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Abstract
This researchwork proposes a novel protocol for rehearsal-based incremental learningmodels for the classification of business
document streams using deep learning and, in particular, transformer-based natural language processing techniques. When
implementing a rehearsal-based incremental classification model, the questions raised most often for parameterizing the
model relate to the number of instances from “old” classes (learned in previous training iterations) which need to be kept
in memory and the optimal number of new classes to be learned at each iteration. In this paper, we propose an incremental
learning protocol that involves training incremental models using a weight-sharing strategy between transformer model
layers across incremental training iterations. We provide a thorough experimental study that enables us to determine optimal
ranges for various parameters in the context of incremental classification of business document streams. We also study the
effect of the order in which the classes are presented to the model for learning and the effects of class imbalance on the
model’s performances. Our results reveal no significant difference in the performances of our incrementally trained model
and its statically trained counterpart after all training iterations (especially when, in the presence of class imbalance, the most
represented classes are learned first). In addition, our proposed approach shows an improvement of 1.55% and 3.66% over a
baseline model on two business documents dataset. Based on this experimental study, we provide a list of recommendations
for researchers and developers for training rehearsal-based incremental classification models for business document streams.
Our protocol can be further re-used for other final applications.
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1 Introduction

A major part of human communication, formal or informal,
takes place through documents. The need for document pro-
cessing and analysis is especially crucial in the corporate
sector, where various organizational decisions depend upon
the information extracted from business documents (letters,
invoices, quotations, tax notices, resumes, bank statements,
etc). Some of the most usual document processing tasks
needed by corporate organizations include document clas-
sification, clustering, forensics, and information extraction.

Document classification refers to automatically identify-
ing and assigning the correct category for a given document,
based on clues hidden in the document’s content [1]. This
contextual information used for classification can be in the
form of text, images, or both.

Recent studies show that deep learning techniques can
be used to perform different types of document processing
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and analysis tasks [2, 3]. But, while traditional deep learning
algorithms rely on static training and test sets, most real-life
datasets for business documents classification are constantly
evolving. Indeed, every day, companies receive/digitize new
documents which can belong to existing categories or rep-
resent new document categories. Traditional deep learning
approaches, which learn from static data, are not optimal in
such cases, as most of them would have to be retrained from
scratch every time a new class (or at least significant infor-
mation) is added, resulting in excessive time and resource
consumption. Incremental learning models are thus more
suitable for most real-life document classification applica-
tions.

Incremental learning is a branch of machine learning
where models are trained on the go with the arrival of new
data during training [4, 5]. The model, after being trained on
the initial dataset, updates itself to adjust to new data distri-
bution at each iteration where new data is added.

In this paper, we focus on incremental business document
classification, which comprises classifying automatically
all inbound communication, i.e. diverse document streams,
including emails, invoices, resumes, tax notices, bank state-
ments, etc. [6]. More precisely, in this research work, we
propose a rehearsal-based incremental learning protocol for
the classification of business documents based on the text
automatically extracted from these documents. The idea
behind rehearsal strategies is that, along with the new data
arriving on the go, a subset of data from previous training
iterations is also kept in memory and used for training dur-
ing later iterations [5, 7], to avoid “catastrophic forgetting”
for the classes learned during early learning iterations [8].

We experiment with the proposed protocol in the presence
of documents written in two different languages: English and
French, and in the presence of balanced, as well as highly
imbalanced, datasets.

The three main contributions of this paper are:

• We introduce a novel protocol for incremental document
classification and perform an incremental classifica-
tion of document streams using weight sharing strategy
between transformermodels layers acrossmultiple incre-
mental iterations, which have not been explored before,
to the best of our knowledge.

• Using different datasets, we extensively compare its
performances with its static counterpart and a baseline
approach and investigate the effects of class imbalance
on both models.

• Weprovide recommendations for setting themain param-
eters required for rehearsal-based incremental document
classification models: (a) the number of instances from
“old” classes (classes learned in previous training itera-
tions) that need to be kept in memory at each iteration
in order to avoid catastrophic forgetting, (b) the optimal

number of new classes to add at each iteration, and (c) the
effect on the overall performance of the order in which
the classes are presented to the model for learning. We
formulate these recommendations based on an extensive
experimental study.

This article is divided into six sections. Section 2 sheds
light on some of the existing works for document classi-
fication and incremental learning. The proposed approach,
methodology, and the details of the experiments performed in
this researchwork are presented in Sect. 3. Section 4 presents
the analysis of our results, while Sect. 5 contains a discussion
and recommendations. Finally, Sect. 6 concludes the paper
and presents future directions for this research.

2 Literature review

Several researchers have proposed models for business doc-
ument classification using textual, image, and multimodal
information, possibly using incremental learning.

Since this paper lies at the crossroad of document classifi-
cation and incremental learning, this section is further divided
into three sub-sections.While Sect. 2.1 briefly reviews recent
works for document classification, Sect. 2.2 presents a thor-
ough literature review for incremental learning, and Sect. 2.3
discusses the choices adopted in this research work.

2.1 Document classification

Typical business document classification workflows include
document capture, image analysis, Optical Character Recog-
nition (OCR) for recognizing the text from bitmap images,
text analysis, assigning the appropriate category to the docu-
ment, and document routing to some business process based
on the category assigned.However, the complexity and diver-
sity of informative elements, backgrounds, and geometric
layouts make it difficult to achieve very good results for auto-
matic document classification [9].

Asim et al. [1] present a two-staged text classification sys-
tem (TSCNN). The first stage includes using a filter-based
feature selection method - Normalized Difference Measure
(NDM) - to eliminate redundant or irrelevant features. These
fine-tuned features are then fed to multichannel Convolu-
tional Neural Networks (CNN) for classifying the input
document into the relevant category. Using two publicly
available datasets (BBC News and 20 News-Group), this
approach achieves an accuracy of 99.251% and 91.746%,
respectively.While it outperforms the baselines, it requires an
additional feature engineering step,which (for large datasets)
may result in increased training time compared to contem-
porary models.

123



Experimental study of rehearsal-based incremental classification

Alhaj et al. [10] propose using a stemming technique
to reduce the high dimensionality of feature vectors and
save computational cost. Using three stemming methods
(Information Science Research Institute, Tashaphyne, and
ARLStem) and three machine learning algorithms (naive
bayes, support vector machines, and K-nearest neighbours),
they classified Arabic text documents. The best results
(94.64%Micro-F1) are obtained using ARLStem for dimen-
sionality reduction, combined with support vector machines.
The approach was not tested on other mainstream languages
besides Arabic.

d’Andecy et al. [9] compare the performance of CNN-
RNN based approach and a custom incremental learn-
ing approach for automatic document classification using
the OCR based textual representation of documents from
Digital Mailroom dataset. They reported that CNN-RNN
based approach outperformed the Incremental classification
approach by achieving an accuracy of 94%. Though the
results achieved via custom incremental learning approach
serve as a proof of concept for the viability of the approach,
the performance achieved is less than the state of art perfor-
mance achieved via CNN-RNN based approach.

Shahkolaei et al. [11] use log-Gabor filter for text/non-
text image segmentation and then SVM for classification.
On two publicly available datasets (Visual document image
quality assessment andMHDID), an accuracy of respectively
76.11% and 85.07% was achieved. This model, however, is
only tested with Arabic language documents, and the extent
of model adaptability to other languages is not known.

Some other interesting rule-based and machine learning
approaches for document classification are proposed in [9,
12–14]. A comparison of some of the existing approaches
for document classification is presented in Table 1.

2.2 Incremental learning

As explained in Sect. 1, incremental learning (IL) is desirable
formodern document classification systems because it allows
for efficient resource utilization by not having to retrain
the system from scratch when new documents/information
arrive. It reduces memory consumption by avoiding or lim-
iting the huge quantity of data that must be stored for the
proper functioning of the system. Incremental learning most
closely resembles human learning [15].

In this research, we employ deep learning for incremen-
tal document classification. The choice of deep learning is
motivated by its outstanding performances and its minimal
requirements for human supervision.

Luo et al. [16] classified incremental learning scenarios
into three categories: instance incremental learning, class
incremental learning, and instance and class incremental
learning. Instance incremental learning keeps the number
of classes fixed while the number of instances per class

expands during each incremental learning stage. In class
incremental learning, new classes are added only during each
incremental learning stage. Finally, in instance and class
incremental learning, the number of instances from existing
classes expands along with the addition of instances from
new classes. In the rest of this paper, we follow this conven-
tion to refer to IL scenarios (instance incremental learning,
class incremental learning, and instance and class incremen-
tal learning). We use the term “task incremental learning"
(learning new tasking within the same domain [17]) to refer
collectively to these three IL scenarios.

The major risk associated with incremental learning is
“catastrophic forgetting” (CF): a sharp performance decline
for already learned tasks after the acquisition of new data
[8]. Catastrophic forgetting can be caused by several phe-
nomena, including activation drift, weight drift, task-recency
bias (referring to the bias towards the most recently-learned
tasks), and inter-task confusion [15]. Several IL techniques
have been proposed to reduce the risk of catastrophic forget-
ting while simultaneously learning new information.

But, trying to prevent catastrophic forgetting can cause
another major issue: intransigence, or the unwillingness to
learn new tasks [18]. Effective IL systems must find a fine
balance between catastrophic forgetting and intransigence, a
tradeoff called the stability-plasticity dilemma [19].

In the next section, we provide a thorough review of
the state-of-the-art IL techniques aiming at finding a good
trade-off between stability and plasticity. To this end, on the
basis of recent works, four categories of incremental learning
strategies are discussed in the next four sub-sections: reg-
ularization approaches, architectural strategies, variational
continual learning (VCL), and rehearsal-based approaches.

2.2.1 Regularization approaches

Regularization approaches mitigate catastrophic forgetting
by introducing a special regularization term to classification
loss. Based on recent studies, regularization approaches can
be divided into two major categories: weight regularization
strategies and distillation strategies.

