
IJDAR (1998) 1: 52–61
International
Journal on IJDAR
Document Analysis and Recognition
c© Springer-Verlag 1998

Matching document images with ground truth

John D. Hobby

Bell Laboratories, Lucent Technologies, Murray Hill, NJ, USA
e-mail: hobby@bell-labs.com

Received 25 June, 1997 / Revised August 20, 1997

Abstract. Since optical character recognition systems
often require very large amounts of training data for op-
timum performance, it is important to automate the pro-
cess of finding ground truth character identities for doc-
ument images. This is done by finding a transformation
that matches a scanned image to the machine-readable
document description that was used to print the original.
Rather than depend on finding feature points, a more ro-
bust procedure is to follow up by using an optimization
algorithm to refine the transformation. The function to
optimize can be based on the character bounding boxes –
it is not necessary to have access to the actual character
shapes used when printing the original.

Key words: Optical character recognition – Ground
truth – Nelder-Mead algorithm

1 Introduction

Training and testing optical character recognition sys-
tems often requires large numbers of realistic character
and word images. If the correct “ground truth” charac-
ter identities have to be entered or corrected by hand,
it is difficult to gather enough accurate data. Semiauto-
matic methods are popular now, but they still require a
lot of labor (Phillips et al., [14,15]; Rogers et al., [16];
Nagy et al., [12]). Much of this labor can be avoided by
automatic ground-truthing where a scanned page image
is matched with the original document description that
was used to print the page. The procedure suggested by
Kanungo et al. [8,9] is to look for certain feature points
in the scanned image, transform the original page de-
scription to make the feature points match, and then
use template matching to look for character images near
where the original page description says they should be.

The big advantage of automatic ground truthing is
that it requires little or no human labor. Of course this
comes at the expense of requiring the original page de-
scription, but this limitation is getting less serious as
electronic documents become more prevalent. The pri-
mary goal of this work is to deal with one of the other

Fig. 1. The bounding boxes for all characters on a small
sample page with Kanungo’s feature points indicated. The
feature points are chosen so that the 45◦ dashed lines are
supporting lines

limitations of Kanungo’s approach, namely the depen-
dence on finding feature points. It would be better to
have a more robust and more accurate way of transform-
ing the original page description to match the image. In
addition, our secondary goal is to try to avoid the need
to have fonts available for template matching.

The original page description identifies each charac-
ter on the page and gives its bounding box. Figure 1
shows how Kanungo uses this information to find fea-
ture points. The feature points are the bounding box
corners where x + y, x − y, −x + y and −x − y are max-
imized. Performing a similar computation for connected
components in the scanned page image yields another set
of four feature points. Kanungo then finds a geometric
transformation that aligns the two sets of feature points
and hopefully aligns the character bounding boxes with
the corresponding character images.

This was not very reliable in our tests because scanned
images often have speckles and other material not in the
original page description. Kanungo and Haralick [9] give

J.D. Hobby: Matching document images with ground truth 53

a heuristic for dealing with this by checking bounding
box sizes, but it is always possible to wind up with the
wrong feature points. If the scanned image is from a
bound book, noise around the edge of the page exac-
erbates the problem. Even when we find the right fea-
ture points, transformations based on just a few feature
points can yield suboptimal matches. For these reasons,
we attempt to find a transformation that makes the en-
tire page description fit the image as well as possible.
We define a function that measures this fit, and then use
standard optimization techniques. Since it is still impor-
tant to have a good starting point for the optimization,
the new approach does not replace feature point analy-
sis, it complements it. The optimization can be started
from the identity transformation if feature point analysis
fails completely, but it is best to avoid this if possible.

Section 2 defines the optimization problem and ex-
plains what standard techniques are best for solving it.
Section 3 explains how careful bucketing strategies can
speed up the optimization enough to make it practical.
Section 4 investigates the problem of assigning ground
truth to character and word images without a priori
knowledge of the character shapes or non-geometric dis-
tortions in the printing and scanning process. Finally,
Sect. 5 gives results and discusses applications, and Sect. 6
gives some concluding results.

2 Finding the transformation

The task is to take character bounding boxes such as
those in Fig. 1, and find a geometric transformation that
matches them to a similar set of bounding boxes derived
from the scanned image. Specifically, we use the bound-
ing boxes for 8-connected sets of black pixels in the image
and choose an affine transformation

T (x, y) =
(

txx txy

tyx tyy

) (
x
y

)
+

(
tx
ty

)
. (1)

An initial estimate for T can be computed from the fea-
ture points illustrated in Fig. 1. We need to improve this
estimate by minimizing a function that depends on the
six parameters that appear in (1), and measures the de-
gree by which the page image fails to match the original
document description when the transformation T is ap-
plied.

In order to have axis-aligned rectangles, it is best to
start by applying T to each connected component in the
image and then compute bounding boxes as indicated
by dashed lines in Fig. 2a. Hence we have two types of
boxes:

Image boxes are derived from the result of applying an
affine transformation (1) to the page im-
age. They are the bounding boxes of the 8-
connected components, where each compo-
nent is transformed by T before computing
the bounding box. The synonymous term
transformed image box emphasizes the pres-
ence of this transformation.

Ideal boxes are the character bounding boxes from the
original page description. These are indi-
cated by solid lines in Fig. 2b.

Since characters can break up and/or merge together
during printing and scanning, there is not necessarily a
one-to-one correspondence. In the example of Fig. 2b,
there are two image boxes for the ideal box “r,” and
ideal boxes “a” and “l” both correspond to the same
image box.

