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A discrete model of a two-particle contact applied
to cohesive granular materials
Jacek S. Leszczynski

Abstract In this paper, we consider the complex problem
of how to simulate particle contacts, taking into account
the cohesion effect. In accordance with the molecular
dynamics models, we propose a novel expression for the
repulsive force which controls dynamically the transfer
and dissipation of energy in granular media. This expres-
sion is formulated under fractional calculus, where a frac-
tional derivative accumulates the whole history of the
virtual overlap over time in weighted form. We then dis-
cuss and illustrate the basic properties of the repulsive
force in a normal direction to the contacting surfaces.
This approach allows us to perform simulations of arbi-
trary multiparticle contacts as well as granular cohesion
dynamics.
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1
Introduction
The dynamics of granular materials have recently attract-
ed much interest from the physics and engineering commu-
nities. One of the major aspects which needs to be taken
into account with this media is how to model correctly the
interactions that may eventually take place between par-
ticles. The collision process is responsible for the transfer
and dissipation of energy in granular materials. An under-
standing of the contact processes is, therefore, crucial in
order to develop theoretical studies and also to perform
simulations. In dry and lean granular systems we observe
binary collisions between particles, whereas in dense gran-
ular media we can see multiparticle contacts. A more com-
plex interaction process occurs when we analyse dense and
cohesive systems. In all the considered cases, the contact
processes are characterised through their collisional time.
An infinitesimally short time is suitable for binary colli-
sions. However, as the time increases and tends toward
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infinity we can observe a progression from multiparticle
contacts through non-permanent cohesion in multiparticle
contacts to permanent cohesion. Cohesion between con-
tacting particles may arise from a variety of sources [26].
In this paper we consider this cohesion as being depen-
dent on the roughness of contacting surfaces. In the nat-
ural flow of granular materials all the considered cases
can be locally distinguished as existing either respectively
or simultaneously. Consequently modelling such a flow is
limited by the assumptions concerning the contact pro-
cesses.

Continuum models [5] are strongly based on bina-
ry collisions. These models do not consider the discrete
nature and anisotropic properties of the contacting ma-
terials. Discrete models [6,8,16], however, much better
reflect the interaction process. In this paper, we will focus
on the molecular dynamics models taking into account an
expression for the repulsive force acting between particles.
Particularly, we will analyse what happens in cohesive ma-
terials during multiparticle contacts when the contacting
surfaces of particles are rough [9]. Multiparticle collisions
occur when a particle interacts with surrounding particles.
Basic molecular dynamics models [8,21] are only valid for
particle contacts which are independent of one another.
But in cohesive particles we can observe the opposite sit-
uation. Moreover, papers [12,20] have examined the lack
of energy dissipation in molecular dynamics. This is based
on an assumption that the repulsive force does not reflect
real energy loss. In this paper, we shall generalise the re-
pulsive force as being in a normal direction to the con-
tacting surfaces. We will also investigate the properties of
this force.

Let us consider to a set of spherical particles np moving
under arbitrary extortion. The particles are indexed from
1 to np sequentially. We can describe a particle through
its characteristic mass mi, diameter di or radius ri, iner-
tia moment Ii, position xi, linear speed ẋi and spin vec-
tor ωi, for i ∈ {1, . . . , np}, where np is the total number
of considered particles. Let us consider the multiparticle
contacts shown in Fig. 1. In this figure we focus on a par-
ticle i which collides with surrounding particles j(i). We
introduced the natural function j(i) (j(i) �= i) of the
index i in order to find the particle number of a particle
in a set of particles. We cannot exclude the situation that
the surrounding particles contact with other ones. Fig. 1
presents a group of colliding particles moving as one ob-
ject. We can analyse the object’s dynamics through the
exchange of particles within the object. A set of equations
describing particle motion can be written as
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Fig. 1. Scheme illustrates multiparticle contacts






mi · ẍi +
∑

j(i) j(i) �=i

Pj(i) =
nc∑

l=1
Fl

Ii · ω̇i +
∑

j(i) j(i) �=i

sj(i) × Pj(i) =
nc∑

l=1
Ml

, (1)