Weight Regularization Strategies Weight regularization
strategies are based on the hypothesis that the previous infor-
mation learned by a neural network can be preserved by (i)
assessing the importance of weights relevant to learn previ-
ous information and (ii) restricting the learning rate for new
information. An additional loss is incorporated in the loss
function (in addition to the cross-entropy loss), which can be
formulated as:

Lreg(θ
t ) = 1

2

|θ t−1|∑

i=1

�i (θ
t−1
i − θ ti )

2
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Table 1 A summary of existing works for document classification

Existing work Document type Methodlogy Advantages Limitations

Asim et al. [1] Health & security Normalized difference
measure and CNN

High accuracy and
robust feature
selection using NDM

Increased training time
and limited scalability

d’Andecy et al. [9] Digital mailroom
documents

Custom incremental
learning approach

Shows viability of
incremental learning

Approach doesn’t
achieve
state-of-the-art results

Sanchez-Pi et al. [12] BBC news and 20
news-group

Ontologies High explainability Low generalization,
requires creating
ontology for every
domain

Gayathri et al. [13] Health Ontologies & semantic
document description

High explainability High domain
dependence and low
generalization

Walczak et al. [14] Research articles Keyword identification
through text analytic

Simpler implementation
and high explainability

High domain
dependence and low
generalization

Alhaj et al. [10] CNN Arabic corpus Stemming for
preprocessing and &
traditional ML algos
e.g. SVM, KNN etc

Reduced number of
features and faster
training

Approach only tested on
Arabic texts, requires
additional
preprocessing step

Shahkolaei et al. [11] Visual document image
& MHDID datasets

Log-gabor filter for
preprocessing and
SVM

Reduced number of
features and faster
training

Approach only tested
with the Arabic
language

where θ ti is weight i of the network trained for the current
task t , θ t−1

i is the value of weight parameter i at the end of
training on task t − 1, |θ t−1| stands for the total number of
weights in the network, and �i contains importance values
for all the network weights.

Zeng et al. [20] propose the orthogonal weights modifica-
tion (OWM) approach for incremental image classification.
By restricting the direction for weights updates of each
parameter, it protects previously gained knowledge.

Farajtabar et al. [21] propose the orthogonal gradient
descent (OGD) approach which, when a new task arrives,
determines the orthogonal basis S of the previous task and
then transforms the current task’s original gradient to a new
gradient perpendicular to S.

Some previously introduced IL models based on weight
regularization are proposed by Chaudhary et al. [18], Aljundi
et al. [5], and Castro et al. [22].

Distillation Strategies Distillation is a regularisation
approach focused on macro-protection. It limits the output
value of both the new and old models. It allows information
from the previous model to be incorporated into the current
model, hence, CF is partially reduced.

Hinton et al. [23] suggested knowledge distillation (KD)
to minimise knowledge loss. The KD equation may be stated
as follows using the softmax output layer:

qi = exp(zi/T )∑
j exp(zi/T )

where qi is the probability of the i th class and z is the
preceding layer’s logit. T is a temperature coefficient that is
normally set to 1 during the inference stage.

Some of the studies that propose IL models based on dis-
tillation strategy are proposed by Wu et al. [7], Zhang et al.
[24], Lee et al. [25].

One of the main advantages of regularization strategies is
that they do not require extra storage during each incremental
stage. However, most regularization strategies struggle when
there are numerous incremental stages/tasks to learn (espe-
cially weight regularization strategies). The main reason for
this poor performance is the large number of required regu-
larization terms, whichmay prevent manyweight parameters
from updating, resulting in intransigence.

2.2.2 Architectural strategies

In architectural strategies, multiple classifiers are trained for
every sequential incremental task. Then, during the inference
stage, a selector decides which one is the model best suited
for the task at hand.

Roy et al. [26] created a hierarchical frameworkwith a tree
structure. IL can be achieved by adaptively altering the tree’s
leaves. Although this strategy reduces catastrophic forgetting
to some extent, it appears to take up more storage space;
hence the model cannot be trained efficiently.
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Other techniques, such as Progressive Neural Networks
(PNN), rely on iteratively growing the network. But, most
such methods cannot efficiently use the network’s capacity.
Mandivarapu et al. [27] propose a solution to this problem
using the Self-Net model, which encodes a group of low-
dimensional weights learned from multiple tasks using an
auto-encoder.

Some previously introduced ILmodels using architectural
strategies were proposed by Polikar et al. [28], Rusu et al.
[29], Yoon et al. [30].

Thanks to their multiple connected classifiers, architec-
tural strategies are beneficial for mitigating catastrophic for-
getting while learning new knowledge. However, with each
incremental iteration, their number of parameters expands,
which may increase the model’s training time for later itera-
tions.

2.2.3 Variational continual learning

Variational continual learning (VCL) is built on the Bayesian
inference framework. VCL was first proposed by Nguyen et
al. [31], in an attempt to combine onlineVariational Inference
(VI) and the latest advancements inMonteCarloVI for neural
networks.

Farguhar and Gal [32], propose Variational Generative
Replay (VGR), a variational inference extension of Deep
Generative Replay (DGR) based on the Bayesian online
learning paradigm, to complement variational continual
learning.

Some other interesting IL models using variational con-
tinual learning are proposed by Chen et al. [33], Adel et al.
[34], and Ebrahimi et al. [35].

VCL is a naturalwayof capturing past information learned
by a neural network in the form of a prior, which mitigates
catastrophic forgetting. Its main drawback is that the estima-
tion of prior that effectively captures past information is a big
challenge. Furthermore, VCL is computationally expensive
when the number of variables involved in Bayesian inference
is large.

2.2.4 Rehearsal approaches

Rehearsal and pseudo-rehearsal approaches use retrospective
knowledge to mitigate the effects of catastrophic forgetting
(CF). The rehearsal strategy enables the IL model to re-use
the previous knowledge while acquiring new knowledge by
keeping in memory a subset of the data learned in the past. In
pseudo-rehearsal techniques, upon learning new knowledge,
the model creates some pseudo data that closely matches the
data distribution of old data. Then, during each incremental
learning iteration, both the new data and the “old” data (or
pseudo-data in the case of pseudo-rehearsal) is used to train
the incremental model.

One of the earliest rehearsal-based deep incremental
learning model Incremental Classifier and Representation
Learning (iCaRL) was proposed by Rebuffi et al. [4] and
employs a CNN for the incremental classification of images
from the CIFAR-100 and ImageNet ILSVRC 2012 datasets.

Wu et al. [36] propose a rehearsal-based IL technique
that uses knowledge distillation for the incremental classi-
fication of images from the CIFAR-100, Flower-102, and
MS-Celeb-1M-Base datasets. Their model uses vanilla gen-
erative adversarial networks to cater to the distribution
difference in the exemplars kept in memory.

Zhang et al. [24] propose Deep Model Consolidation
(DMC) algorithm based on pseudo-rehearsal incremental
learning technique. The proposed approach trains two indi-
vidual models (for old and new classes) and then combines
them via a novel double distillation strategy. The combined
model is further consolidated by exploiting publicly avail-
able unlabelled auxiliary data representative of both old and
new classes.

Masarczyk and Tautkute [37] propose a pseudo-rehearsal
incremental learningmodel that uses a two-step optimization
process to generate synthetic data via meta-gradients, which,
when learned in a sequence, does not result in catastrophic
forgetting. In the first step, the model uses generative neural
networks to create a synthetic sequence of tasks to evalu-
ate the learner model in IL scenarios. The learner model,
once trained on synthetic data, is evaluated on real data. The
loss obtained on real data is used to fine-tune the parameters
of the generative network. The process continues whenever
a new task or a class is encountered. The proposed model
is trained to incrementally classify images from the Split-
MNIST dataset.

Some previously introduced rehearsal and pseudo-
rehearsal incremental learningmodels were proposed in Shin
et al. [38], Kemkar and Kanan. [39], and Hou et al. [40].

Rehearsal techniques work well and inherit a long his-
tory of success. They are considered efficient and effective
to tackle CF because, by keeping only a limited amount of
previously learned data, CF is reduced significantly. Though
rehearsal-based incremental learning models are simple to
implement, they require setting carefully several hyper-
parameters to achieve optimal performance: the number
of initial classes, memory size (for the instances from old
classes), the batch size for new classes, etc. One of the goals
of this paper is to give a few recommendations for setting
these parameters in the context of incremental document clas-
sification.

2.3 Discussion

The performances of automatic document classification sys-
tems for companies have greatly improved in recent years
[41, 42]. Nonetheless, the requirements concerning training
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datasets, the time to set up, and the cost to keep up with the
changes as the domain grows still pose a serious challenge
for the large-scale practical application of these systems [43,
44]. Furthermore, the evolving nature of business document
datasets makes it difficult for static machine learning models
to achieve optimal performance in the long run. Incremental
learning models are more suited for training machine learn-
ing models for business document classification.

Table 2 summarizes incremental learning approaches dis-
cussed in the previous section. To ease their comparison, we
describe the advantages and/or drawbacks of each category.

Several researchers have undertaken the task of applying
incremental learning techniques for document classification
[46–50]. However, most of the existing researchworks report
performance of incremental learning models for document
classification in terms of a single performance metric such
as accuracy or F1 measure on a static test set. Furthermore,
to the best of our knowledge, none of the existing works
investigate the performance of rehearsal-based incremental
learningmodels for document classification, nor how to set its
main parameters (memory size, best number of new classes
to add at each iteration, the effect of the order in which these
new classes appear, etc).

This research work proposes a rehearsal-based incremen-
tal learning protocol for text document classification using
the weight-sharing strategy of transformer models layers
across multiple incremental iterations. Our choice to use
rehearsal-based approaches for document classification is
motivated by (i) the lack of existing rehearsal-based incre-
mental learning model for document classification, (ii) the
simplicity and explainability of rehearsal-based models, as
they only require mixing up instances from new and old
classes for every training cycle, and (iii) the absence of evi-
dence regarding optimal values for various rehearsal-based
IL parameters, which settings greatly affects the overall per-
formances of the model.

For this work, we chose not to consider pseudo-rehearsal
approaches since they are dependent on the quality of the
generative models for the generation of data for representing
the old classes. Moreover, in the case of imbalanced datasets
where some classes are not well represented, the quality of
generated pseudo-data is subpar to real data used in rehearsal
strategies. [51].

