissipation due
to inelastic collisions. The typical collision frequencies are
of the order of ν1 ∼ 580 Hz and ν2 ∼ 850 Hz for the heavy

Fig. 1. Typical snapshot of the system described in section
III. Open circles indicate particles of species 1, black circles
particles of species 2
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and light balls, respectively. A typical microscopic config-
uration of the system is shown in Fig. 1, where one sees
that the container is more crowded near the center.

3.1
Temperature profiles
A first check of the model is represented by the analy-
sis of the partial temperature profiles, two experimentally
measured quantities.

The restitution coefficients were first set to r11 = 0.93
for 1-1 collisions, r22 = 0.7 for 2-2, and r12 = 0.8 for
1-2 collisions. This means that the more massive parti-
cles are also the more elastic ones. In Fig. 2 we show the
partial translational temperature profiles for the two spe-
cies, and observe that close to the vertical boundaries the
two temperatures are essentially determined by the energy
injected by the vibrating walls. Indeed, inter-particle col-
lisions are rare within this region, and play no significant
role because of the low local density (see Fig. 5). In addi-
tion, grains 1 and 2 impinging with the same speed on
the mobile wall bounce with the same velocity (V ∝ Aω),
hence the local value of the temperature ratio, γ = T2/T1
near the vibrating walls, turns out to be approximately
γ ∼ m1/m2, as shown in Fig. 2.

On the other hand, the temperature drops as the dis-
tance from the walls increases, while the ratio γ grows
up to a plateau value, indicating that collisions tend to
cool the mixture and render the two partial tempera-
tures closer. Figure 2 clearly displays the breakdown of
the kinetic energy equipartition already noticed in pre-
vious experimental and theoretical studies. The tempera-
ture ratio and the shape of temperature profiles agree with
the ones measured by Feitosa and Menon [5], in particular
the comparison between the top frame of our Fig. 2 and
Fig. 3 of [5] is striking.

Fig. 2. Top panel: Translational temperature profiles for
species 1 (circles) and species 2 (squares) for a mass ratio
m1/m2 = 3.03, expressed in µJ (left scale), and temperature
ratio (diamonds) T2/T1 (right scale). The vertical position is
measured in particle diameters (d) relative to the geometric
center of the cell. Bottom panel: rotational temperature pro-
files for species 1 (circles) and species 2 (squares) and temper-
ature ratio T2/T1 (diamonds)

We also measured the rotational temperature profiles,
shown in Fig. 2. We observe for rotational temperatures
the same kind of equipartition breakdown that holds for
translational degrees of freedom. Moreover, the absolute
values of rotational and translational temperatures are
quite different, as already reported by Luding [18] for a
one-component, vibrated granulate. On the other hand,
the ratio of the two rotational temperature profiles seems
to be quite close to that of the translational temperature
profiles.

For the sake of comparison we drew the ratio predicted
by the theory of Barrat and Trizac [11] (formula (14) of
their paper, called “bulk prediction” in the labels of our
graphics) obtained by neglecting the rotations and assum-
ing an homogeneous heating. The value predicted by the
theory results independent of the driving intensity and is
in very good agreement with the outcomes of the numeri-
cal simulations in the central (“bulk”, i.e. far from the top
and bottom boundaries) region.

We also modified the normal restitution coefficient be-
tween the horizontal walls and the heavy species (setting
its value to 0.4) and studied how the temperature ratio
was affected. This was done to modify the ratio T2/T1
near the walls. We discovered that the temperature ratio
in the central region did not change significantly.

Interestingly Fig. 3 shows that, as the driving param-
eter � increases (increasing the frequency of the vibration
ω), the plateau of the temperature ratio saturates around
a value (about 0.63, in agreement with the value predicted
in [11]). However, for smaller values of �, gravity becomes
more relevant so that the spatial arrangement of the par-
ticles changes from that of a uniform gas to a more clus-
terized state. In fact, the plateau of T2/T1 disappears due
to the fact that the average height of the center of mass
decreases.