where Fl is an optional force, Pj(i) denotes a repulsive
force acting between a pair of colliding particles, Ml is an
optional torque, nc is the total number of optional forces
(torques) taken into account in our considerations, sj(i)
indicates the branch vector connecting the mass centre of
particle i with the point of application of the repulsive
force Pj(i). This point is defined as the centre of mass
of the overlapping region which belongs to the contacting
particles (see detail A in Fig. 1 and additional explana-
tions given later). As the optional force we can distinguish
gravitational force, drag force, etc. The repulsive force is
defined according to molecular dynamics models. In such
models particles virtually overlap when a contact occurs.
According to [14,20] we define the overlap of two particles
experiencing a contact as (see also detail A in Fig. 1)
∥
∥
∥ζj(i)

∥
∥
∥ = rj(i) + ri − ∥

∥xj(i) − xi

∥
∥ , (2)

and a normal unit vector eζj(i) that connects the particles’
centres of mass, pointing from i to j(i), is

eζj(i) =
xj(i) − xi

∥
∥xj(i) − xi

∥
∥

. (3)

Eq. (1) shows the arbitrary motion of an individual par-
ticle which experiences a contact with neighbouring par-
ticles. If no contacts occur, the sum of repulsive forces

(torques) in Eq. (1) is neglected. Solving over time t (an
independent value) these two groups of equations one can
find an explicit time t∗j(i) when a collision begins. This

leads us to consider
∥
∥
∥ζj(i)

∥
∥
∥ = 0.

Let cj(i) be a position vector which is taken as the
mass centre of the overlapping region as shown in detail
A in Fig. 1. Taking into account the fact that the spherical
particles interact only when their overlap (2) is positive,
we have

cj(i) = xi +



ri −

∥
∥
∥ζj(i)

∥
∥
∥ ·

(
rj(i) −

∥
∥
∥ζj(i)

∥
∥
∥

)

ri + rj(i) −
∥
∥
∥ζj(i)

∥
∥
∥



 · eζj(i) . (4)

In the case when a collision begins
(∥
∥
∥ζj(i)

∥
∥
∥ = 0

)
we

obtain

cj(i) =
ri · xj(i) + rj(i) · xi

rj(i) + ri
. (5)

At a point created by the position vector (4) the con-
tact force is applied. This notation allows us to consider
multiparticle contacts where a particle i collides with sur-
rounding particles j(i). Therefore a few overlaps and nor-
mal unit vectors indexed j(i) on the particle i may occur.
From Eqs (2), (3) a vector of the normal overlap reads

ζj(i) =
(
rj(i) + ri

) · eζj(i) − (
xj(i) − xi

)
. (6)

Only central collisions are considered in this paper. This
means that the contact force acts in the normal direction
(Pj(i) = Pζj(i)), which connects the mass centres of the
colliding particles. We neglect particle rotation by assum-
ing ωi = 0.

2
Schemes of a normal force in particle contacts
Here we present examples of the normal force models, i.e.
those most frequently used for practical simulations. Cun-
dall and Strack [3] proposed the force as being a linear
combination of elastic and viscous terms

Pζj(i) = cj(i) · ζ̇j(i) + kj(i) · ζj(i), (7)

where kj(i) is the stiffness of a spring whose elongation
is the particle deformation ζj(i) and cj(i) is a damping
constant.

Kuwabara and Kono [11] extended the original Hertz
contact theory and investigated a nonlinear version of
Eq. (7) in the form

Pζj(i) = cj(i) · ζ̇j(i) ·
∣
∣
∣ζj(i)

∣
∣
∣

1
2 · sign

(
ζj(i)

)
+

kj(i) ·
∣
∣
∣ζj(i)

∣
∣
∣

3
2 · sign

(
ζj(i)

)
. (8)

Walton and Braun [27] proposed the elastoplastic defor-
mation. They assumed different spring constants, kj(i) for
the loading part and k∗

j(i) for the unloading part of the
contact

Pζj(i) =

{
kj(i) · ζj(i), ζ̇j(i) ≥ 0 (load)

k∗
j(i) ·

(
ζj(i) − ζ∗

j(i)

)
, ζ̇j(i) < 0 (unload)

, (9)
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where ζ∗
j(i) is the value of ζj(i) when the unloading curve

intersects the permanent plastic deformation. These repul-
sive force models represent the basic laws of interaction of
a two-particle contact between grains.