In the rest of this paper,

• Wepropose a rehearsal-based incremental learningmodel
for document classification;

• Using different datasets, we compare extensively its per-
formances with its static counterpart, and investigate the
effects of class imbalance on both models;

• Experiments are performed to analyse the effect of var-
ious parameters for the incremental learning model on
real-life training scenarios for incremental document

classification. To this end we attempt to find the answers
to the following questions for various training scenarios:
(i) What is the effect on the overall performance, of the
order in which new classes appear during training, (ii)
what is the optimal batch size of previous classes and
the number of instances from previous classes to keep
in memory, and (iii) what is the optimal number of new
classes to add during each incremental training cycle.

The next section presents the proposed rehearsal-based
incremental learning protocol for document classification
and the methodology adopted to evaluate the model per-
formance. Recommendations are also provided about which
values to use for themain hyper-parameters of such rehearsal-
based approaches in the case of document classification.

3 Proposed approach andmethodology

Most previously proposed approaches typically involve a tra-
ditional, static machine learning pipeline where models are
trained once using the complete dataset and tested on a static
test set. Unlike such approaches, this research work proposes
rehearsal-based incremental learning protocol that involves
model training in multiple iterations using a subset of data
during each iteration.

Rehearsal-based incremental learning models are simple
to implement. However, for the most optimal performance,
the values of some of their hyper-parameters are required to
be identified before training, which is one of the goals of this
research work.

The rest of this section explains the datasets, the proposed
protocol, and themethodologywe adopted to evaluate its per-
formances and select its best hyper-parameter values in the
context of document classification. A similar methodology
could be employed for other final applications.

3.1 Datasets

Two datasets are used to train and evaluate our incremental
learning models. The first dataset is a real-world French lan-
guage dataset consisting of grayscale document images from
47 classes.

In total, there are 23,577 images in the dataset, among
which 15,491 documents are in the training dataset, 2203
documents are in the validation dataset, and 5883 in the test
dataset. The orientation of the images in the dataset is mostly
horizontal. It is important to note that the orientation is not
an indicator of any particular class label.

This dataset is highly imbalanced, as some of its least rep-
resented classes have only a single instance in the training set,
while themost represented classes have up to 2940 instances.
Table 3 depicts the class distribution in training, test, and val-
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Table 3 Class distribution for the imbalanced private dataset

Class Training set Test set Validation set

Account 1 2940 1135 457

Bank 1 2540 970 365

Business 1 1640 649 304

Bank 2 940 392 239

Business 2 940 376 188

Bank 3 800 288 64

Account 2 680 244 54

Account 3 580 208 45

Account 4 570 204 43

Account 5 420 152 39

Business 3 400 149 48

Business 4 360 133 39

Business 5 330 122 36

Account 6 250 91 23

Bank 4 230 83 22

Account 8 200 75 25

Account 7 200 76 29

Bank 5 189 70 21

Legal 1 160 57 13

Account 9 130 49 19

Account 10 120 46 19

CGV 120 44 13

Business 6 110 43 18

Account 11 85 30 7

Account 12 80 28 7

Account 13 74 26 7

Insurance 1 71 26 7

Account 14 67 24 7

Mail 1 52 19 7

Business 7 40 15 7

Amount document 34 12 4

Legal 2 24 8 3

Mail 2 24 9 3

Legal 3 22 8 3

Verso 19 7 5

Legal 4 17 6 2

Account 15 9 3 2

Insurance 2 6 2 2

Bank 6 5 2 1

User Info 4 1 1

Mail 4 2 1 1

Mail 3 2 0 1

Bank 7 1 0 1

Mail 5 1 0 1

Mail 7 1 0 0

Table 3 continued

Class Training set Test set Validation set

Legal 5 1 0 0

Mail 6 1 0 1

Class names anonymised for privacy concerns

idation sets. It has to be noted that, for 6 out of 47 classes
(the ones with the fewest samples), there is no document in
the test dataset, but there is one document each for 4 of those
classes in the validation set. Despite the absence of samples
in the test dataset for those 6 classes, we chose to keep all 47
classes in the dataset because (i) we chose to adopt a real-
istic scenario where some classes that were learned might
never occur for a certain customer and (ii) it is interesting for
real-life scenarios to observe the effect of such “never-seen”
classes on the overall performances of the model.

Though our private dataset consists of real-world doc-
uments, it cannot be accessed publicly. Hence, we also
performed experiments on the publicly available RVL-
CDIP dataset which consists of 400,000 grayscale document
images belonging to 16 classes, with 25,000 images per class
[52]. Different from our private dataset, RVL-CDIP is thus a
balanceddataset, and it is inEnglish. It contains three subsets:
training, testing, and validation. The training set contains
320,000 images, while the validation and test sets contain
40,000 images each.

3.2 Proposed approach

Figures 1 and 2 respectively depict the static and rehearsal-
based incremental learning model for document classifica-
tion proposed in this research work.

As shown in Fig. 1, the static document classification
model is a traditionalmachine learningmodelwhere the input
to themodel is the text extracted from document images from
all the classes in the dataset via an Optical Character Recog-
nition (OCR) tool; here we chose ABBYY fine reader for its
excellent performances in practice.1

The vector representation for text documents in the RVL-
CDIP dataset is generated via the DistilBERT [53] model
which is a fast, smaller, and lighter version of the BERT
model [54]. For our french language private dataset, we
switched to the transformer-based Flaubert language model
[55]. The Flaubert model is pretrained using a french lan-
guage corpus.

We chose to use DistilBERT and Flaubert transformers
for text representation, because our preliminary experiments
showed that they yield excellent performance for the static

1 ABBYY fine reader (https://www.abbyy.com/ocr-sdk/features/ocr/).
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Fig. 1 Proposed approach for document classification using static deep learning model

Fig. 2 Proposed approach for rehearsal-based incremental document classification. In this diagram, the number of initial classes (BC) and new
classes per iteration (NC) is arbitrarily set to 3. L represents the total number of classes. N represents the total number of training iterations

classification of documents written in English and French
languages, respectively, using deep learning models.

The vector representations for input documents, as
returned by the DistilBert and Flaubert transformer mod-
els, are passed to a dense layer of a fully connected neural
network for further fine-tuning. Since we have a multi-class
classification problem where the model output is a label for
one of the several document categories, a Softmax layer
is added to make final predictions. The categorical-cross
entropy loss function is used to calculate loss and the Adam
optimizer is used to optimize the model.

Our rehearsal-based incremental learning model, as
depicted in Fig. 2, is trained in multiple iterations where the

workflow of each individual iteration is very similar to the
static model. However, unlike the static model, for each iter-
ation, document images from only a small number of new
classes (3 in the illustrative figure) are used for training, along
with the subset of document images from classes used for
training the model in the previous iterations.

For example, in Fig. 2, in the first iteration, all the docu-
ments from classes 1, 2, and 3 in the training dataset are used
for training. In the second iteration, themodel is trained using
documents from classes 4, 5, and 6, along with a subset of
documents from classes 1, 2, 3. This process continues until
the model is trained using documents from L classes across
N iterations, where L is the total number of classes and N is
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Table 4 Simulation strategy for the proposed approach for rehearsal
based incremental classification of documents

IEC Exp1 Exp2 Exp3 Exp4 Exp5
BC NC BC NC BC NC BC NC BC NC

50 2 1 2 2 3 3 4 4 5 5

100 2 1 2 2 3 3 4 4 5 5

150 2 1 2 2 3 3 4 4 5 5

200 2 1 2 2 3 3 4 4 5 5

250 2 1 2 2 3 3 4 4 5 5

the total number of training iterations. For the last iteration
N, the model is trained using the documents from L, L-1, and
L-2 classes, along with a subset of documents from all the
previous classes L-3, L-4, L-5 up to classes 3, 2, and 1.

Another important difference is that, in the rehearsal-
based incremental learningmodel, theweights learnedduring
previous iterations in the transformer-based NLP models,
the dense neural network layers, and the softmax layers are
passed to the subsequent iterations. This approach allows
retaining the knowledge learned during previous iterations to
classify documents from the previously encountered classes.
By preserving the weights learned in transformer-based
NLP models, the dense neural network layers, and the soft-
max layers across iterations, our rehearsal-based incremental
learning model achieves a seamless integration of prior
knowledge, enabling effective classification of documents
from familiar classes. As shown in Sect. 4.1, this continuity
in learning (as opposed to static models) contributes signifi-
cantly to the model’s performance and ensures the retention
of valuable insights from past iterations.

3.3 Experimental protocol

One of the goals of this research work is to study the effect
of the batch size of new classes used for each iteration of
incremental learning model. In this regard, a total of 5 exper-
iments are performed as summarized in Table 4. The number
of base classes (BC) and the number of new classes (NC)
have been chosen arbitrarily for each experiment.

In the rest of this article, the base classes (BC) refer to
the classes that are used to train the incremental learning
model for the first time, and the new classes (NC) refer to the
classes that are used to train the model for the next iterations,
and instances from existing classes (IEC) will refer to the
number of instances from each of the classes that have been
used to train the incremental learning model in previous iter-
ations. For each experiment, 50, 100, 150, 200, and 250 are
considered possible values for the number of instances from
existing classes (IEC). In the cases where an existing class
contains fewer instances than the IEC value, all the instances
from this class are kept in memory.

The number of iterations (NoI) for incremental training is
calculated as follows:

NoI = Ceil

(
TotalClasses − BC

NC
+ 1

)
(1)

For incremental training in real scenarios, new classes can
have more, less, or a similar number of documents as the
classes that were already used in previous training iterations.
Therefore, to study the effect of the order of addition of new
classes on the overall performance of the incremental learn-
ing model, three training strategies are adopted:

• Most Frequently Occurring Classes First The base
classes (BC) and new classes (NC) for each incremen-
tal iteration are selected in the descending order of the
number of instances per class.

• Least Frequently Occurring Classes First The base
classes (BC) and new classes (NC) for each incremen-
tal iteration are selected in the ascending order of the
number of instances per class.