In Fig. 4, we changed the restitution coefficients and
set r11 = 0.7, r22 = 0.93 for 2-2, and r12 = 0.81. There-
fore now the more massive particles are the more inelastic.

Fig. 3. Temperature ratio T2/T1 profiles obtained for differ-
ent values of the driving parameter � (obtained changing the
vibration frequency ω). The particle properties are the same
as those of Fig. 2 and the number of each species is N = 150,
apart the upper triangles, which refer to a system containing
75 particles of each species
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Fig. 4. Same as in Fig. 2, but with different restitution coef-
ficients

Fig. 5. Area fraction profiles n1 and n2. Control parameters
are the same as in Fig. 1

We observe that, whereas the temperature profiles near
the vibrating planes are nearly unchanged, because colli-
sions are rare, the value of the temperature of the heavier
species is lower and the temperature ratio is closer to 1.
In this case the larger inelasticity of the heavier particles
competes with the mass asymmetry which instead tends
to make T2/T1 smaller. Again the comparison with the
theory of Trizac and Barrat [11] is quite good.

3.2
Area fraction profiles
A second comparison of the theory with the experimental
results is represented by the analysis of the area fraction
profiles (see Fig. 5).

Due to the large value of the parameter �, the partial
density profiles tend to be rather symmetric, with a max-
imum near the center. We also notice small differences in
the density profiles, which reveal that the heavier species
has higher concentration close to the center of the cell,
while the lighter species is more spread.

Comparing the present results for the area fraction
profiles with those recently obtained by employing a Di-
rect Simulation Monte Carlo technique [12], we notice that
the agreement is only qualitative, whereas the tempera-
ture ratios are in significantly better agreement.

We verified that removing tangential friction (coupling
the translational and rotational degrees of freedom) does
not change significantly the above scenario. In fact, the
translational temperature and density profiles of the cases
µ = 0 and µ = 0.1 show only small quantitative differ-
ences, more pronounced close to the horizontal walls.

3.3
Transversal profiles
We also studied the density and temperature profiles along
the horizontal direction. To the best of out knowledge, no
such measure has been reported in experimental works. In
spite of the fact that the number of particles employed is
not large, the stationarity of the system, allows to perform
meaningful averages.

In Figs. 6 and 7 we observe that temperature profiles
vanish close to side walls, while density profiles display
their maxima in the same region. In order to gain fur-
ther insight, we analyzed a sequence of snapshots of the
dynamics, and observed that the system bears a denser
cloud of grains in the vicinity of one of the side walls.
Such a configuration was maintained over an interval of
time much longer than the vibration period 2π/ω.

The cluster eventually “evaporates” to form again
close to a randomly selected side wall. Over several periods
of oscillation of the cell, we noticed an effective horizon-
tal symmetry breaking, i.e. the number of particles in the
right-hand and left-hand sides of the cell were rather dif-
ferent. The system is unstable with respect to horizontal
density fluctuations and clusterizes spontaneously, until
the vibrating bases wash out the cluster.

Moreover, we also observed some spontaneous ten-
dency of the system to segregate the species, a fact which

Fig. 6. Temperature profiles T1 e T2 (left scale) along the hor-
izontal direction and area fractions n1 and n2 (right scale).
Control parameters are the same as in Fig. 1
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Fig. 7. Same as in Fig. 6, but with different restitution coef-
ficients

becomes more apparent at high densities. Both phenom-
ena have their origin in the inelasticity. A possible quali-
tative explanation of the observed dynamics is as follows:
particles with smaller restitution coefficient tend to group
together, since the more energy they dissipate through
2-2 collisions, the denser the segregated domain becomes.
Particles with higher restitution coefficient bounce for a
longer time after a collision, and dilate more quickly.