2.1 The mismatch function

The above example suggests that we measure the de-
gree of mismatch by developing a function d that takes
two boxes and measures how much they would have to
be changed in order for one of the boxes to contain the
other. For each ideal box A, we can find the image box B
that minimizes d(A, B), and then apply a standard vec-
tor norm to the resulting list of d values. This approach
allows characters to break up or merge together and does
not penalize for noise or non-text material for which
there are image boxes but no ideal boxes.

Hence we define d(A, B) to be

min
(
df (Ax1, Ax2, Bx1, Bx2) + df (Ay1, Ay2, By1, By2),

df (Bx1, Bx2, Ax1, Ax2) + df (By1, By2, Ay1, Ay2)
)

+dp(Ax2−Ax1, Bx2−Bx1)+dp(Ay2−Ay1, By2−By1),

where x1 and x2 subscripts refer to a box’s minimum and
maximum x coordinate, y1 and y2 subscripts refer to the
minimum and maximum y coordinate, dp is a penalty
term that is nonzero when the ratio of its arguments is
too small or too large, and df (x1, x2, x3, x4) equals

0 if x3 ≤ x1

and x2 ≤ x4;
min(|x3 − x1| , |x4 − x2|)

+ max(0, x2 − x1 − (x4 − x3)) otherwise.

Function df is the amount of translation and stretching
necessary to fit interval [x1, x2] within interval [x3, x4].
The dp terms ensure that unreasonably large objects are
not treated as run-together characters and that broken
characters are required to contain reasonably large con-
nected components. A generous choice is
dp(a, b) = max(0, max(a, b) − 8 · min(a, b)).

In other words, we allow the height or width of an
image box to differ from the corresponding ideal box
dimension by a factor of 8 before penalties are accessed.
The number 8 was determined empirically by looking
for large contributions to the mismatch function after
optimization and manually verifying that they were not
due to inadequate tolerance for the size ratio in dp(a, b).

We can now define the mismatch function as follows:
take the six parameters that appear in (1); use them to
find bounding boxes of the connected components in the
transformed image, choose among these transformed im-
age boxes, an image box B that minimizes d(A, B) for
each ideal box A; and apply a vector norm to the result-
ing d(A, B) values. We choose the L4 norm (fourth root
of sum of fourth powers) since experiments suggested
that the L∞ norm is too sensitive to noise and the L2
norm causes the mismatch function to have too many
local minima.

54 J.D. Hobby: Matching document images with ground truth

a b

Fig. 2a. Portions of a slightly rotated 200 dpi page image with bounding boxes; b. the same image boxes (dashed lines)
superimposed on the ideal boxes from the original page description (solid lines)

2.2 Minimizing the mismatch

Most standard optimization methods do not work well
on the mismatch function because it lacks continuity and
smoothness properties. Many comparisons are needed to
evaluate the function and it does not take much of a
change in the transformation parameters (1) to reverse
one of the comparisons. This means that the mismatch
function has an extremely large number of slope disconti-
nuities. As explained by Wright [20], optimization prob-
lems of this kind are best solved by direct search methods
such as Nelder–Mead [13] and Torczon’s algorithm [19].

The basic idea of a direct search method is to per-
form a sequence of function evaluations, using the pre-
vious history to decide what input to give for the next
function evaluation. Figure 3 illustrates the first and last
function evaluations when using Nelder–Mead to mini-
mize the mismatch function for a sample page scanned at
200 dpi. In this case there were 219 function evaluations
and the mismatch was reduced from 11.63 to 4.13. Su-
perimposing the transformed image boxes on the original
page description gives a visual impression of how much
the mismatch was reduced.

If Fig. 3 were based on Torczon’s algorithm, it would
appear almost the same, but more function evaluations
would be needed. Torczon’s algorithm is well suited to
parallel computation because its outer loop does sev-
eral function evaluations per iteration and these could
all be done in parallel. Torczon’s algorithm has guar-
anteed convergence properties that Nelder–Mead lacks,
but the results in Sect. 5 will show that it requires signif-
icantly more function evaluations. In addition, it is hard
to get enough information about the mismatch function
to make use of the convergence properties.

For these reasons, we shall concentrate on Nelder–
Mead. For our six-dimensional problem, the Nelder–Mead
algorithm maintains a set of seven(

txx, txy, tyx, tyy,
tx
W

,
ty
H

)

values that are the vertices of a simplex in Euclidean
6-space, where W and H are constant scale factors. (It
suffices to let W and H be the width and height of the
page). If T7 is the vertex where the mismatch function
is greatest (i.e., worst) and T̄ is the average of the other

To be, or not to be: that is the question:
Whether ’tis nobler in the mind to suffer
The slings and arrows of outrageous fortune,
Or to take arms against a sea of troubles,
And, by opposing end them? To die: to sleep;
No more; and, by a sleep to say we end
The heartache and the thousand natural shocks
That flesh is heir to, ’tis a consummation
Devoutly to be wished. To die, to sleep;
To sleep: perchance to dream: ay, there’s the rub;
For in that sleep of death what dreams may come,
When we have shuffl ed off this mortal coil,
Must give us pause. There’s the respect
That makes calamity of so long life;

mismatch 11.63 at (txx, txy, tyx, tyy, tx, ty) =
(1.002, 0.002, −0.002, 1.002, −9.88, 2.91)