In multiparticle contacts, we need to take into account
the sum of forces (7), (8) or (9) depending on the force
schemes. It should be noted that formulae (7) (8) and
(9) are not suitable for arbitrary multiparticle contacts.
In the above interaction laws we assume that particle
contacts are independent of one another. If no mutual
dependencies occur during multiparticle contacts, the
local collisional time considered between a pair of con-
tacting particles does not change. Only the coefficients
and initial conditions used in the interaction laws have
direct influence on the contact time in a two-particle
collision. Some analytical expressions concerning the colli-
sional time can be found in [3,11,27]. In practical compu-
tations we assume coefficients cj(i) and kj(i) are functional
expressions as shown in [20]. Particularly, they depend on
a normal restitution coefficient and also on the collision-
al time. The restitution coefficient describes the work of
deformation between contacting bodies but does not say
how much time is required for particle collisions.

With regard to the behaviour of an “object” composed
of particles, as shown in Fig. 1 and described in the previ-
ous section, we cannot analyse the real dynamics of object.
When analysing the dynamics of multiparticle contacts we
should take into account some variations in time for both
the restitution coefficient and the collisional time. Obvi-
ously, this is a disadvantage when calculating the repulsive
force according to the basic interaction laws. Moreover,
the coefficients cj(i), kj(i) in those force models represent
the viscoelastic properties of contacting granular materials
but do not reflect the surface properties of the particles.
In the real behaviour of granular materials we can easily
change the surface properties of the colliding particles as
they are independent of structural properties. This can be
easily seen, when we consider the contacts in a granular
material for smooth particles and for rough ones. There-
fore we cannot perform simulations taking into account
the dynamics of multiparticle contacts. Following on from
on Luding et al [12] who observed anomalous energy dis-
sipation. We can try to explain the anomalous using frac-
tional calculus [7], which means that during multiparticle
contacts we need to take into account the history of en-
ergy and momentum transfer between particles. At this
crucial point in our considerations, we need to introduce
a memory process during multiparticle collisions. We can
say that a particle has to remember about surrounding
particles during the collision process.

In this paper we assume that for a two-particle colli-
sion the contacting surfaces are rough. According to John-
son [9], the contact between rough surfaces is discontin-
uous and the real area of contact is a small fraction of
the nominal contact area taken into account on smooth
surfaces. Therefore, another form of energy transfer
between colliding bodies should be considered. Linear (7)
and non-linear (8) interaction laws present the sum of elas-
tic and viscous terms as being independent of one another.
Pöschel et al [19] noted that this feature is reflected by the
smooth surfaces in a topological sense. Barabási et al [2]
proposed fractal concepts to describe a rough surface. In

paper [2], they discussed a roughness exponent α relat-
ed to fractal dimension. The roughness exponent α, which
characterises the roughness of a surface, behaves as ∼ tα in
scaling dynamics of growth surfaces. Johnson [9] present-
ed a definition and experimental evidence of the roughness
coefficient α which is limited to the elastic contact between
rough surfaces. The parameter α defined in [9] was used as
a measure of the effect of surface roughness on static
contact under a purely normal load. Moreover, several
studies [2,4,10,18] have examined experimentally rough
surfaces through the roughness exponent α in fractal
sense. Note that fractional derivatives [7,22] may reflect
the scaling dynamics ∼ tα as a memory process. Following
on from the results presented above we noted that the
behaviour of elastic and viscous energies during contact
between rough surfaces is the sum of all local contact zones
on the total area of the contact. Therefore, the total elas-
tic and viscous sources considered within the overlapping
region (2) depend on the roughness parameter α between
two contacting surfaces. Bagley and Torvik [1] introduced
the fractional model of viscoelastic behaviour, which em-
ploys derivatives of fractional order to relate stress fields to
strain fields in viscoelastic materials. They assumed that
the stress in a viscoelastic material is a function not only
of the actual strain at the time instant of the deformation
process, but also of the previous strain history. Schiessel
et al [25] demonstrated a generalised model of viscoelastic
materials realised physically through hierarchical arrange-
ments of springs and dashpots, such as ladders, trees or
fractal structures. In this model, the order α of the frac-
tional derivative relates to a material parameter which can
be associated with a degree of conversion as, for example,
for molecular theories [1]. Experimental evidence of the
parameter α can be found in [15,24].