• Random Addition of New Classes Document classes are
randomly selected for all the training iterations of the
incremental learning model (without taking into account
their occurring frequency).

Themotivation behind selecting these three strategies is to
see how the order of addition of newclasses affects the overall
model performance, and what are the most optimal values
for the parameters number of base classes (BC), new classes
(NC), and instances fromexisting classes (IEC),which return
the best performance for the aforementioned scenarios. These
training strategies can also help us understand the effect of
class imbalance, which is often present in real-life document
datasets, including our highly imbalanced private dataset.

3.4 Evaluation strategies andmeasures

Two different but related evaluations strategies are adopted
for (i) the experiments that compare the rehearsal-based
incremental learning model with the static deep learning
model for document classification, and (ii) for the exper-
iments that study the effect of class order, and of the
hyper-parameters BC, NC and IEC.

3.4.1 Evaluation strategy for comparison with the static
learning model

To obtain baseline results for our static deep learning model,
the dataset is divided into training, validation, and test sets.
Static deep learning models are trained using the complete
training set in a single pass. The best model is selected via
the model performance on the validation set which is also
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obtained via a single pass prediction. Finally, for the sake
of comparison, predictions are made on the independent test
set.

To compare rehearsal-based incremental learning models
with the static deep learning models, depending upon the
number of iterations (NoI), the training and validation sets
are divided intomultiple sub-training and sub-validation sets.
For instance, if the number of incremental iterations is 10 as
in the case of Exp5 on our private dataset (TotalClasses =
47, BC=5, NC=5), the number of sub-training and sub-
validation sets is 10. The incremental learning model is
trained and validated in 10 iterations using these sub-training
and sub-validation sets. Thefinalmodel performance for both
incremental and static models is compared by using the same
fixed test set.

We chose accuracy as a performance metric since it has
been widely used in the literature for the performance evalu-
ation of document classification systems. Furthermore, since
our private dataset is highly imbalanced, we chose to use,
on top of accuracy, the F1 measure since it provides better
insights about the model performance in case of imbalanced
datasets.

3.4.2 Evaluation strategy to study the effect of class order,
BC, NC and IEC values

To study the effect of batch sizes of newclasses (NC) andbase
classes (BC), the order in which classes are used for training,
and the number of instances from existing classes (IEC),
on the incremental learning model performance, a static test
set is not required. Hence, the test and validation sets are
merged, resulting in updated validation sets. Depending upon
the number of iterations (NoI), the training and validation sets
are further divided into sub-training sets and sub-validation
sets. The model performance is evaluated using the average
of accuracies and F1 measures for all the sub-validation sets.

The code for the proposed approach and experiments is
available online.2

4 Results and discussion

This section contains the results and related discussion for
two kinds of experiments:

• the experiments performed for comparing the incremen-
tal learning model with the static deep learning model,
and for studying the effect of class imbalance on both
models;

2 Link to the code and appendix: http://bit.ly/3hC6ved.

• the experiments to study the effect of class order and of
the values of hyper-parameters BC, NC, and IEC on the
incremental learning model.

In order to evaluate our proposed methodology against
the current state-of-the-art, we have chosen the study con-
ducted by Voerman et al. [50] as the baseline approach. Their
approach addresses the challenge of low-represented class
classification by employing a cascaded system. This strategy
leverages deep learning networks for major classes, ensur-
ing high precision while employing specialized architectures
such as few shot-learning for rare classes. Their approach
works in two stages: (i) documents are classified using deep
neural networks, and only predictions with high confidence
are selected; and (ii) for predictions with low confidence, a
specialized architecture such as few-shot learning is used.
The final prediction is based on the global confidence of
all the systems in the cascade. A major drawback of their
approach is that it requires training multiple neural networks
in a cascade system. Predictions are generated in series based
on the outputs of these multiple neural networks, leading to
a potential slowdown in the model’s performance.

This selection of the approach from Voerman et al. [50]
as a baseline is based on two primary reasons: firstly, their
research represents the sole existing work focusing on incre-
mental classification of business document streams, and
secondly, it utilizes the same datasets employed in our study.
The results for experiments involving the random addition of
new classes are comparedwith the baselinemodel since these
experiments resemble the approach adopted in the baseline
model.

In the next section, we will compare the performance of
our incrementally trainedmodelwith that of their static coun-
terpart.

4.1 Comparison with static model

This section contains results of the experiments where mod-
els are trained incrementally and evaluated on the same fixed
test set that is used for the evaluation of statically trained
models, i.e. the test set of the dataset used (RVL-CDIP or
our private dataset), as detailed in Sect. 3.1).

4.1.1 Results for private dataset

Tables 5, 6 and 7 depicts the results for the experimentswhere
models are incrementally trained via the private dataset when
adding the most frequent classes first, least frequent classes
first, and using random class addition approach, respectively.
These results show that in the scenario where the model is
incrementally trained using the most frequent classes first or
the random-class-addition, a maximum accuracy of 97.65%
is achieved, which is only slightly less than the accuracy
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Table 5 Percentage accuracies
for private dataset on test set
when incremental learning is
performed using most
frequently occurring classes first

Exp.Id IEC values

50 100 150 200 250

Exp1 96.20 (0.95) 97.16 (0.96) 97.11 (0.95) 97.22 (0.96) 97.34 (0.96)

Exp2 95.88 (0.94) 96.97 (0.94) 97.38 (0.95) 96.20 (0.95) 97.56 (0.96)

Exp3 95.98 (0.93) 96.97 (0.94) 97.21 (0.96) 97.65 (0.97) 97.00 (0.96)

Exp4 95.69 (0.94) 96.61 (0.95) 97.29 (0.96) 97.07 (0.96) 97.53 (0.96)

Exp5 95.83 (0.94) 97.31 (0.96) 97.31 (0.96) 97.26 (0.96) 95.81 (0.93)

Weighted F1 in brackets. Bold indicates highest values. Recalls: (i) for the values of the parameters BC and
NC inside each experiment, please refer to Table 4 and (ii) accuracy with Static model = 98.23%

Table 6 Percentage accuracies
for private dataset on test set
when incremental learning is
performed using least frequently
occurring classes first

Exp.Id IEC Values

50 100 150 200 250

Exp1 96.99 (0.95) 96.34 (0.95) 97.19 (0.95) 97.31 (0.96) 97.00 (0.95)

Exp2 96.48 (0.95) 96.15 (0.95) 97.41 (0.96) 97.24 (0.95) 96.70 (0.95)

Exp3 95.34 (0.94) 95.24 (0.95) 96.34 (0.95) 97.46 (0.95) 97.28 (0.96)

Exp4 94.28 (0.94) 96.10 (0.95) 96.37 (0.96) 96.51 (0.95) 97.39 (0.96)

Exp5 94.86 (0.93) 96.80 (0.95) 96.60 (0.95) 97.40 (0.96) 96.29 (0.94)

Weighted F1 in brackets. Bold indicates highest values. Recalls: (i) for the values of the parameters BC and
NC inside each experiment, please refer to Table 4 and (ii) accuracy with Static Model = 98.23%

Table 7 Percentage accuracies
for private dataset on test set
when incremental learning is
performed via random addition
of new classes

Exp.Id IEC values

50 100 150 200 250

Exp1 96.46 (0.95) 96.99 (0.95) 97.02 (0.96) 96.87 (0.96) 97.22 (0.96)

Exp2 95.00 (0.93) 96.36 (0.94) 96.88 (0.96) 97.65 (0.97) 97.45 (0.95)

Exp3 96.56 (0.95) 96.12 (0.96) 96.90 (0.96) 97.14 (0.95) 97.04 (0.96)

Exp4 97.09 (0.96) 95.47 (0.95) 97.11 (0.96) 96.88 (0.95) 97.36 (0.96)

Exp5 96.54 (0.95) 95.39 (0.95) 96.78 (0.96) 97.48 (0.96) 96.56 (0.95)

Weighted F1 in brackets. Bold indicates highest values. Recalls: (i) for the values of the parameters BC and
NC inside each experiment, please refer to Table 4 and (ii) accuracy with Static Model = 98.23%

achievedby the staticmodel (98.23%). For the least-frequent-
classes-first scenario, an accuracy of 97.46% is achieved.

Thus, in the rest of this section, we mainly consider the
incremental scenario where new classes are added randomly
(independently of their occurrence frequency) because it
gives the best results, and it is certainly the most realistic
scenario for most real-life applications where the user does
not necessarily know the number of instances for each class.
Selecting the best rehearsal-based ILmodel parameters for
comparing with static model

Let us now focus on selecting the best rehearsal-based IL
model hyperparameters, to comparewith its statically trained
counterpart. For this sake, let us start by studying the effect
of the parameter IEC: the number of instances from each
existing class to be kept in memory when classes are added
in random order. Analysis of variance test (ANOVA) [56]
tests were carried out to compare the accuracies obtained via
various experiments and IEC values for IL models trained
with random addition of new classes (accuracies shown in

Table 7). The test showed that the difference among the
results obtained for all the experiments using various IEC
values is statistically significant, with p − value < 0.05
(p− value = 0.0007), meaning that the value of IEC has an
impact on the model’s performances.