To be, or not to be: that is the question:
Whether ’tis nobler in the mind to suffer
The slings and arrows of outrageous fortune,
Or to take arms against a sea of troubles,
And, by opposing end them? To die: to sleep;
No more; and, by a sleep to say we end
The heartache and the thousand natural shocks
That flesh is heir to, ’tis a consummation
Devoutly to be wished. To die, to sleep;
To sleep: perchance to dream: ay, there’s the rub;
For in that sleep of death what dreams may come,
When we have shuffl ed off this mortal coil,
Must give us pause. There’s the respect
That makes calamity of so long life;

mismatch 4.13 at (txx, txy, tyx, tyy, tx, ty) =
(0.999, 0.007, −0.003, 0.998, −11.14, 22.17)

Fig. 3. The transformed image boxes superimposed on the
original page description before and after using Nelder–Mead
to minimize the mismatch. The corresponding transformation
parameters and mismatch values appear below each image

six vertices, a typical Nelder–Mead step consists of try-
ing one or two points along the T̄ T7 line and trying to
update the simplex by replacing one of the existing ver-
tices.

A Nelder–Mead iteration begins by trying the “re-
flection point” Tref = 2T̄ − T7. If this is better than the

J.D. Hobby: Matching document images with ground truth 55

previous best point T1, try T̄ +1.3(Tref − T̄) and replace
T7 by the better of this point and Tref.

If Tref is not as good as T1 but is better than the point
T6 that was second-worst, replace T7 by Tref. Otherwise,
Tref is either worse than T7 or worse than T6 but better
than T7. Let the “contraction point” Tcon be (T̄ +T7)/2
in the former case and (T̄ + Tref)/2 in the latter case. If
Tcon is better than T7, replace T7 by Tcon.

If Tcon fails to improve on T7, Nelder–Mead shrinks
the simplex toward the best point T1 by replacing Ti

with (Ti + T1)/2 for each of the other 6 vertices Ti. This
completes one iteration. Refer to [13] for explanations of
numeric parameters and details. Nelder–Mead proceeds
as outlined above until some convergence test is satisfied;
e.g., all 7 vertices are within Euclidean distance 3×10−5

of T1 or the 7 function values are identical to within one
part in 104.

We modify this convergence test by defining a critical
value for the mismatch function, and using very tight tol-
erance in the other tests if the critical value has not been
achieved. The purpose of the critical mismatch value is
to ensure that there is a good chance of assigning ap-
propriate ground truth. The critical value is what the
mismatch function would return if each d(A, B) value
were half the median character width.

3 Efficient implementation

The Nelder–Mead algorithm can require 300 function
evaluations to find the transformation parameters that
minimize the mismatch function. For a typical page con-
taining 1800 characters and 1800 connected components,
Sect. 2.1 apparently requires 18002 evaluations of d(A, B)
for each invocation of the mismatch function. The result-
ing 1 billion d(A, B) evaluations would probably make
the overall algorithm unacceptably slow.

Two strategies result in significant speed-ups:

1. Use a carefully chosen subset of the ideal boxes –
the ones where d(A, B) is likely to be largest if the
transformation parameters are wrong.

2. Preprocess the transformed image boxes using a buck-
eting algorithm that allows d(A, B) to be evaluated
only for the most reasonable (A, B) pairs.

Strategy 1 is simplest, but it needs to be used carefully
since it involves changing the mismatch function rather
than just evaluating it more efficiently.

3.1 Choosing a subset of the ideal boxes

The basic idea of choosing a subset of the boxes is rele-
vant to a wide range of problems. For instance some skew
detection methods are based on fiducial points derived
from connected components or other image features [1,
17]. Taking a random sample of the fiducial points would
certainly result in a speed up.

The mismatch function is especially well suited to
random sampling because it is designed to allow for ma-
terial in the page image that does not correspond to any

Fig. 4. The character boxes from a sample page with a subset
shaded to indicate which of them might be used as ideal boxes
for the mismatch function

characters in the original page description. We can base
the mismatch function’s ideal boxes on just a subset of
the characters as indicated by the shaded boxes in Fig. 4.

The selected characters in Fig. 4 are at the beginnings
and ends of lines, around any other large empty spaces,
and around some of the word breaks. If a poorly chosen
transform is applied to the image, it is likely that many
of the selected boxes will not match any of the resulting
image boxes. Hence the mismatch function will tend to
return large values when given non-optimal transforma-
tion parameters.

It is easy to choose such a subset of the characters if
we assume that the original page description lists boxes
approximately in reading order. Suppose there are n
characters numbered 0, 1, 2, . . . , n−1, where each char-
acter i has bounding box Ai. Let σ be a pseudorandom
function that maps 0, 1, . . . , n−1 into the interval [1, 1.3],
and consider the positive integers less than n in order of
decreasing

σ(i) · d(Ai−1, Ai).

For each such integer i, make i and i − 1 part of the
chosen subset until the chosen subset reaches some pre-
determined size. This predetermined size will typically
be something like

min(max(300, 0.15n), n).

The purpose of the function σ is to ensure that if
there are a lot of roughly equal d(Ai−1, Ai) values, the
chosen subset samples them in a roughly uniform man-
ner with respect to the index i. The number 1.3 in the
definition of σ is a fairly arbitrary value that quantifies
what we mean by “roughly equal d(Ai−1, Ai) values.”
If inter-word spaces vary by more than a factor of 1.3,
we trust that it is all right to concentrate on the largest
spaces.