Sumarising previous considerations and using results
concerning the generalised viscoelastic model [25], and the
description of the fractal concept [2], we formulate the nor-
mal force acting between a pair of particles in the following
form

Pζj(i) = c
αj(i)

j(i) · k
1−αj(i)

j(i) · t∗
j(i)

D
αj(i)
tj(i)

(
ζj(i)

)
, (10)

where cj(i), kj(i) are dumping and stiffness coefficients,

t∗
j(i)

D
αj(i)
tj(i)

(
ζj(i)

)
is a differential operator of fractional

order αj(i) [22] and t∗j(i) is the begin time of a contact

which leads to an initial condition
∥
∥
∥ζj(i)

∥
∥
∥ = 0. We intro-

duce a definition of this operator as the left side Riemann-
Liouville fractional derivative [22]

t∗Dα
t f(t) =






1
�(n−α) · dn

d tn

t∫

t∗

f(τ)
(t−τ)α−n+1 dτ,

n − 1 < α < n
dn

d (t−t∗)n f (t) , α = n

, (11)

where n = [α] + 1 and [·] denotes an integer part of a real
number. In comparison to derivatives of integer order,
which depend only on the local behaviour of the func-
tion, derivatives of fractional order accumulate the whole
history of a function. This is the memory effect. To take
into account the fact [7] that the Riemann-Liouville de-
rivative has no physical interpretation especially when it
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introduces initial conditions, we introduce the Caputo de-
rivative [22]

C
t∗Dα

t f(t) =






1
�(n−α) ·

t∫

t∗

dnf(τ)
d τn

(t−τ)α−n+1 dτ,

n − 1 < α < n
dn

d (t−t∗)n f (t) ,

α = n

. (12)

We also need to present the transition between these
derivatives, and following on from [22] we have

t∗Dα
t f(t) =

n−1∑

l=0

(t − t∗)l−α

� (l − α + 1)
· f (l) (t∗) + C

t∗Dα
t f(t), (13)

where the sum represents the initial conditions. We need
to formulate transition (13) because, while many inves-
tigations have concentrated on the Riemann-Liouville
derivative, there is a complete lack of physical applica-
tions.

With regard to Eq (10), we apply the fractional oper-
ator (13), which is composed of the initial conditions and
the Caputo derivative (12). Note that this repulsive force
accumulates the history of the overlap ζj(i) from the begin
time of a contact t∗j(i) to the actual time tj(i) when the con-
tact is finished. This corresponds to the memory effect in
viscoelastic materials presented by Bagley and Torvik [1].
Hence, the model operates on the following conditions:
ζj(i)

(
t∗j(i)

)
= 0, ζ̇j(i)

(
t∗j(i)

)
= ẋi

(
t∗j(i)

)
− ẋj(i)

(
t∗j(i)

)
,

and ζj(i)
(
tj(i)

)
= 0, ζ̇j(i)

(
tj(i)

)
= 0. Taking into account

some variations in the fractional order αj(i) in Eq (10),
we can observe the interesting properties of this force. If
αj(i) = 0, no viscous term may occur during the contact
and all the energy must be due to elasticity. If αj(i) = 1, on
the other hand, the energy is transfered through the vis-
cous term. Considering such limits we assume variations
of this parameter in the range 0 ≤ αj(i) ≤ 1. It should be
noted that the fractional order αj(i) operates between the
surfaces of contacting bodies. This parameter represents
the degree of conversion of impact energy into viscoelastic-
ity of the material. With regard to previous considerations
presented in [1,2,25] we obtained a model of generalised
viscoelasticity operating on fractal surfaces in a topologi-
cal sense, where the surfaces are rough. Coefficients cj(i)
and kj(i) reflect the physical properties of particles during
the collision process and the coefficient αj(i) accents the
elastic or viscous property.