To further explore the effect of IEC values, T-Tests were
performed to determine the significance of the best-case
result obtained via an IEC value of 200. To this end, pair-wise
T-tests were performed to compare the accuracies obtained
with IEC = 200 on one hand, and the results obtained via the
remaining IEC values on the other hand. The results show
that the difference between the accuracies obtained using
IEC values of 50 and 100 on one hand, and 200 on the other
hand, are statistically significant. However, the difference in
the accuracies obtained with IEC values of 150, 200, and 250
is not significant. This shows that IEC values can be divided
into two groups based on statistical significance: (50, 100)
and (150, 200, 250), with the latter reaching the best perfor-
mances.
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Fig. 3 Confusion matrix for
static model for private dataset

Now that we selected the optimal values of IEC, let us
focus on the effect of the parametersBCandNC: the numbers
of base classes and new classes at each iteration respectively,
when classes are added in random order. ANOVA tests were
performed to compare the accuracies obtained for various
experiments (Exp1,Exp2,Exp3,Exp4, andExp5,with differ-
ent values ofBCandNCas detailed inTable 4), for prediction
on a static test set. This test showed that the differences
between these accuracies are not statistically significant at
p < 0.05 (p = 0.96). Thus, the numbers of base classes (BC)
and new classes (NC) do not significantly impact the model’s
performance. Similar results were obtained for IL models
trained using most-frequent and least-frequent classes first.
Comparing rehearsal-based ILmodel with the staticmodel,
in the presence of class imbalance

To further compare the behaviour of statically and incre-
mentally trained models using a static test set, we perform
error analysis on the results obtained via the static model and
the incrementally trainedmodel that returns the highest accu-
racy with the random addition of new classes (Exp 2, BC = 2,
NC=2, IEC=200). Figures3 and4depict confusionmatrices
for all the classes in the static test set, predicted via static and
incrementally trained models, respectively. To help analyze
the confusion matrices, the mappings between the class IDs
in the confusion matrix and the names of the document cat-
egories in the corresponding datasets are depicted in Table 8

These confusion matrices show that the classification
behaviours of incremental and static learning approaches are

quite similar, even though, on average, the incremental learn-
ingmodel misclassifies a given class with fewer other classes
than its statically trained counterpart. Indeed, for the static
model, on average the number of labels assigned to one class
is 3.04 (including the true label), whereas this number is 2.31
for the incrementally trainedmodel. The reason could be that
a statically trained model is trained using all classes at once,
hence leading to confusion with more other classes, for one
given class. On the other hand, with rehearsal-based incre-
mentally trained models, new classes are learned in multiple
iterations with fewer classes per iteration, particularly in ini-
tial iterations,whichmight lead to confusionwith fewer other
classes, for one given class.

This assumption is further supported by the observation
that in the case of an incrementally learned model, misclas-
sification mostly occurs among the classes that are trained
together for the first time in the same training iteration. For
instance, when, for incremental training, classes 42 (Insur-
ance Daily Allowance) and 1 (Account Dues) were trained as
new classes in the same training iteration, class 42 was mis-
classified as class 1 for 50% of instances (see Fig. 4) whereas,
with the statically trained model, class 42 is mostly confused
with class 30 (see Fig. 3).

Furthermore, comparisons of prediction accuracies
between individual classes for statically trained and incre-
mentally trained models show that prediction accuracies for
both static and incremental models are similar in most cases,
with a very slight difference in some cases. The most notable

123



U. Malik et al.

Fig. 4 Confusion matrix for
incrementally learned model on
private dataset (Exp 2, BC = 2,
NC = 2, IEC = 200)

differences between accuracies is observed for classes with
Ids 32 (Mail Account Dues) and 46 (ID i.e. identity doc-
uments), for which the incremental learning model returns
an accuracy of 100%, whereas the static model fails to cor-
rectly predict any instance for these classes. These results
are striking, given that we use the same test set for static and
incremental learning (as explained before).

Further investigation reveals that classes with Ids 32 and
46 are among the least represented both in the training and
test sets (due to class imbalance in our private dataset). The
reason for the better performance of incremental models for
least represented classes could be that in the case of the incre-
mental learning model, the class imbalance in each iteration
is less compared to static models trained on the whole dataset
(in particular, thanks to the use of a bounded-sized memory).

4.1.2 Results for RVL-CDIP dataset

For the RVL-CDIP dataset, the results for the incrementally
trainedmodel are presented inTable 9. The results show that a
maximum performance of 78.50% is achieved when the IEC
(instances from existence classes) value is 200 and batch size
for base classes (BC) and new classes (NC) is 5 (Exp5). The
performance achieved via the incremental model is slightly
better than the static model performance on the RVL-CDIP
test set: 76.49%.

Selecting the best rehearsal-based ILmodel parameters for
comparing with static model

Just like for our private dataset, ANOVA tests show that
the parameter IEC is statistically linked to the accuracy (here
p− value = 0.00009), that the effect of the number of base
classes (BC) and new classes (NC) is not statistically signif-
icant at p − value = 0.31, and pair-wise T-tests show that
based on statistical significance, IEC values can be divided
into two groups: (50, 100) and (150, 200, 250), the latter
reaching the best performances.

Thus, in the rest of this section, we compare the static
modelwith the rehearsal-based ILmodel that gives us the best
accuracy on the RVL-CDIP static test dataset when classes
are added in random order: IEC=200, BC=NC=5.
Comparing rehearsal-based IL model with the static model
(balanced classes)

Figures 5 and 6 give the confusion matrices for all the
classes in the RVL-CDIP test set predicted via static and
incrementally trained model, respectively. The comparison
of these two confusion matrices reveals that, on average, the
static model confuses a given class with more other classes
(10.32) compared to the incremental learning model (8.06).
This behaviour is similar to the results obtained on our private
dataset.

The comparison of the individual accuracies depicts that
overall, the performance of the incremental learning model
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Table 8 Mappings between class IDs and document categories in the
private (French) and RVL-CDIP(English) datasets

Id Private dataset RVL-CDIP dataset

0 Account 1 Letter

1 Account 2 Form

2 Account 3 Email

3 Account 4 Handwritten

4 Account 5 Advertisement

5 Account 6 Scientific report

6 Account 7 Scientific publication

7 Account 8 Specification

8 Account 9 File folder

9 Account 10 News article

10 Account 11 Budget

11 Account 12 Invoice

12 Account 13 Presentation

13 Account 14 Questionnaire

14 Account 15 Resume

15 Bank 1 Memo

16 Bank 2 –

17 Bank 3 –

18 Bank 4 –

19 Bank 5 –

20 Bank 6 –

21 Bank 7 –

22 Business 1 –

23 Business 2 –

24 Business 3 –

25 Business 4 –

26 Business 5 –

27 Business 6 –

28 Business 7 –

29 Mail 1 –

30 Mail 2 –

31 Mail 3 –

32 Mail 4 –

33 Mail 5 –

34 Mail 6 –

35 Mail 7 –

Table 8 continued

Id Private dataset RVL-CDIP dataset

36 Legal 1 –

37 Legal 2 –

38 Legal 3 –

39 Legal 4 –

40 Legal 5 –

41 Insurance 1 –

42 Insurance 2 –

43 CGV –

44 Amount document –

45 Verso –

46 User profile –

Fig. 5 Confusion matrix for RVL-CDIP dataset using static model.
(Cells contain accuracy)

is slightly better than the static model on the same fixed test
set. The reason could be that for balanced datasets such as
the RVL-CDIP, in the case of incremental learning, the rela-
tionship between the feature and label set is learned several
times (during multiple iterations), particularly for the classes
in initial iterations.

Table 9 Percentage accuracies
for RVL-CDIP dataset on test
set when incremental learning is
performed via random addition
of new classes

Exp.Id IEC values

50 100 150 200 250

Exp1 69.50 (0.68) 75.62 (0.74) 73.18 (0.73) 74.93 (0.72) 77.62 (0.76)

Exp2 67.06 (0.65) 74.37 (0.73) 73.62 (0.73) 76.37 (0.75) 78.18 (0.77)

Exp3 72.31 (0.71) 76.68 (0.75) 77.12 (0.76) 77.50 (0.77) 77.31 (0.76)

Exp4 61.43 (0.60) 73.50 (0.72) 72.43 (0.71) 72.68 (0.71) 74.50 (0.73)

Exp5 69.25 (0.65) 73.56 (0.71) 75.43 (0.74) 78.50 (0.76) 76.37 (0.75)

Weighted F1 in brackets. Bold indicates highest values. (Accuracy with Static model = 76.49%)
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Fig. 6 Confusion matrix for RVL-CDIP dataset using incrementally
learned model (Exp 5, IEC = 200)

4.2 Effects of class order, BC, NC, and IEC values for
private dataset

This section presents results for the experiments performed
on our private dataset (with class imbalance) to study the
effects on the performances of incrementally trained models
of (i) the order in which new classes are added, (ii) the batch
size of the base and new classes (BC/NC) and (iii) the IEC
(instances from existing classes).

In the previous section, we studied the effects of these
hyper-parameters only with the aim of selecting the optimal
model settings before comparing the incremental model to
its statically trained counterpart (on a fixed test dataset). In
this section, on the other hand, we are going to study more
thoroughly the effects of these hyper-parameters on the IL
model’s performances at each incremental iteration, depend-
ing on the type of class considered (newly added classes vs.
classes added in earlier iterations).

To this end, the model performance is evaluated against
the average of accuracies and weighted F1 values for: (i)
all the classes in validation sets for each iteration, (ii)“old”
classes only, in validation sets for each iteration, and (iii)
“new” classes only, in the validation sets for each iteration.

To study the effect of the order in which the new classes
are added in each iteration, we compare three scenarios
on our highly imbalanced private dataset: most-frequently-
occurring classes first, least-frequent-occurring classes first,
and random addition of new classes.

4.2.1 Private dataset–ost-frequently-occurring classes first

Table 10 depicts the average accuracies achieved on the val-
idation sets for all the classes of the IL models trained using
classes with the most number of instances first. As explained
earlier, we consider NoI validation sets in total (one for each

iteration), where NoI depends on the total number of classes
and values of BC and NC, as detailed in Eq. (1). The results
show that the overall best-observed performance (93.09%)
is achieved for Exp1 (BC =2, NC=1) with an IEC value of
200.

Analysis of variance (ANOVA) test shows that the dif-
ference among the average accuracies obtained for each
experiment using various IEC values is significant at p <

0.05 (p = 0.002). On the other hand,ANOVA tests show that
the difference in average accuracies for various experiments
(“Exp1”-“Exp5”, see Table 4) is not statistically significant
(p − value = 0.95), showing no significant effect of the
number of base classes (BC) and new classes (NC) on the
accuracy. Just like when used on a static test dataset, pair-
wise T -tests show that based on statistical significance, IEC
values can be divided into two groups: (50, 100) and (150,
200, 250), the latter reaching the best performances.