3.4
Velocity probability distributions
We now illustrate how the inhomogeneity of the system
affects the distribution of the velocities P (v) in the trans-
versal direction. As shown by recent work of [22,21] the
velocity distribution function of vibrated granular gases
is strongly non universal. It depends on several factors
such as the number of monolayers, the nature of the
granular fluid and the driving mechanism. For large driv-
ings and nearly elastic particles (rij = 0.96) we observed
that the distributions are nearly Gaussian and the den-
sity is uniform. As we increase the inelasticity the distri-
bution function exhibits non Gaussian high velocity tails.
Brey and coworkers found recently that P (v) cannot be
described by a simple stretched exponential exp(−(v/v0)α)
with a single value of α over the whole velocity range. Only
the tails seem to be fitted by values of α in the interval
between 1.5 and 2. In the present case we find tail
exponents α even smaller than those found by Brey and
Montero.

Figure 8 shows the distributions functions for the
translational velocities along the horizontal direction. For
sake of comparison, all the velocities were rescaled by their
mean square values. We notice that the two transversal
velocity distribution functions deviate from a Gaussian
and are fitted by f(c) = A/(exp(βcα)+exp(−βcα)), with:
A = 1.068, β = 1.74, α = 0.918.

The exponential tails appear to have a smaller slope α
than the theoretically predicted 3/2 value, for a uniform
system stochastically driven [23]. This is consistent with
the experimental results of Blair and Kudrolli [25]: when
the number of monolayers is comparable to ours (about
5) and the system is rather inelastic, their velocity distri-
butions have tails much fatter than exp(−c3/2).

Fig. 8. Rescaled velocity distribution functions < c > P (c) =
f(c/ < c >) for translational velocities and angular velocities
of both species. Set A corresponds to parameters of Fig. 2, set B
to parameters of Fig. 3. The independent variables (v, ω) were
rescaled by their mean squared value (v0, ω0). On rescaling,
the distributions collapse nicely onto each other. The dashed
curve is the fitting law discussed in the text, the continuous
line is the Gaussian plotted as a reference for the eye

The reason for the low value of the α exponent in our
case is probably the fact that the effective restitution coef-
ficient of the mixture is lower than that employed by Brey
and Montero in their numerical investigation. This in turn
determines a partial clusterization along the transversal
direction with a consequent deviation from the gaseous
state.

Figure 8 also shows the angular velocity distributions
(rescaled by their mean square value, see caption). The
angular velocity distributions can also be described by the
same scaling function we used for translational velocity
distributions.

3.5
Collision time distribution
Recently, Blair and Kudrolli utilizing high speed digital
photography measured the collision statistics of grains
bound to move on an inclined plane [24]. They determined
the distribution of path lengths, P (l) and showed that it
deviates from the theoretical prediction for elastic hard
spheres. In particular, P (l) shows a peak in the small l
region, not present in elastic systems. In order to assess
the existence of such a behavior in the IHS model we per-
formed similar measurements. Figure 9 displays the re-
sults for the collision times of the two species. One clearly
sees that the probability density that a particle suffers a
collision in a short interval is enhanced with respect to
the elastic case. The physical reason for that lies in the
existence of strong correlations which lead to the presence
of clusters where the path lengths are shorter than in a
uniform system. For the sake of comparison we plotted
in Fig. 9 also the corresponding distribution of an elas-
tic gas having the same density and granular temperature
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Fig. 9. Probability distribution functions of the collision times
for the two components (system with r11 = 0.93, r22 = 0.7,
r12 = 0.8). For comparison we plotted the corresponding distri-
butions for an elastic system. The inset shows the same curves
in log-log scale

Fig. 10. Snapshot of the system described in IV. Open cir-
cles indicate particles of species 1, black circles particles of
species 2

of our inelastic mixture. The effect of the shorter average
collision time is clearly visible. We also notice that the
ratio of the collision frequencies is approximately equal to
the the ratio of the average velocities, as expected from
elementary kinetic arguments.