3.2 Bucketing strategies

Transformed image boxes B0, B1, . . . , Bm−1 must be
preprocessed so that, for any given box A, we can quickly

56 J.D. Hobby: Matching document images with ground truth

find the Bi that minimizes d(A, Bi). It is natural to use
bucketing because the Bi are distributed in a fairly uni-
form fashion across the non-blank areas of the page, and
we can find a reasonable upper bound on the optimal
d(A, Bi). This is because the ideal boxes are easily or-
dered so that if A′ follows A, the optimal Bi for A is
likely to produce a low value for d(A′, Bi) as well.

Another way to guess a good Bi is to use information
from a previous invocation of the mismatch function. If
the transformation T has not changed much, the trans-
formed image boxes B0, B1, . . . , Bm−1 will not differ
much from one invocation to the next. Hence we can try
the Bi that corresponds to the one chosen last time for
ideal box A. Thus we have two guesses for image boxes
that are supposed to give low d(A, Bi) values and these
provide an upper bound on the actual minimum d value.

There are many ways to set up buckets so that a good
upper bound on the minimum d value and a sufficiently
uniform distribution of image boxes sharply limit the
number of buckets and image boxes to be examined. One
method is to classify boxes according to (x1, y1) and

max
(

x2 − x1

W
,
y2 − y1

H

)
, (2)

where W and H are the width and height of the page
and (x1, y1) and (x2, y2) are the minimum and maximum
x, y coordinates for the box. The observed values of (2)
are grouped so that one group has the small values and
each other group covers at most a factor of two. Within
each group, the bucket is determined by (x1, y1) in the
natural fashion. Each time we go from one group to the
next, values of (2) double and we reduce the number of
(x1, y1) buckets by a factor of four.

4 Assigning ground truth

We have seen how to find a transformation (1) that
makes the image boxes approximately match the ideal
boxes that carry ground truth character identities from
the original document description. If this were an exact
one-to-one correspondence, it would be trivial to assign
ground truth to the image boxes. When the correspon-
dence is far from one-to-one, the most reliable approach
is probably Kanungo’s procedure of comparing against
the expected character shapes with a small range of
x and y displacements. Character shapes for template
matching can also be extracted from the scanned image
as suggested by Nagy et al. [12]. The purpose of this sec-
tion is to consider what can be done if the ideal character
shapes are not available.

The pleasant situation of a one-to-one correspondence
is most relevant to the problem of assigning ground truth
on a word-by-word basis, so we start with this prob-
lem. We then use information from the word-by-word
problem to attack the more difficult problem of assign-
ing character-level ground truth.

4.1 Ground truth at the word level

Consider the problem of identifying words in the original
document description with the corresponding parts of
the page image. We can assume that a word is described
by consecutive records from the document description,
where each record gives a character identity and the cor-
responding bounding box. Hence the task is to find word
breaks in the document description, combine character
bounding boxes to get a bounding box for each word, and
then expect the transformed image boxes for each word
to be approximately contained in the word’s bounding
box.

One way to decide if there should be a word break
between two records in the document description is just
to measure the distance between the character bounding
boxes and test it against a threshold as do Chen et al.
[3]. In our case, the original document description was
derived from TEX output so we use a version of Knuth’s
rule for finding word breaks in TEX output [10,11]. In-
sert a word break between document description records
A and B if

Bx1 − Ax2 >
s

6
, Bx1 − x̄ < −2s

3
or |By2 − Ay2| >

5s

6
,

where x1 and x2 subscripts refer to the minimum and
maximum x coordinates, y2 subscripts refer to the bot-
tom y coordinate, s is the average of A’s font size and
B’s font size, and x̄ is the maximum of Ax2 and the
Cx2 values for all records C that precede A and follow
the last word break. Another way to say this is that we
break the document description into words by checking
for horizontal spaces of more than 1

6 of the font size or
vertical spaces of more than 5

6 of this size, while allowing
2
3 of this size for backspacing when building up accented
characters.

Refer to the bounding box of all the ideal boxes in a
given word as a word box. We can assign transformed im-
age boxes to words by just testing for approximate con-
tainment. An image box B is approximately contained
in word box W if

df (Bx1, Bx2, Wx1, Wx2)
+df (By1, By2, Wy1, Wy2) ≤ ε, (3)

where df is as given in Sect. 2.1 and ε is a suitable thresh-
old. This test is fast enough that we can try each trans-
formed image box against each word box until finding a
word box that approximately contains the image box.

4.2 Character level ground truth

If we want to find the portion of the page image that
corresponds to each character in the original document
description, the word-level ground truth allows the prob-
lem to be solved separately for each word. The corre-
spondence between ideal boxes and transformed image
boxes may be imprecise as illustrated in Fig. 5a, but this
can be improved by doing an additional transformation
specific to the current word. The bounding boxes of the

J.D. Hobby: Matching document images with ground truth 57

transformed image boxes assigned to the word (dashed
lines in Fig. 5b) will not precisely match the word box
(solid lines in Fig. 5b), but a transformation of the form

T̄ (x, y) = (t̄xxx + t̄x, t̄yyy + t̄y) (4)

can fix this. The result is a better correspondence be-
tween ideal boxes and image boxes as shown in Fig. 5c.

The remaining task is to use this correspondence to
map image boxes and the associated artwork to the ideal
boxes. In case this cannot be done by comparing the
observed images against the expected character shapes
as Kanungo suggests, we now give an algorithm for doing
this: Algorithm 1 uses an approximate containment test
like (3), but with a tighter tolerance. We omit the details
in Step 3 where run-together character images get cut up
since this cannot be done reliably without knowledge of
the character shapes. See Hobby [6] for an example of an
application where Algorithm 1 was used successfully.