Table 11 shows average accuracies achieved on the NoI
validation sets for old classes only in the corresponding
learning iterations (most-frequently-occuring classes first
scenario). Just like when considering all classes in the valida-
tion set (see Table 10), the results obtained on “old classes”
only depict that the overall best performance (93.13%) is
achieved for Exp1 where the batch size for base classes (BC)
is 2 and NC (new classes) is 1 with an IEC value of 200
(even though, similar to the average accuracies on all classes,
ANOVA and pairwise T-tests show that there is no statisti-
cal difference between the average accuracies of Exp1-Exp5
and between IEC=200 and IEC values in the list {150, 200,
250}).

Average accuracies on overall NoI validation sets for
newly added classes for IL models trained via the most-
frequently-occurring classes first is depicted in Table 12. The
highest average accuracy of 78.43% is achieved when the
batch size of base classes (BC) and newly added classes (NC)
is 5, with an IEC value of 150. In this specific case though,
ANOVA tests reveal that there is no statistically significant
effect of parameters IEC nor BC,NCon the average accuracy
(p − value = 0.072 and p − value = 0.58 respectively).

The main reason for this lack of statistical significance
could be the highly imbalanced nature of data at each
iteration. This is because, during each iteration, the class
imbalance remains very high, and the instances belonging
to new classes remain much fewer than old class instances,
irrespective of the IEC, BC, and NC values. Hence overall,
there is no significant difference in the results obtained via
different experiments (“Exp1”–“Exp5”) and IEC values.

It is further observed that for all the experiments and
all IEC values, the average accuracy values for old classes
are higher compared to new classes. As an example, Fig. 7
demonstrates the accuracy values for the 10 iterations inExp5
(TotalClasses = 47, BC=5, NC=5, see equation (1)) with
IECvalue of 150. The figure shows accuracies for old classes,
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Table 10 Average of percentage
accuracies on private dataset for
all batches of validation sets
when incremental learning is
performed using most frequently
occurring classes first

Exp.Id IEC values

50 100 150 200 250

Exp1 90.08 (0.89) 91.58 (0.89) 92.30 (0.91) 93.09 (0.91) 92.50 (0.91)

Exp2 89.27 (0.81) 92.85 (0.91) 91.56 (0.90) 91.41 (0.90) 92.03 (0.89)

Exp3 88.38 (0.87) 91.69 (0.89) 92.58 (0.91) 92.85 (0.90) 92.19 (0.91)

Exp4 89.78 (0.87) 89.95 (0.87) 92.85 (0.90) 92.34 (0.90) 92.31 (0.91)

Exp5 89.11 (0.87) 92.08 (0.90) 92.08 (0.90) 92.02 (0.89) 91.90 (0.89)

Weighted F1 in brackets. Bold indicates highest values

Table 11 Average of percentage
accuracies for private dataset for
old classes in all batches of
validation sets when
incremental learning is
performed using most
frequently occurring classes first

Exp.Id IEC values

50 100 150 200 250

Exp1 90.09 (0.90) 91.60 (0.90) 92.34 (0.91) 93.13 (0.91) 92.53 (0.90)

Exp2 89.31 (0.88) 92.91 (0.90) 91.63 (0.89) 91.45 (0.88) 92.12 (0.90)

Exp3 88.35 (0.87) 91.75 (0.89) 92.70 (0.90) 93.00 (0.91) 92.23 (0.90)

Exp4 89.86 (0.88) 90.02 (0.88) 93.10 (0.92) 92.84 (0.90) 92.54 (0.91)

Exp5 89.27 (0.87) 92.30 (0.90) 92.30 (0.90) 92.37 (0.90) 92.12 (0.90)

Weighted F1 in brackets. Bold indicates highest values

Table 12 Average of percentage
accuracies for new classes in all
batches of validation sets when
incremental learning is
performed using most
frequently occurring classes first

Exp.Id IEC values

50 100 150 200 250

Exp1 69.29 (0.67) 72.28 (0.70) 78.03 (0.75) 74.27 (0.74) 71.35 (0.69)

Exp2 67.17 (0.65) 66.45 (0.65) 73.60 (0.71) 68.38 (0.67) 74.24 (0.73)

Exp3 60.26 (0.60) 68.31 (0.68) 70.95 (0.70) 74.25 (0.73) 72.16 (0.72)

Exp4 66.09 (0.65) 65.66 (0.64) 65.73 (0.65) 69.47 (0.68) 71.24 (0.70)

Exp5 56.71 (0.55) 78.43 (0.77) 78.43 (0.76) 62.33 (0.60) 64.87 (0.63)

Weighted F1 in brackets. Bold indicates highest values

new classes, and all classes during each iteration along with
the rolling average values up to a particular iteration. The
Figure shows that on average, the accuracy of classification
for old classes is higher compared to new classes. The rea-
son for such behaviour can be the fact that since models are
trained via most-frequently-occurring classes in the initial
iterations, the model has more instances from the old classes
and hence it learns to classify old classes more effectively
than new classes which are less represented within a training
batch.

Another important observation is that for initial learning
iterations, the accuracy for both new and old classes is higher
compared to the later learning iterations. The reason can be
the class order, since the initial iterations contain classes with
more instances, resulting in models havingmore information
to learn as compared to later batches. Also, the number of
classes in the early iterations is lower compared to later itera-
tions, and hence the model has to classify fewer classes with
more information per class in the early iterations, leading to
better performance.

Fig. 7 Comparison of accuracies for old, new, and all classes for Exp5
with IEC = 150, for different iterations of incremental models trained
on private dataset, using most-frequently-occurring classes first

Similar observations are made for different values of BC
and NC, as shown in Appendix A (link to the appendix in the
footnote.)3

3 Link to the appendix: http://bit.ly/3hC6ved.
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Table 13 Average of percentage
accuracies for private dataset for
all batches of validation sets
when incremental learning is
performed using least frequently
occurring classes first

Exp.Id IEC values

50 100 150 200 250

Exp1 62.79 (0.60) 62.81 (0.60) 62.92 (0.61) 62.30 (0.60) 62.31 (0.60)

Exp2 60.43 (0.60) 60.99 (0.60) 62.25 (0.61) 61.52 (0.60) 61.45 (0.59)

Exp3 60.59 (0.59) 60.35 (0.59) 61.18 (0.59) 60.02 (0.58) 60.16 (0.58)

Exp4 64.98 (0.63) 63.73 (0.62) 63.10 (0.61) 64.49 (0.64) 64.74 (0.63)

Exp5 67.02 (0.65) 62.68 (0.61) 62.35 (0.61) 62.38 (0.60) 63.72 (0.62)

Weighted F1 in brackets. Bold indicates highest values

Table 14 Average of percentage
accuracies for private dataset for
old classes in all batches of
validation sets when incremental
learning is performed using least
frequently occurring classes first

Exp.Id IEC values

50 100 150 200 250

Exp1 61.07 (0.60) 61.65 (0.59) 61.71 (0.59) 60.64 (0.59) 60.63 (0.58)

Exp2 55.44 (0.54) 57.47 (0.56) 59.07 (0.58) 58.32 (0.57) 58.27 (0.56

Exp3 55.75 (0.54) 56.03 (0.54) 57.33 (0.56) 56.52 (0.55) 56.62 (0.55)

Exp4 56.18 (0.55) 56.76 (0.54) 56.50 (0.54) 57.58 (0.56) 58.09 (0.57)

Exp5 59.79 (0.58) 55.61 (0.54) 55.72 (0.54) 54.41 (0.53) 56.04 (0.54)

Weighted F1 in brackets. Bold indicates highest values

4.2.2 Private dataset–least-frequently-occurring classes
first

Let us now focus on the scenario where the least frequently
occurring size are learned first. Table 13 shows the average
accuracies for all the validation sets for the ILmodels trained
following this scenario. The results show that the best case
accuracy of 67.02% is obtained for Exp5 (BC = 5, NC = 5)
with an IEC value of 50.

In this scenario, hypothesis testing gives very different
results compared to the most-frequently-occuring classes
first scenario.

First, when using ANOVA tests to compare the aver-
age accuracies between experiments “Exp1”–“Exp5”, the
differences betweendifferent experiments are found to be sta-
tistically different (p − value = 0.00004). This behaviour
can be explained by the fact that when training the model
incrementallywith the least frequently occurring classes first,
increasing the batch size for new classes allows the model to
train with more information. Also, with a higher number of
classes in the case of the least-frequently-occurring training
strategy, it is possible that even with few instances for each
class, some classes are more easily recognizable, resulting in
better overall average accuracy.

Second, ANOVA tests show that there is no significant dif-
ference between different IEC values. The reason could be
that 18 out of the total 47 classes have less than 50 instances,
hence for the earliest 38% of all incremental training itera-
tions, the value IEC remains < 50, consequently reducing
the overall impact of IEC values.

Average accuracies for old classes in all the validation
sets for incrementally learning models trained via the least-
frequently-occurring classes first are given in Table 14. The
best-case accuracy of 61.71% is achieved when new classes
are added in batches of NC=1 with an IEC value of 150.
Just like for all classes, ANOVA tests show that there is a
statistically significant difference in the average accuracies
for all validation sets when BC and NC vary, but not when
IEC varies.

The reason for getting the best results with NC=1 could
be that in the case of training with least-frequent classes first,
during each iteration, the number of instances in old classes is
less compared to instances in new classes. When new classes
are added in larger batch size, the dataset becomes more
imbalanced, compared to when new classes are added in
smaller batches. Thus, with large values of NC, the model
becomes biased toward new classes, resulting in poor perfor-
mance for old classes (catastrophic forgetting).

Average accuracies for new classes in all the validation
sets for incrementally learningmodels is depicted inTable 15.
Best case accuracy of 73.61% is achieved when new classes
are added in batches of 5 (BC = 5, NC = 5) with an IEC value
of 50.

Unlike the results obtained for all classes and old classes,
ANOVA tests show a statistically significant difference in
the average accuracies for all validation sets when BC and
NC vary (p − value = 0.0018), and when IEC varies (p −
value = 0.014).