4
Effect of a larger number of monolayers
When the number of monolayers (i.e. N d/Lx) increases
one expects that the effect of gravity is more evident,
resulting in a stronger inhomogeneity and asymmetry

Fig. 11. Temperature and area fraction profiles for the sys-
tem discussed in section IV. In the inset the dissipation rate
ξ(z) is shown. In the figure we compared our result against the
hydrodynamic prediction T ∼ z3/2 (solid lines). The vertical
dotted lines correspond to the rest position of the horizontal
boundaries

of the system. We verified this scenario with a differ-
ent numerical experiment: we took into account a box of
dimensions Lx = 48 d and Lz = 64 d with 300 grains of
each species (r11 = 0.93 for 1-1 collisions, r22 = 0.7 for 2-2,
and r12 = 0.8 for 1-2 collisions, mass ratio m1/m2 = 3.03).
A configuration of such system is shown in Fig. 10. The
partial temperature profiles and density profiles are shown
in Fig. 11. Now, the density and temperatures profiles are
not symmetric with respect to the vertical direction. Most
of the particles remain suspended above the bottom wall
and are hit by those which are between the bottom wall
and the bulk. Very few particles reach the upper vibrat-
ing wall, so that the granular temperature of the system
is much lower at the top than at the bottom. One sees
that near the lower vibrating wall the temperature pro-
files are similar to those of the shorter system, whereas in
the bulk they are appreciably different. The average ratio
is lower than in the Lz = 32 d case. An interesting feature
present in Fig.11 is the presence of a region of increasing
temperatures. Such a phenomenon has been predicted by
the hydrodynamic theory of Brey et al. [3]. The theory
predicts a temperature varying as T ∼ z3/2 in the region
above the minimum. Such a prediction is verified by our
simulation results.

Physically, the increase is due to the competition
between the energy input from the walls and the small dis-
sipation due to the reduced number of collisions associated
with the low density region. This can be appreciated in the
inset of figure 11 where the quantity ξ(z) = n(z)T (z)3/2 is
shown: ξ(z) is proportional to the energy dissipation due
to inelastic collisions among particles, being the collision
rate ∝ nT 1/2 and the average dissipated energy in a single
collision ∝ T . The graph of ξ(z) reveals that the energy
dissipation is much more relevant in the bottom region
than in the middle and upper regions.

Correspondingly the velocity probability distribution
functions (pdf) show an interesting behavior (see Fig. 12).
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Fig. 12. Rescaled velocity distribution functions for the 48 ×
64 system measured at different heights: the system has been
divided into three regions of width Lx and height Ly/3 and
the distributions of the translational and rotational velocities
of the grains in the bottom and middle regions have been cal-
culated

In fact, the shape of the rescaled pdf becomes narrower
with the height. In the central region the measured pdf
resemble the exponential shape measured in the short sys-
tem (Fig. 8), whereas in the bottom region the pdf have
more extended tails. Such a lack of universality was noted
experimentally by Blair and Kudrolli [25], where veloc-
ity pdf’s very similar to the ones shown in Fig. 8 have
been obtained. The lack of universality was also noticed
in [17]: there it was shown that the tails of the pdf became
broader when the dissipation rate was increased. Here the
mechanism is similar: the broader pdf are those measured
in the bottom region, where the dissipation rate is higher.

5
Conclusions
Summarizing, we studied a systems of inelastic particles in
vertically vibrated containers and subject to the gravita-
tional field. The system was numerically investigated by
using an Event-Driven dynamics. Firstly, our numerical
simulation allows to test whether the modelization of the
granular mixture along the line proposed by Walton [14]
together with a realistic description of the moving plates is
sufficient to reproduce the experimental results. The com-
parison is important because many theoretical approaches
so far have neglected the finite displacement of the plates
or assumed a saw-tooth law.