Algorithm 1 How to use an approximate containment
test to take the character images assigned to a word and
assign them to ideal boxes within the word, cutting up
images if necessary.

1. Test each transformed image box for approximate
containment in each of the word’s ideal boxes and
assign the image boxes accordingly. If a transformed
image box is approximately contained in more than
one ideal box, choose the one where the df values are
smallest.

2. For each unassigned image box B, find the set SB of
ideal boxes that intersect B and label B as a con-
glomeration of material from members of SB .

3. If desired, try to cut up each image for box B from
Step 2 cookie-cutter fashion, and assign the pieces to
the appropriate ideal boxes.

4. Use the character identity and font labels from each
ideal box to give ground truth labels for the images
assigned that ideal box.

Another option is to use Algorithm 1 to extract pro-
totypes for template matching. Combining everything
the algorithm assigns to a given ideal box should produce
the character image corresponding to that ideal box. For
any character common enough to occur several times per
page, throw out any unreliable instances and average the
rest of them together. Character images containing the
results of Step 3 should be considered unreliable and the
same goes for cases where the approximate containment
test in Step 1 would have failed if the tolerances were a
little tighter.

The next step is to average the reliable character in-
stances together. See [5] for a full discussion of how to
do this. The result is a set of high-quality templates for
all but the most uncommon characters. These can then
be used in Kanungo’s template matching process.

5 Results

The algorithm was implemented in C++ and tested on
28 pages from six different documents. Each page was

printed at 600 dpi, photocopied once, and scanned or
faxed at various resolutions. Table 1 gives basic infor-
mation about the documents and the scanned images.
The original document descriptions consisted of LATEX
output that was post processed to produce ASCII files
listing character identities and bounding boxes for use by
the program. This ASCII format was not specific to TEX
or LATEX and could have been generated from a PDF or
PostScript document description if a suitable conversion
program were available.

In order to test the optimization procedures as thor-
oughly as possible, we start with a simple estimate for
the transformation that matches the image to the doc-
ument description, and then use all available means to
reduce the mismatch. The goal is to get the mismatch
below a critical value based on half the width of a typical
character as suggested in Sect. 2.2.

The simple estimate for the transformation differs
from Kanungo’s approach in how it tries to cope with
bad feature points from speckles and miscellaneous noise
in the page images. We find the four feature points illus-
trated in Fig. 1 for both the ideal boxes and the image
boxes, then try to transform any three of the image box
features into the corresponding ideal box features. This
gives four possible transformations from which we can
select the one closest to the identity transform. If none
of these appear reasonable, we try again using additional
constraints with pairs of feature points instead of triples.
An additional heuristic attempts to cope with fax header
lines that appear in the images but not in the document
description.

Once the initial transformation is chosen, we can pick
a subset of the ideal boxes as explained in Sect. 3.1 and
then use the Nelder–Mead algorithm to minimize the
mismatch as explained in Sect. 2.2. If the mismatch re-
mains above the critical value, a second round of mini-
mization uses the same starting point, but bases the mis-
match on all of the ideal boxes instead of just a subset of
them. If this fails to reach the critical mismatch value,
it may be that certain ideal boxes cannot be matched.1
These ideal boxes can be found by examining the last
function evaluation in Round 2, and finding the ideal
boxes that contribute the most to the mismatch. For in-
stance one 200 × 100 dpi page image from Document A
had mismatch contributions of 15.2 and 14.9 for the 85th
and 84th ideal boxes, while no other ideal box had a mis-
match contribution of more than 3.9. Round 3 consists of
dropping as many as three such high-contributing boxes
from the mismatch function and repeating the minimiza-
tion process.

Figure 6 shows how this three-round minimization
process performs on the test pages. Since the mismatch
function is the L4 norm of the contributions for the ideal
boxes, the mismatch values used in the figure are nor-
malized by dividing by the fourth root of the number
of ideal boxes. This means that the coordinates in the
figure are essentially in pixel units, so the higher “af-
ter minimization” values for the 400 dpi test pages just

1 This can happen when character images merge with large
connected components such as rule lines in a table.

58 J.D. Hobby: Matching document images with ground truth

a b c

Fig. 5a. Transformed image boxes (dashed lines) superimposed on the corresponding ideal boxes (solid lines); b the word box
(solid lines) and the bounding box of the transformed image boxes (dashed lines); c The boxes from a with the image boxes
transformed so that the bounding boxes from b coincide to form the dotted box

Table 1. Statistics about the test pages and the character images extracted by page layout analysis. Documents A–C are
preprints of journal articles and documents E–G are software manuals. The “Truth” column lists the average characters per
page from the original document description and the last three columns count connected components in the scanned images

Document Average characters or components
Id Font Language Pages Truth 200 × 100 200 dpi 400 dpi
A cmr 10pt English 5 1715 2100 1819 1838
B Times 10pt English 6 2371 2655 2453 2519
C cmr 12pt English 5 1272 1839 1423 1379
E cmr 10pt English 4 1879 2533 2026 2016
G cmr 11pt German 4 1643 2257 1831 1821
S cmr 11pt Spanish 4 1453 1916 1564 1540