Several studies presented in this section show experi-
mental evidence that the fractional order reflects the de-
gree to which the induced kinetic energy is converted into
material viscoelasticity on the rough surfaces of the con-
tacting particles. The conversion degree αj(i) applied in
formula (10) needs some experimental validation in or-
der to reflect the transformation of impact energy into
viscoelasticity operating between two rough surfaces dur-
ing a contact. This will be the further aim and scope of our
considerations. Note that the basic models of the repulsive
force [3,11,27] do not reflect the roughness of contacting
surfaces. In multiparticle contacts, we need to take into
account the sum of the force (10) running over all con-
tacting particles j(i).

In the next section we demonstrate how our force
operates during a two-particle contact as well as multi-
particle contacts. Throughout the collision process, we use
a set of equations (1) with the repulsive force (10). The
set is numerically solved and the fractional operator inside
the repulsive force is represented by a discrete form found
in [17].

3
Results and discussion
To illustrate the benefits of our repulsive force, we will
present how the force operates under different conditions.
We will simulate a particle falling vertically down on to
a bottom plate, as shown in Fig. 2. When performing the
simulation, the particle falls under gravity and the con-
tact occurs on the plate. When a collision occurs, two
schemes of the repulsive force are applied to the motion
equation (1), which give the following equations:

m · ẍ + c · ẋ + k · (x − r) = −m · g (14)

for the linear force (7) proposed by Cundall and Strack [3],
and

m · ẍ + cα · k1−α · t∗Dα
t (x − r) = −m · g (15)

for our force model presented by formula (10), where r
denotes the particle radius and g indicates gravity acceler-
ation. If no collision occurs, we neglect the repulsive force
in both Eqs (14) and (15) respectively. Fig. 2a shows the
vertical displacement of the particle over time, for differ-
ent degrees of magnitude of the coefficients k, c. Squares

Fig. 2. Comparison of the repulsive forces acting between
a particle and the bottom plate for a different magnitudes and
b the same magnitude of coefficients k, c
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represent the linear force model (14) and up-triangles in-
dicate our repulsive force (15). For the known initial con-
ditions and physical properties between the particle and
the bottom plate as shown on Fig. 2a, we observe good
agreement in the results obtained by the linear force equa-
tion (7) in comparison to our force equation (10). In this
case we estimated the conversion degree α in Eq. (10) as
α = 0.065.

There is plenty of room available in the conversion de-
gree to simulate other types of behaviour of the particle.
Any changes in the coefficients k, c and initial conditions
also produce variations in the parameter α. The above
example is a comparison of when the values of c and k
are chosen to differ by four orders of magnitude from each
other and α is set at α = 0.065. On the other hand, if c and
k are of almost equal magnitude, the parameter α must
be increased up to α = 0.7 in order to keep good agree-
ment with the linear model. Fig. 2b shows such a situation.
There is again plenty of room available in the conversion
degree to allow other values of α to be chosen and for
other simulations to be made. We can simulate changes
in the roughness of the contacting sufraces by varying the
value of α. It is not possible to do this with the basic
interaction laws [3,11,27]. However, whatever value of α
is chosen, the results of a simulation still need to be vali-
dated experimentally. Nevertheless, this numerical com-
parison shows that our interaction law could be adapted
using results obtained by the linear force model.

Following on from the results presented by Pournin
et al [20] we tried to simulate a set of four identical par-
ticles vertically stacked over a bottom plate. Figs 3 and 4
show particle displacements over time depending on the
conversion degree α, where the initial distance between
neighbouring particles changed from lj = 5 · 10−4 m to
lj = 0 m, for j = 2, ..., 4. The initial distance between the
first particle and the bottom plate is set at l1 = 0.03 m.
For both figures we have rj = 0.01 m, mj = 0.0042 kg,
kj = 5000 N/m, cj = 0.4 kg/s and uj(0) = −0.2 m/s,
for j = 1, ..., 4. As α is increased up to 0.9, the cohesion
effect takes place and we can see, on both Figs 3 and 4,
that particle trajectories tend to constant values. After
collision and with α = 0.9, particles stay clustered on the
bottom plate. In this particular case the initial distanc-
es lj do not have an influence on the particle trajectories.
Therefore, we can say that for higher values of the conver-
sion degree α all impact energy is dissipated and particles
stay clustered on the bottom plate. For lower values of α
we notice different situations depending on the position
of the particle. When α = 0.01 and lj = 0 m (as shown
on Fig. 4) we observe that a greater part of the kinetic
energy is transfered to the particle located at the top of
the stack in comparison to α = 0.01 and lj = 5 · 10−4 m
(as shown on Fig. 3). When the particle is situated at the
bottom of the stack we can see the opposite behaviour to
that observed in the previous case.