The reason for getting better resultswith bigger batch sizes
could be that, when training the model with least-frequently-
occurring classes first, new classes in each iteration contain
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Table 15 Average of percentage
accuracies for private dataset for
new classes in all batches of
validation sets when incremental
learning is performed using least
frequently occurring classes first

Exp.Id IEC values

50 100 150 200 250

Exp1 71.94 (0.78) 69.09 (0.68) 70.68 (0.69) 71.68 (0.69) 71.73 (0.68)

Exp2 73.09 (0.71) 69.30 (0.68) 69.50 (0.68) 69.09 (0.68) 69.04 (0.68)

Exp3 68.68 (0.68) 67.44 (0.66) 67.76 (0.66) 65.64 (0.64) 65.74 (0.64)

Exp4 74.28 (0.73) 71.52 (0.70) 70.24 (0.69) 72.29 (0.71) 72.25 (0.71)

Exp5 73.61 (0.72) 68.62 (0.67) 67.78 (0.66) 68.73 (0.67) 69.81 (0.68)

Weighted F1 in brackets. Bold indicates highest values

Fig. 8 Comparison of accuracies for old, new, and all classes for Exp5
with IEC = 50, for different iterations of incremental models trained on
private dataset using least-frequently-occurring classes first

the majority of instances, hence adding a larger batch of new
classes feed themodel withmore instances from new classes,
resulting in improved performance for the new classes (but
catastrophic forgetting for old classes, as discussed above).

The overall results shown in Fig. 8 highlight that, for each
iteration in Exp5 (BC=5, NC=5) with IEC value of 50, the
accuracy values for newly added classes are higher compared
to old or existing classes. The reason for such behaviour could
be the fact that since models are trained via least-frequently-
occurring classes first, new classes in each iteration contain
more instances compared to old classes. Hence the model
learns to classify new classes in a more accurate manner
compared to old classes which are least represented within
a training batch. Once again, this is the opposite of what is
observed when the incremental learning models are trained
via most-frequently-occurring classes first as depicted in
Fig. 7.

Another important observation is that, for early batches,
the accuracy for both new and old classes is lower compared
to the later batches. This behaviour can be the result of the
class order, since the earlier iterations contain classes with
fewer instances, resulting in models having less information
to learn in the early batches as compared to later batches.

Similar observations are made for different values of BC
and NC as shown in Appendix B4

4.2.3 Private dataset–random addition of new classes

The results for the experiments for our private dataset where
newclasses are added in randomorder are presented inTables
16, 17, and 18.

Table 16 shows that for all the classes the average best
case accuracy of 95.25% is achieved for all validation sets
in case of Exp1 (BC = 2 and NC = 1 ) when the IEC value
is 250. The result shows an improvement of 1.55% over the
baseline results.

Just like when the most frequent classes are learned
first, ANOVA and pairwise T -tests show that there is no
statistical difference between the average accuracies of
“Exp1”–“Exp5” and between IEC=200 and IEC values in
the list {150, 200, 250}.

For the average accuracy of validation sets for old classes
in the private dataset, the results are presented in Table 17.
The result shows that the highest average accuracy of 95.32%
is achieved for Exp1 (BC =2, NC =1) with 250 instances
from existing classes (IEC). ANOVA and pairwise T-tests
show that there is no statistical difference between the aver-
age accuracies of “Exp1”–“Exp5” and between IEC=250 and
IEC values in the list 150, 200, 250.

The reason for the high performance for Exp1whenNC=1
could be the fact that in each iteration, a majority of classes
are from the previous batches that are already used to train the
model in the previous iterations. Only one new class is added
in each batch. Hence the model returns the best performance
in the case of Exp1 for old classes.

Table 18 depicts the results for the average accuracies
for new classes for all the validation sets. The results show
that the best-case average accuracy of 91.66% is achieved for
Exp5 (BC = 5, NC = 5) with the IEC value of 250. The reason
for this behaviour could be that, when new classes are added
in larger batches, the model has more information to learn
compared to when new classes are added in smaller batches.

4 Link to the code and appendix: http://bit.ly/3hC6ved.
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Table 16 Average of percentage
accuracies for private dataset for
all batches of validation sets
when incremental learning is
performed by randomly adding
new classes

Exp.Id IEC values

50 100 150 200 250

Exp1 94.02 (0.93) 94.56 (0.93) 94.24 (0.93) 94.15 (0.93) 95.25 (0.94)

Exp2 92.07 (0.91) 93.56 (0.92) 94.18 (0.93) 94.01 (0.93) 94.21 (0.92)

Exp3 93.09 (0.91) 93.35 (0.92) 94.18 (0.92) 94.52 (0.93) 94.74 (0.93)

Exp4 92.55 (0.90) 93.62 (0.91) 93.90 (0.92) 93.32 (0.94) 93.62 (0.92)

Exp5 92.59 (0.91) 92.34 (0.90) 93.45 (0.92) 95.16 (0.94) 93.97 (0.92)

Baseline [50] 93.77

Weighted F1 in brackets. Bold indicates highest values

Table 17 Average of percentage
accuracies for private dataset for
old classes in all batches of
validation sets when incremental
learning is performed by
random addition of new classes

Exp.Id IEC values

50 100 150 200 250

Exp1 93.88 (0.92) 94.58 (0.93) 94.29 (0.94) 94.16 (0.93) 95.32 (0.94)

Exp2 91.82 (0.90) 93.52 (0.93) 94.24 (0.93) 94.15 (0.94) 94.28 (0.93)

Exp3 93.01 (0.92) 92.96 (0.93) 94.42 (0.92) 94.50 (0.94) 95.10 (0.94)

Exp4 92.17 (0.91) 93.62 (0.92) 94.01 (0.93) 93.30 (0.92) 93.99 (0.93)

Exp5 91.80 (0.90) 91.65 (0.90) 92.92 (0.91) 95.25 (0.94) 93.34 (0.92)

Weighted F1 in brackets. Bold indicates the highest values

Table 18 Average of percentage
accuracies for private dataset for
new classes in all batches of
validation sets when incremental
learning is performed by
randomly adding new classes

Exp.Id IEC values

50 100 150 200 250

Exp1 74.50 (0.72) 76.08 (0.75) 79.28 (0.78) 76.59 (0.75) 78.81 (0.78)

Exp2 77.03 (0.76) 83.18 (0.82) 80.67 (0.80) 83.74 (0.83) 81.55 (0.80)

Exp3 81.38 (0.80) 88.84 (0.87) 82.21 (0.81) 89.56 (0.87) 83.17 (0.81)

Exp4 81.08 (0.80) 82.86 (0.80) 81.86 (0.80) 83.12 (0.81) 82.19 (0.80)

Exp5 84.56 (0.81) 84.99 (0.82) 90.20 (0.88) 85.92 (0.85) 91.66 (0.90)

Weighted F1 in brackets. Bold indicates the highest values

However, for the random addition of new classes, the aver-
age best-case accuracy for new classes (91.66%) is still less
than the best-case accuracy for old classes (95.32%). This
behaviour can be attributed to the nature of the incremen-
tal learning model where the difference between the number
of old and new classes is not very high for initial training
iterations. However, for later training iterations, this differ-
ence becomes higher as the incremental model is repeatedly
trained on old classes for more iterations compared to new
classes.

In this specific case, ANOVA tests reveal that there is no
statistically significant effect of parameters IEC, but there
is a significant effect of parameters BC, NC on the average
accuracy (p − value = 0.061 and p − value = 0.00009
respectively). However, the statistical significance for new
classes in the case of various experiments in this section can-
not be considered as definitely conclusive. Indeed, the order
in which the classes have been added is totally random, and,
since the dataset is imbalanced, the manner in which the
documents arrive may change the effect of IEC, BC, and

NC values (as shown in the previous experiments with the
extreme cases of most-frequently-occurring classes first and
least-frequently-occurring classes first).

The overall results from this section, detailed in Appendix
C,5 show that in case of random addition of new classes, the
maximum IEC value of 250 produces the highest average
accuracies for respectively all, new and old classes during
all training iterations. This result affirms the hypothesis that
overall, using more instances from previous iterations can
improve model performance in case of random addition of
new classes. However, the significance tests show that the
performance difference between the IEC values of 150, 200,
and 250 is not statistically significant, hence to save training
time and memory, the IEC value of 150 may be used for
incremental training.

5 Link to the appendix: http://bit.ly/3hC6ved.
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Table 19 Average of percentage
accuracies for RVL-CDIP
dataset for all batches of
validation sets when incremental
learning is performed by
randomly adding new classes

Exp.Id IEC values

50 100 150 200 250

Exp1 74.86 (0.77) 81.32 (0.79) 81.99 (0.79) 83.31 (0.81) 84.36 (0.83)

Exp2 73.83 (0.71) 80.51 (0.79) 83.16 (0.82) 84.07 (0.82) 83.23 (0.82)

Exp3 79.07 (0.77) 79.94 (0.77) 81.88 (0.80) 81.97 (0.80) 81.69 (0.80)

Exp4 71.16 (0.70) 80.51 (0.79) 79.73 (0.78) 80.75 (0.79) 83.93 (0.79)

Exp5 74.47 (0.73) 79.98 (0.78) 80.07 (0.78) 82.18 (0.80) 80.33 (0.79)

Baseline [50] 80.76

Weighted F1 in brackets. Bold indicates the highest values

Table 20 Average of percentage
accuracies for RVL-CDIP
dataset for old classes in all
batches of validation sets when
incremental learning is
performed by randomly adding
new classes

Exp.Id IEC values

50 100 150 200 250

Exp1 71.82 (0.70) 79.60 (0.78) 80.87 (0.79) 82.68 (0.80) 83.00 (0.81)

Exp2 67.70 (0.65) 76.95 (0.75) 80.77 (0.79) 81.71 (0.80) 81.08 (0.80)

Exp3 74.67 (0.73) 77.03 (0.76) 80.12 (0.80) 80.63 (0.79) 80.44 (0.78)

Exp4 61.12 (0.60) 75.20 (0.74) 75.95 (0.75) 77.09 (0.78) 82.36 (0.80)

Exp5 67.43 (0.66) 76.45 (0.75) 76.91 (0.76) 80.62 (0.79) 78.93 (0.77)