Fig. 6. A scatter plot of the normalized mismatch before and
after the three-round minimization process for pages from the
test documents. Each label gives a document id from Table 1
followed by a digit that gives the resolution: 1 means 200×100
dpi; 2 means 200 dpi; 4 means 400 dpi. Boxes identify pages
where the critical mismatch value could not be achieved. All
data is for Nelder–Mead minimization

mean that the actual distances involved in the mismatch
computation are staying fairly constant. (The mismatch
values in Fig. 3 would have to be divided by 4

√
300 ≈ 4.16

in order to have the same units.)
The three boxed labels in Fig. 6 are for 200 × 100

dpi test pages where Nelder–Mead minimization failed
to reach the critical mismatch value. Since all other test
pages led to less than critical mismatch values, the 200×
100 dpi resolution images appear to be the primary trou-
ble spot for Nelder–Mead. This is relatively encouraging

in view of the high mismatch values before minimization.
Except for the small group of 100 × 200 and 200 dpi la-
bels at horizontal positions < 3.5 and the small group
of 400 dpi labels at horizontal positions < 7, it was
apparently not possible to find three appropriate fea-
ture points on which to base the initial transformation.
Note that minimization often reduced the normalized
mismatch by a factor of two even when the initial mis-
match value was good enough to suggest that the feature
points were appropriate.

If the mismatch values after minimization scale with
resolution, is there some underlying cause? We test this
by viewing the mismatch graphically as indicated by the
transformation (4) for each word. Figure 7 shows how
the center of each word in the 200 dpi scanned image
gets shifted for the two pages from Document A; i.e., it
displays the additional transformations needed after the
best affine transformation has been applied. These trans-
formations are complicated but they do not look like ran-
dom noise. If the similarities between parts a and b of
the figure are due to the fact that they both originated
from the same copier and fax machine, it may be possible
to measure the nonlinearities and compensate for them
in future experiments as suggested by Kanungo et al.,
[8,9]. On the other hand, Sect. 4.2 explained how to find
the transformations (4) without such prior calibration if
the mismatch is not too great.

In view of the importance of getting the mismatch be-
low the critical value, it is worth checking if alternative
minimization strategies can reduce or eliminate instances
of failure to reach the critical value. One approach is to
try other initial transformations. For instance, the fail-
ures in Fig. 6 can be eliminated by starting at the trans-
formation that turned out to be optimal for the previous
page of the document in question. Of course it would be

J.D. Hobby: Matching document images with ground truth 59

a b

Fig. 7a,b. Displacements for the center of each word’s
bounding box due to the transformation (4) when match-
ing 200 dpi images to the original document descriptions for
two pages of Document A. The displacement vectors are ex-
aggerated by a factor of 20

better to find an optimization strategy that outperforms
Nelder–Mead on the 200 × 100 dpi pages.

The guaranteed convergence properties of Torczon’s
algorithm make it a prime candidate for these difficult,
low-resolution test pages. Figure 8 compares the effec-
tiveness of Nelder–Mead minimization with three ver-
sions of Torczon’s algorithm. The three versions differ
in the setting of a parameter that controls the number
of function evaluations per iteration of the optimization
routine. Torczon refers to this parameter as “the number
of search directions.” The minimum allowable value of 12
gives rise to the solid round dots in Fig. 8; the small open
circles are for 24 search directions; and the large open cir-
cles are for 96 search directions. The Nelder–Mead data
indicated by + signs in the figure do not show a dramat-
ically different distribution.

Figure 8 shows that the mismatch after minimiza-
tion was always either less 1.5 or more than 4. This sep-
arates the data points into those where the mismatch
was successfully reduced to the critical value, and those
where the minimization process should be considered un-
successful. Since the most notable feature of this latter
group is that dots (Torczon’s with 12 search directions)
are overrepresented, we tentatively conclude that it is
probably best to use more than 12 search directions.

Table 2 shows how Torczon’s algorithm compares
with Nelder–Mead in terms of the number of function
evaluations needed to reach the minimum. The “Over-
all” row shows that the overall average number of func-
tion evaluations is much less for Nelder–Mead. Torczon’s
algorithm performs best with 24 search directions, but
even in that case, Nelder–Mead does fewer than half as
many function evaluations. It also helps to increase the
resolution. The overall averages are reduced at 200 and
400 dpi because it is seldom necessary to resort to more
than one round of minimization.

Fig. 8. A scatter plot of the normalized mismatch before and
after the three-round minimization process for 200 × 100 dpi
pages from the test documents. The + signs are for Nelder–
Mead minimization, and the dots, small circles, and large
circles are for Torczon’s algorithm with 12, 24, and 96 search
directions, respectively

Table 2 may be a little misleading because it weights
iterations in Round 1 just like those in Rounds 2 and 3
even though the later rounds make the mismatch func-
tion harder to evaluate by basing it on all or almost all
the ideal boxes instead of using just 15% of them. Hence,
the actual run times in Table 3 show an even bigger speed
up at the higher resolutions. Torczon’s algorithm still
takes more than twice as long, but this could change if
parallelism were enabled. (The test machine was an SGI
Challenge XL with 12 MIPS R4400 processors running
at 150 MHz, but all tests were done on a single proces-
sor).

What about the accuracy of the ground truth pro-
duced by the algorithm? Kanungo has shown that reli-
able ground truth can be obtained by template matching
against the expected character shapes, once the trans-
formation is known. To test how well the algorithm per-
forms without template matching, it was used to eval-
uate imperfectly segmented characters derived from the
200 dpi pages described in Table 1. The method of [2,
7] was used to segment each page image into characters,
then the resulting character boxes were used as the im-
age boxes and matched against the ideal boxes from the
TEX output. Thus each image box was labeled as cor-
responding to zero or more ideal boxes or parts thereof,
and these labels were checked by hand.