Next we considered the dynamics of three particles
moving in one direction under gravity. Fig. 5 presents par-
ticle displacements over time, where the conversion degree
α also varies over time. During the first contact between
two particles the cohesion effect can be observed using
α = 0.45. In the next time interval, the particles move as
one body until the second contact with the third particle.

Fig. 3. Particle trajectories vertically stacked over a bot-
tom plate, depending on the values of parameter α, for lj =
5 · 10−4 m

Fig. 4. Particle trajectories vertically stacked over a bottom
plate, depending on the values of parameter α, for lj = 0 m

We can see that the impact energy of the third particle is
greater in comparison to the previous one. This directly
leads to a decrease in the parameter α, and we set α =
0.05. This change breaks the cohesion between the previ-
ous two particles, which is shown by the fact that the par-
ticle movements are independent of each other. It should
be noted that the parameter α can be sensitive to the
impact energy.

The next example simulates the dynamics of four par-
ticles in two dimensional space for dependent values of
parameter α. Fig. 6 presents a situation where a particle
with initial velocity u1 = [0,−0.4] m/s contacts at differ-
ent moments in time with particles which initially do not
move (uj = [0, 0] m/s, for j = 2, . . . , 4). We assumed the
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Fig. 5. The influence of the impact energy on changes in the
parameter α

Fig. 6. Behaviour of particle trajectories depending on the
values of α

following conditions r1 = 0.012 m, m1 = 7.24 · 10−3 kg,
r2 = 0.01 m, m2 = 4.19 · 10−3 kg, r3 = 0.007 m, m3 =
1.44 · 10−3 kg, r4 = 0.005 m, m4 = 0.52 · 10−3 kg, and
kj = 5000 N/m, cj = 0.1 kg/s, for j = 1 . . . 4. This simu-
lation does not reflect real particle behaviour because we
neglect tangential forces and particle rotations during par-
ticle contacts. We can only show how our force operates
in the above conditions. The thin lines represent particle
trajectories when particles move separately and the thick
lines are common trajectories when particles move as one
body. At low values of the parameter α we do not observe
these common trajectories, as only binary contacts occur.
As the parameter α is increased, up to an upper limit of
0.9, we start to observe common trajectories. This means
that in some time intervals the particles move as one body.
Moreover, for different values of α we can observe the dif-
ferent lengths of the common trajectories. This arises from
the different beginnings of the contact time t∗j(i) between
two colliding particles. Comparing particle trajectories, as
shown in Fig. 6, we can observe significant changes in

particle motions depending on the value of parameter α.
Between α = 0.01 and α = 0.3 linear trajectories occur.
For higher variations of the parameter α non-linear trajec-
tories can be observed, this arises from the longer contact
time. We can say that the cohesion observed in multipar-
ticle contacts strongly modifies particle motions.

In order to verify the validity of the interaction laws
presented here, the energies dissipated at each contact
were compared. We used a set of particles np vertically
stacked over a bottom plate as shown in Figs 3 and 4
and in [12]. Here we introduce a measure of energy dissi-
pation ε, which is the ratio of the final total kinetic en-
ergy over the initial total kinetic energy of a particulate
system. Taking into consideration the results presented
in [12] we can calculate the energy dissipation as a func-
tion of the number of particles np, when ri = 0.0015 m,
mi = 1.414 ·10−5 kg, ẋi = −0.5 m/s, and initial distances
between neighbouring particles li = 0 m, for i = 1, ..., np.
Gravity is set at 0. Following on from the results presented
by Luding et al [12] we assume the same contact time be-
tween two colliding bodies tc = 10−4s and the restitution
coefficient e = 0.949. These assumptions are necessary to
calculate coefficients k, c and k∗, depending on the type
of interaction law chosen. Some of the expressions applied
to calculate the coefficients for linear and hysteretic laws
can be found in [20]. For the non-linear interaction law
we performed a computational test to find the values of
these coefficients which would allow us to keep the as-
sumed contact time and also the restitution coefficient in
a two-particle contact. For the fractional interaction law
we assumed the same values of these coefficients as for the
linear interaction law. These coefficients represent a colli-
sion between two particles or between a particle and a bot-
tom plate, where the mass of the plate is infinite. Fig. 7
shows the ratio of energy dissipation depending on the
number of particles np for different interaction laws used
in the molecular dynamics method and also in the event
driven method [13]. For the basic interaction laws applied
in the molecular dynamics method and for the event driv-
en method, we observed the same dependencies as in [12].
This means that all energy should be dissipated for a large
number of np. As stated in [12], the energy dissipation