Weighted F1 in brackets. Bold indicates the highest values

Table 21 Average of percentage
accuracies for RVL-CDIP
dataset for new classes in all
batches of validation sets when
incremental learning is
performed by randomly adding
new classes

Exp.Id IEC values

50 100 150 200 250

Exp1 93.71 (0.92) 92.43 (0.91) 90.45 (0.89) 88.76 (0.87) 86.91 (0.85)

Exp2 92.96 (0.91) 91.22 (0.90) 90.66 (0.89) 91.16 (0.90) 88.91 (0.87)

Exp3 90.13 (0.89) 89.02 (0.88) 87.55 (0.86) 85.26 (0.84) 85.83 (0.83)

Exp4 89.87 (0.86) 89.70 (0.86) 86.16 (0.85) 88.33 (0.86) 86.73 (0.85)

Exp5 90.90 (0.89) 88.27 (0.86) 87.24 (0.86) 86.92 (0.85) 85.31 (0.84)

Weighted F1 in brackets. Bold indicates the highest values

4.3 Effects of BC, NC, and IEC values for RVL-CDIP
Dataset

Our private real-world dataset is highly imbalanced, hence
we evaluated three training scenarios depending on the
order of addition of new classes in each incremental learn-
ing iteration (most-frequently-occurring classes first, least-
frequently-occurring classes first and random. On the con-
trary, the publicly available RVL-CDIP dataset is balanced.
Hence experiments are only performed where new classes
are randomly added for each incremental learning iteration.
In this section,wewill analyse the differences observedwhen
comparing random addition of new classes using a balanced
dataset on one hand (RVL-CDIP) and an imbalanced dataset
(our private dataset, see Sect. 4.2.3).

The results for the experiments for RVL-CDIP dataset
where new classes are added in random order are presented
in Tables 19, 20, and 21.

Table 19 depicts the results for the average accuracies for
all classes in all the validation sets. Just like in the imbalanced

case, the best average accuracy (here 84.36%) is achieved
for Exp1 (BC = 2, NC = 1) with IEC = 250. Thus, it seems
that, independently of the balanced or imbalanced nature of
the dataset, when new classes are added in a random order,
adding as few new classes as possible in each iteration, with
a large memory size, is the best strategy. The result further
depicts an improvement of 3.6% over the baseline results.

However, we must moderate this conclusion by noting
that, here again, ANOVAand pairwise T-tests show that there
is no statistical difference between the average accuracies of
“Exp1”–“Exp5” and between IEC=200 and IEC values in the
list {150, 200, 250}. Thus, to save training time andmemory,
the IEC value of 150 may be used for incremental training.

Table 20 depicts the results for the average accuracies for
old classes only for all the validation sets. Again, like in the
imbalanced case, the results show that the best-case average
accuracy (here 83.00%) is achieved for Exp1 (BC = 2, NC
= 1) with IEC=250. The analysis of statistical significance
using ANOVA and pairwise T -tests is also consistent with
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Table 22 Results for the comparison of incremental learning model with static learning model

Private dataset RVL-CDIP

Best-case IEC IEC = 200 IEC = 200

Statistical significance for IEC values Two groups: (50, 100) and (150,
200,250). No significant
performance difference for IEC
values within groups but
significant for IEC values
between groups

Two groups: (50, 100) and (150,
200, 250). No significant
performance difference for IEC
values within groups but
significant for IEC values
between groups

Best case BC, NC values Exp5 (BC = 2, NC = 2) Exp1 (BC = 5, NC = 5)

Statistical significance for BC, NC values Difference in results not
statistically significant for
various BC and NC values

Difference in results not
statistically significant for
various BC and NC values

IEC instances from existing classes, BC number of base classes and, NC number of new classes

the result obtained for our private dataset for the same exper-
iment.

Finally, Table 21 depicts the results for the average accu-
racies for new classes only for all the validation sets. The
results show that the best-case average accuracy of 93.77%
is achieved for Exp1 (BC = 2, NC = 1) with the IEC value of
50. This behaviour is different than the behaviour observed
on our imbalanced dataset, where the best-case accuracy for
new classes was achieved for Exp5 (BC = 5, NC = 5) with
the IEC value of 250. The reason for this difference could be
associatedwith the nature of the data. Indeed, with our highly
imbalanced private dataset, when new classes are added in
a random order, it can happen that the instances added for
some of the new classes are fewer than the total number of
instances in the memory. Hence, in the imbalanced case, the
new classes are better recognized when we add more new
classes within one iteration, whereas when the dataset is bal-
anced, it is still best to add as few new classes within one
iteration as possible. To counterbalance the small number of
new classes and encourage the plasticity of the model, new
classes are learned best when we keep only a small size of
memory (IEC=50).

In this case, ANOVA tests and pairwise T -tests show that
the effect of the number of base classes (BC) and new classes
(NC) is statistically significant (here p − value = 0.03),
and that an IEC value of 50 gives significantly better perfor-
mances than other IEC values.

The figures containing detailed results for the RVL-CDIP,
where classes are randomly added for each new iteration are
presented in Appendix D.6

Even though the following findings should be confirmed
with experiments on other balanced datasets, the results pre-
sented in this section tend to show that, when the dataset is
balanced, the best performances are achievedwhenwe add as
few classes as possible in each iteration. As for the number of

6 Link to the appendix: http://bit.ly/3hC6ved.

instances from existing classes (and thus the memory size),
it can be fixed by finding a good tradeoff between plasticity,
stability, and training time/memory (here IEC=150).

5 Discussion & recommendations

The findings of this study demonstrate that the rehearsal-
based incremental learning strategy presented herein sur-
passes the baseline model’s performance by 1.55% and
3.66%onour private dataset andRVL-CDIPdatasets, respec-
tively. This superior performance can be attributed to the
effective utilization of weight sharing among transformer
models across multiple iterations, enabling the model to
effectively retain the knowledge of previously encountered
classes while learning new ones.

Furthermore, the comparison of the rehearsal-based incre-
mental learning model with static model (on a static test
dataset) reveals some interesting observations. Table 22 sum-
marizes these observations, for both our imbalanced private
dataset and the balanced RVL-CDIP dataset.

For both datasets, the optimal value of parameter IEC
(number of instances from existing classes kept in mem-
ory at each incremental learning iteration), which gives the
best average accuracy, is IEC=200. However, pairwise T -
tests show that based on statistical significance, IEC values
can be divided into two groups: (50 and 100), and (150, 200,
250). There is no statistically significant performance differ-
ence within groups, but a significant performance difference
between groups. Thus, we can recommend using an IEC
value of 150, so as to get results comparable with IEC =
200, yet saving training memory and resources.

For base class (BC) and new class values (NC), even
though statistical significance tests are not conclusive, we
can recommend using a small number of new classes in real-
life scenarios (NC=1 or NC=2 if possible), since real-life
datasets are mostly imbalanced, and adding too many new
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classes at each iteration may increase the overall class imbal-
ance.

A summary of our analysis of the effects on incrementally
trainedmodels of (i) the order inwhich newclasses are added,
(ii) the IEC (instances from existing classes), and (iii) the
batch size of the base and new classes (BC/NC), for both our
private (imbalanced) dataset and the RVL-CDIP dataset is
presented in Table 23.

Overall, based on our experimental results, it can be con-
cluded that the choice of the number of instances from
existing classes (IEC), and the batch size of the base and
new classes (BC and NC) depends upon the nature of the
dataset type (balanced or imbalanced). In the presence of
an imbalanced dataset, the order (most/least frequently or
random selection) in which the classes are selected for incre-
mental training in multiple iterations, also affects the choice
of values for IEC, BC, and NC.

In most real-life scenarios, the datasets are imbalanced
and the models are trained with most-frequently-occurring
classes first, or random class addition (the scenario of least-
occurring classes first being very unlikely to happen in real
applications). In such cases, or even if the expected number
of instances from future classes is unknown, we recommend
using 150 instances from existing classes (IEC) per iteration,
while the number of base classes (BC) is kept to minimum
and new classes are added one by one (NC=1).

However, if the dataset is initially very small, with very
few instances per base class, and a large number of incoming
documents from new classes are expected over time, then we
recommend using a larger batch size for new classes (NC).

6 Conclusion and future work

Document classification is an important task for corporate
organizations and private companies. However, the incessant
evolutions in the documents to classify, and particularly the
arrival of new classes of documents over time, makes it dif-
ficult to train a static machine learning model for document
classification. Incremental learning models cater to such sce-
narios where document datasets are constantly evolving with
new information.

In this study, we propose a rehearsal-based incremen-
tal learning model for document classification that learns
from text extracted from evolving document datasets. The
performance of the proposed model is compared with tradi-
tional deep learning models for the classification of business
documents using textual information from our private and
RVL-CDIP datasets. The results show that rehearsal-based
incremental learning models if trained using all the train-
ing data (even in multiple iterations), performs similar to
static machine learning model on a fixed test set. This result
shows that an incremental learningmodel can be successfully
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employed for document classification in cases where data is
evolving at run-time with the arrival of new documents since
the results are similar to those obtained using a static learning
model.

Moreover, we investigate the optimal values of the param-
eters controlling the memory size/variety (namely parame-
tersBCand IEC), and the batch size for newclasses (NC), and
analyzed their effects on the performances of the rehearsal-
based model along its training iterations. Based on this
analysis, we formulate a list of recommendations for these
values, depending on the scenario at hand and the nature of
the dataset.

Though this research work analyses various aspects of
incremental learning model for document classification,
some possibilities are yet to be explored.

First, we could make our evaluation scenarios even more
realistic, for instance by simulating scenarios where the
instances from NC new classes are not all fed to the model
in only one training iteration, or the value of parameter BC
differs largely from NC, or the value of IEC can vary across
training iterations.

Second, this study explores various aspects of the rehearsal-
based approach for incremental learning and its comparison
with a traditional deep learning model for document clas-
sification. It can be useful to explore how other incremental
learning approaches such as regularization-based approaches
and variational continual learning can be used for document
classification, and how they compare with static deep learn-
ing models.

Finally, another very interesting future direction is to use
not only text but also layout (image) information from the
document, for multimodal incremental document classifica-
tion.
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