Out of a total of 48 553 image boxes, 2529 were not
labeled with any ideal boxes. Most of these rejected im-
age boxes were from fax header lines or other parts of
the page images where the TEX output did not specify
any characters. However, 624 of the rejected image boxes
could have been labeled. This high number of false re-
jects was due to conservative tolerances designed to re-
ject questionable cases rather than risk generating bad
output.

A total of 2428 of the image boxes were correctly la-
beled as more than one character and 168 image boxes

60 J.D. Hobby: Matching document images with ground truth

Table 2. Average number of times the mismatch function had to be evaluated to process a test page broken down by resolution,
optimization strategy, number of rounds of optimization needed, and success in reducing the mismatch below the critical value

200 × 100 dpi 200 dpi 400 dpi
Scenario Torczon 12 Torczon 24 Torczon 96 NM NM NM

Round 1 works 1596 899 2748 307 335 312
Round 2 works 4706 2566 6302 1229 1226 1366
Round 3 works 9525 2673 8853 1918 – –
Round 2 fails 4485 2590 9134 1648 – –
Round 3 fails 5361 4149 12405 – – –

Overall 2924 1501 4457 657 399 387

Table 3. Average run time in seconds per test page as a function of resolution, optimization strategy, number of rounds of
optimization needed, and success in reducing the mismatch below the critical value

200 × 100 dpi 200 dpi 400 dpi
Scenario Torczon12 Torczon24 Torczon96 NM NM NM

Round 1 works 57.6 34.0 96.2 12.5 12.8 13.2
Round 2 works 285.9 169.6 631.7 128.1 77.0 89.9
Round 3 works 833.6 251.5 803.4 158.9 – –
Round 2 fails 275.3 203.6 568.4 124.5 – –
Round 3 fails 321.8 358.9 1145.2 – – –

Overall 169.5 93.9 281.4 44.3 17.3 18.7

were correctly labeled as only part of a character. There
were 6 cases where two characters ran together but they
were labeled as as a single character plus “something
that got rejected.” In other words, the algorithm indi-
cated that the 6 objects were too big to be single char-
acters but it could only find one ideal box that clearly
matched the image box.

Only 5 image boxes were truly mislabeled: 2 image
boxes that should have been labeled as periods or com-
mas were labeled as part of a neighboring character; and
3 image boxes resulting from a character merging with
part of an adjacent character were labeled as single char-
acters. This corresponds to an error rate of about one
part in 104 if you exclude the rejections and other ex-
ceptional conditions described above. Using Algorithm 1
to extract templates for template matching as suggested
at the end of Sect. 4.2 would have eliminated all of these
errors.

6 Conclusion

When generating ground truth by matching a page im-
age with the original document description, it is of pri-
mary importance to find a geometric transformation that
maps coordinates appropriately. We have seen how stan-
dard optimization techniques can improve the accuracy
of such a transformation, even if the initial approxima-
tion is way off. In those few cases where optimization
does not yield an appropriate transformation, the mis-
match function reveals the problem, and restarting the
optimization with a different initial transformation can
solve the problem.

The mismatch function presented in Sect. 2.1 could
be generalized to deal with other applications. This should
allow the basic idea of using optimization techniques to
match a scanned image with the original document de-
scription to apply to any sort of text or graphics. For

instance, if the page contains line graphics and the doc-
ument description makes it clear where all the ink should
be placed, the mismatch function can just look at some of
the places where black pixels should be found and mea-
sure the distance to the nearest black significant black
area in the image. Such a modification in the mismatch
function may also yield better results on low-resolution
text where the correspondence between characters and
bounding boxes of connected components sometimes be-
gins to break down.

Consider the statement by Kanungo and Haralick
that their methodology is general enough to handle doc-
uments in any language [9, p. 674]. The algorithm pre-
sented here works for any language where bounding boxes
of connected components are reasonably well correlated
with character bounding boxes. In other words, the mis-
match function would have to be generalized somehow
in order to cope with a language like Arabic where char-
acters are not separated by white space.

A number of important questions remain to be more
fully addressed in future work. Does searching for an
affine transformation (1) provide the right number of
degrees of freedom? Three degrees of freedom suffice to
determine how a piece of paper is positioned on a scan-
ner, yet affine transformations provide six and Fig. 7 sug-
gests that it would help to allow much more complicated
transformations. Affine transformations were chosen as
a compromise because direct search optimization algo-
rithms have a reputation for behaving poorly when the
dimensionality of the search space is too high.

Another question is what optimization algorithm is
best. Since Torczon’s algorithm is designed to run in
parallel, its run times could be significantly better than
Nelder–Mead if parallelism were enabled. On the other
hand, the mismatch function itself could be parallelized
since each ideal box can be considered separately. The
tests reported in Sect. 5 are less than definitive, but the

J.D. Hobby: Matching document images with ground truth 61

difficulties that occasionally cause Nelder–Mead to fail to
find the desired minimum do not seem to be amenable
to Torczon’s superior convergence properties. The mis-
match function could well have undesired local minima.

A possible alternative to direct search methods such
as Nelder–Mead and Torczon’s algorithm is to try to
use differential semblance optimization to construct a
smoother or more continuous function to minimize as
suggested by Symes [18], Gockenbach [4].