Fig. 7. Total dissipation of energy ε plotted as a function of
np for different interaction laws
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obtained from the event driven method is close to zero for
np(1 − e) large. Note that the basic interaction laws are
valid for a two-particle contact being completely indepen-
dent from other contacts which can eventually take place.
Nevertheless, in multiparticle contacts we should included
mutual dependencies between binary contacts. To this
end, the fractional interaction law brings an idea of how
to achieve it. First, we considered the fractional law (10)
for a steady value of the conversion degree αj(i), for all
contacts, as presented on Fig. 7. Note that we obtained
similar results between hysteretic and fractional interac-
tion laws for α = 0.026. When we increase the value of
the parameter α energy dissipation is increased too, but,
in this case, we do not restrict previous conditions such as
the contact time tc and the restitution coefficient e. How-
ever, small variations in the value of parameter α do not
give satisfactory results in comparison to the event driven
method, especially when we consider a large number of
contacting particles. Above we investigated the fractional
formula (10) for contacts which are independent of one an-
other, as in basic interaction laws. Now we shall consider
another theoretical situation for a conversion degree which
varies depending on the number of particles in a contact
with each other. In this case we assume an arbitrary me-
chanical network composed of contacting particles. Each
particle is canfined to contact with only neighbouring par-
ticles via hierarchical arrangements of springs and dash-
pots in order to reflect conversion degree αj(i) between
several pairs of particles.

Schiessel and Blumen [23] analysed mechanical frac-
tal networks for the sol-gel transition. They examined the
ladder arrangements composed with springs and dashpots
related to the gelation process. They proved that the
parameter α reflects the structural properties of the sys-
tem, and especially the conectivity of the network. More-
over, they noted that the network conectivity α depends
on the length of the ladder.

In our considerations, the ladder length is represented
by the total number of contacting particles np. Therefore,
in multiparticle contacts we take into consideration the
total conversion degree α

′
, which varies over np. In nu-

merical calculations we substituted α
′

for αj(i), for each
pair of contacting particles restricted to contact with only
neighbouring. However, the parameter α

′
has to be set

to reflect the results of known experiments. In this paper,
we tuned α

′
in order to reflect quantitatively the results

obtained from the event driven method [13]. Fig. 7 shows
such a comparison between the event driven method and
the fractional interaction law, where the filled squares in-
dicate the event driven technique, and the filled circles
represent the fractional interaction law (10) with the to-
tal conversion degree α

′
. We obtained quantitatively good

results for α
′ ∼ (np)0.468. However, it should be noted that

in the event driven method the inelastic collapse phenom-
enon [13] occurs, where the whole energy of the system is
dissipated. So we cannot estimate α

′
by direct compari-

son with the event driven technique. Instead we require
experimental data involving more than one contact. This
data will provide measures that allow analytical links to
be made between the experiment and the model parame-
ters.

4
Conclusions
We have proposed and discussed a novel model of the
repulsive force acting between particles in a normal di-
rection. This model allows us to control dynamically the
transfer and dissipation of energy in granular media. Our
formula is defined under fractional calculus, where a frac-
tional derivative accumulates the whole history of the vir-
tual overlap over time in weighted form. This feature, in
comparison to the known models of the repulsive force,
is a generalisation. We then discussed and illustrated the
basic properties of the repulsive force. Some of the pa-
rameters of this model may still need to be tuned, as for
example, the parameter α in order to reflect the conver-
sion degree of colliding particles. Moreover, a sensitivity
study of the parameter α depending on the impact energy
needs to be done. Nevertheless, this approach allows us
to perform simulations of arbitrary multiparticle contacts
and granular cohesion dynamics.
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