We also examined two similar setups which differ only
for the aspect ratio of the container and for the number
of particles. In the shorter system we determined the par-
tial granular temperatures, their ratio, and the area frac-
tion profiles along the vertical direction. Those measures
are in very good qualitative agreement with the exper-
imental results in [5], while a quantitative comparison
requires a more detailed knowledge of the experimental
parameters. Physically the lack of energy equipartition is
determined by the different dissipation rates of the two

components. Moreover, the way the energy is supplied by
the walls to the two components determines together with
the inelasticity parameters the actual value of the temper-
ature ratio.

We also observed that density profiles are non-uniform
along the horizontal direction, as well, indicating that the
particles tend to clusterize in the vicinity of side walls.

Interestingly, the distributions of the translational and
rotational velocities collapse onto each other, under proper
rescaling. The scaling function displays a stretched expo-
nential behavior. In the case of larger aspect ratio we
observed that pdf referring to different heights fail to
collapse.

Finally the distribution of flight times between succes-
sive collisions has been measured and compared to that of
an elastic system: the inelasticity has the effect of enhanc-
ing the statistics of very short times.

In the taller system we have again obtained the tem-
perature and area fraction profiles, observing a stronger
inhomogeneity and asymmetry. In this case the area frac-
tion is much larger near the bottom wall, reaching higher
values than in the previous experiment. The middle-upper
region seems to be qualitatively well described by re-
cent hydrodynamic theories developed for one component
systems. Here the velocity pdf’s display a non-universal
behavior, with broader tails in the more dense (and dissi-
pative) regions that are in fair qualitative agreement with
the ones obtained in [25].

6
Appendix
In order to make it simpler for the reader to interpret
the present model, we present an appendix in which we
explicitly state the collision rules [26].

The colliding particles are characterized by radii R1
and R2, positions r1 and r2, translational velocities v1
and v2 and rotational (angular) velocities ω1 and ω2 (we
assume that if ω is parallel and in the direction of the z
axis, than the rotation is anticlockwise if seen from above
the xy plane). We introduce the normal unitary vector
joining the centers of the particles n = (r2 − r1)/|r2 − r1|
and the tangential unitary vector t obtained rotating n by
an anti-clockwise angle π/2. Then we introduce the rela-
tive velocity g, the velocity of the center of mass V and
the velocities of the particles in the center of mass frame
ζ1 and ζ2:

g = v1 − v2 (2a)

V =
m1v1 + m2V2

m1 + m2
(2b)

ζ1 =
meff

m1
g (2c)

ζ2 = −meff

m2
g (2d)

where meff = m1m2/(m1 + m2).
Then we decompose the relative velocity g on the

orthonormal basis given n and t, as well as the velocities
of the particles in the center of mass frame, i.e.:
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gn = (v1 − v2) · n (3a)
gt = (v1 − v2) · t (3b)

ζnβ =
meff

mβ
gn (3c)

ζtβ =
meff

mβ
gt (3d)

with β = 1, 2 the index of the particle.
We finally introduce gc as the relative circular velocity

at the point of contact and gr as the total tangential rel-
ative velocity (circular and translational) at the point of
contact:

gc = R1ω1 + R2ω2 (4a)
gr = gc + gt (4b)

To characterize the collision rules we use a model that take
into account a reduction of normal relative velocity (gn), a
reduction of total tangential relative velocity (gr) and an
exchange of energy between those two degrees of freedom.
The reduction of normal relative velocity is modeled as
usual by means of a restitution coefficient α ∈ [0, 1]:

g′
n = −αgn. (5)

We assume a dependence of α by the relative velocity of
the form:

α(gn) =

{
1 − (1 − α0)

|gn|
v0

3
4 per gn < v0

α0 per gn > v0

where α0 is a constant which stands for rij , v0 =
√

gD,
with D the average diameter of the particles (and g is the
gravity acceleration). From equations (5) we obtain the
update of normal velocities in the center of mass frame:

ζ ′
n1 = −α

meff

m1
gn (6a)

ζ ′
n2 = α

meff

m2
gn

What lacks now is an expression for the tangential
and angular velocities after the collisions. We distinguish
between two possible cases: sliding or sticking collisions.
The condition that allows to determine if a collision is
sticking or sliding is the following:

|gr|
gn

≥ l + 1
l

µ(1 + α) (7)

where l is the non-non-dimensionalized inertia moment
and is equal to 1/2 or 2/5 if the particle is a disk or a
sphere respectively, while µ is the static friction coefficient
of the surface of the particles which in the following will
be assumed to be equal to the dynamic friction coefficient.

In the sliding case we use the following rules to update
the tangential components of the velocities of the particles
in the center of mass frame:

ζ ′
t1 = ζt1 − µ(1 + α)

meff

m1
gnsign(gr) (8a)

ζ ′
t2 = ζt2 + µ(1 + α)

meff

m2
gnsign(gr) (8b)

R1ω
′
1 = R1ω1 − µ(1 + α)

l

meff

m1
gnsign(gr) (8c)

R2ω
′
2 = R2ω2 − µ(1 + α)

l

meff

m2
gnsign(gr) (8d)

In the case of a sticking collision, instead, the update
rules are obtained considering that:

ζ ′
t1 − ζ ′

t2 + R1ω
′
1 + R2ω

′
2 = 0 (9)

from which, after calculations, one gets:

ζ ′
t1 =

1
l + 1

ζt1 − l

l + 1
meff

m1
(R1ω1 + R2ω2) (10a)

ζ ′
t2 =

1
l + 1

ζt2 +
l

l + 1
meff

m2
(R1ω1 + R2ω2) (10b)

R1ω
′
1 = R1ω1

[
l

l + 1
+

meff

(l + 1)m2

]
(10c)

− R2ω2
meff

(l + 1)m1
− 1

l + 1
ζt1 (10d)

R2ω
′
2 = R2ω2

[
l

l + 1
+

meff

(l + 1)m1

]
(10e)

− R1ω1
meff

(l + 1)m2
+

1
l + 1

ζt2 (10f)

The velocity of particles in the absolute frame are
finally obtained in the two cases (considering that the
center of mass is not perturbed by the collision) by
the equation:

v′
β = V + ζ ′

nβn + ζ ′
tβt (11)

(for particle of index β) leading to the following global
collision rule for translational velocities:

v′
1 = v1 − (1 + α)

m2

m1 + m2
[(v1 − v2) · n]n

−



sign(gr)µ(1 + α) m2

m1+m2
[(v1 − v2) · n]t (sliding)

m1−lm2
(l+1)(m1+m2)

[(v1 − v2) · t]t
− l

l+1
m2

m1+m2
(R1ω1 + R2ω2) (stick)

(12a)

v′
2 = v2 + (1 + α)

m1

m1 + m2
[(v1 − v2) · n]n

+



sign(gr)µ(1 + α) m1

m1+m2
[(v1 − v2) · n]t (sliding)

m2−lm1
(l+1)(m1+m2)

[(v1 − v2) · t]t
+ l

l+1
m1

m1+m2
(R1ω1 + R2ω2) (stick)

(12b)
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while for rotational velocities:

R1ω
′
1 =




R1ω1 − µ(1+α)
l

m2
m1+m2

gnsign(gr) (stick)

R1ω1
[

l
l+1 + m1

(l+1)(m1+m2)

]
−R2ω2

m2
(l+1)(m1+m2)

− 1
l+1ζt1 (slide)

(13a)

R2ω
′
2 =




R2ω2 − µ(1+α)
l

m1
m1+m2

gnsign(gr) (stick)

R2ω2

[
l

l+1 + m2
(l+1)(m1+m2)

]
−R1ω1

m1
(l+1)(m1+m2)

+ 1
l+1ζt1 (slide)

(13b)
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