It also seems promising to try a real segmentation
algorithm instead of just finding bounding boxes of con-
nected components. The third round of optimization used
in the trials in Sect. 5 was specifically designed to cope
with missed segmentations, but it would undoubtedly
be better to improve the segmentation. This would be
especially important when dealing with languages where
characters tend to run together or languages where char-
acters can contain many small connected components.

Finally, it would help to be able to extract symbol
identities and bounding boxes from a PostScript or PDF
file, instead of depending on TEX or LATEX output. This
would make it easier to generate a wide range of input
for the ground truthing process and it would probably
allow for more accurate bounding boxes. We chose TEX
output simply because it is easy to parse – PostScript or
PDF would work as well, provided that it contains the
required symbol identities.

Acknowledgements. Virginia Torczon and David Serafini pro-
vided an implementation of Torczon’s algorithm and adjusted
it to be more easily called as a subroutine. Margaret Wright’s
careful implementation of the Nelder–Mead algorithm was
also very helpful.

References

1. Henry S. Baird. The skew angle of printed documents.
In: Proc. SPSE 40th Symp. Hybrid Imaging Systems,
pp 21–24, Rochester, NY., May 1987

2. Henry S. Baird. Anatomy of a versatile page reader. Pro-
ceedings of the IEEE 80(7): pp 1059–1065, 1992. Special
Issue on OCR

3. Su Chen, Robert M. Haralick, Ihsin T. Phillips. Perfect
document layout ground truth generation using DVI files
and simultaneous text word detection from document
images. In: Proceedings of the Fourth Annual Sympo-
sium on Document Analysis and Information Retrieval,
Las Vegas, NV, April 1995

4. Mark S. Gockenbach. An abstract analysis of differen-
tial semblance optimization. Technical Report TR94–18,
Dept. of Computational and Applied Mathematics, Rice
University, 1994

5. John D. Hobby, Henry S. Baird. Degraded character
image restoration. In: Proceedings of the Fifth Annual
Symposium on Document Analysis and Image Retrieval,
pp 233–245, 1996

6. John D. Hobby, Tin K. Ho. Enhancing degraded doc-
ument images via bitmap clustering and averaging. In:
ICDAR‘97: Fourth International Conference on Docu-
ment Analysis and Recognition, August 1997

7. D. J. Ittner, Henry S. Baird. Language-free layout anal-
ysis. In: Proceedings of the Second International Con-
ference on Document Analysis and Recognition, pp 336–
340, Tsukuba Science City, Japan, October 1993

8. Tapas Kanungo. Validation of Document Degredation
Models. PhD thesis, University of Washington, 1995

9. Tapas Kanungo, Robert M. Haralick, Automatic gener-
ation of character groundtruth for scanned documents:
a closed-loop approach. In: Proceedings of Int. Conf. on
Pattern Recognition, Vol. C, pp 669–675, Vienna, Aus-
tria, 1996

10. Donald E. Knuth. The TEXbook. Reading, MA: Addison
Wesley 1986. Vol. A of Computers and Typesetting

11. Donald E. Knuth. TEXware. Technical Report CS-TR-
86-1097, Dept. of Computer Science, Stanford Univer-
sity, April 1986

12. George Nagy, Yihong Xu. Priming the recognizer. In:
Jonathan J. Hull, Suzanne Liebowitz Taylor (eds) In-
ternational Workshop on Document Analysis Systems
(DAS‘96), pp 263–281, 1996

13. J. A. Nelder, R. Mead. A simplex method for function
minimization. Computer Journal 7: 308–313, 1965

14. Ihsin T. Phillips, Su Chen, J. Ha, Robert M. Haral-
ick. English document database design and implementa-
tion methodology. In: Proceedings of the Second Annual
Symposium on Document Analysis and Information Re-
trieval, pp 65–104, April 1993

15. Ihsin T. Phillips, J. Ha, Robert M. Haralick. Implemen-
tation methodology and error analysis for the University
of Washington English Document Image Database-I. In:
Proceedings of the SPIE, Vol. 2103, pp 155–173, 1994

16. R.P. Rogers, Ihsin T. Phillips, Robert M. Haralick. Semi-
automatic production of highly accurate word bounding
box ground truth. In: International Association for Pat-
tern Recognition Workshop on Document Analysis Sys-
tems, pp 375–387, October 1996

17. A. Lawrence Spitz. Skew determination in CCITT group
4 compressed document images. In: Proceedings of the
Symposium on Document Analysis and Information Re-
trieval, pp 11–25, April 1992

18. William W. Symes. Velocity inversion: a case study
in infinite-dimensional optimization. Mathematical Pro-
gramming 48: 71–102 (1990)

19. Virginia Torczon. PDS: Direct search methods for un-
constrained optimization on either sequential or parallel
machines. Technical Report CRPC-TR92206, Rice Uni-
versity Center for Rearch on Parallel Computation, 1992

20. Margaret H. Wright. Direct search methods: once
scorned, now respectable. In: D. F. Griffiths, G. A. Wat-
son (eds) Proceedings of the 1995 Dundee Biennial Con-
ference in Numerical Analysis, pp 191–208, Harlow, UK:
Addison Wesley Longman, 1995

John D. Hobby received his B.S. in mathematics and com-
puter science from the University of Washington in 1980,
and a Ph.D. in computer science from Stanford University in
1985. Since then, he has been a member of technical staff at
Bell Labs in Murray Hill, New Jersy. His research interests in-
volve problems in document analysis including techniques for
improving degraded images. He has also published research
articles on font generation, splines, graphics algorithms, nu-
merical stability, and computational geometry, and he has
created a graphics language called MetaPost.

