
International Journal on Document Analysis and Recognition (IJDAR) (2024) 27:127–145
https://doi.org/10.1007/s10032-023-00453-8

ORIG INAL PAPER

TableStrRec: framework for table structure recognition in data sheet
images

Johan Fernandes1 · Bin Xiao1 ·Murat Simsek1 · Burak Kantarci1 · Shahzad Khan2 · Ala Abu Alkheir3

Received: 24 November 2021 / Revised: 11 August 2023 / Accepted: 16 August 2023 / Published online: 8 September 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
Billions of documents in data sheet format are shared between various organizations across the globe on a daily basis. The
essential information in these documents is presented in tabular format. Extracting and assimilating this information can help
organizations make data-driven decisions. Solutions for detecting tables in document images have been well explored. Thus,
in this work, we propose TableStrRec, a deep learning-based approach to recognize the structure of such detected tables by
detecting rows and columns. TableStrRec comprises two Cascade R-CNN architectures, each with a deformable backbone and
Complete IOU loss to improve their detection performance. One architecture detects and classifies rows as regular rows (rows
without a merged cell) and irregular rows (groups of regular rows that share a merged cell). The second architecture detects
and classifies columns as regular columns (columns without a merged cell) and irregular columns (groups of regular columns
that share a merged cell). Both architectures work in parallel to provide the results in a single inference. We show that utilizing
TableStrRec to detect four classes of objects improves the table structure recognition performance on three public test sets.
We achieve 90.5% and 89.6% weighted average F1 scores on the ICDAR2013 test set for rows and columns, respectively.
On the TabStructDB test set, we achieve 72.7% and 78.5% weighted average F1 score for rows and columns, respectively.
We also evaluate the proposed method under the FinTabNet dataset using the structure-only TEDS score, achieving 98.34%,
which can outperform most state-of-the-art benchmark models.
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1 Introduction

Most organizations operate as part of a sophisticated global
supply chain involving manufacturers, component distrib-
utors and product designers. These entities need to share
information through various types of documents. The elec-
tronic industry in particular is reliant on accurate and
up-to-date data sheets to develop reliable and compatible
systems. These data sheets are mostly digitally born doc-
uments. They can be portable document format (PDF) based
or scanned images of paper-based documents. They contain
valuable information such as product availability, specifi-
cations and pricing in tabular format to provide an easy
and concise way to analyse and make decisions involving
large amounts of structured information [1]. Extracting and
assembling the data from such tables for analysis can help
organizations to develop a sophisticated knowledge manage-
ment system. This system can be utilized to support efficient
automation as well as evidence and data-driven decision-
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making [2]. We hypothesize that the task of extracting these
data can be handled in three stages, as shown in our proposed
table text extraction pipeline in Fig. 1.

Stage 1 comprises table detection and table image clas-
sification steps. Documents have pages that contain tables
and pages that do not contain tables. Thus, we propose that
this stage should provide the locations of the tables in the
image (table detection task) and the full page image (table
image classification task) as the final result of this stage. The
detected tables can then be extracted and sent to the next stage
to address table structure recognition (TSR).With increasing
work done on the application of deep learning towards image
processing tasks such as object detection, multiple solutions
are proposed by [3–5] for addressing the table detection task
in data sheet images. TableDet [6] is proposed as a deep
learning-based solution to address both table detection and
table image classification in a single inference. The TableDet
solution achieves the highest F1 scores for table detection
on three public datasets (ICDAR 13 [1], ICDAR 17 [7] and
ICDAR 19 [8]). Furthermore, for table image classification,
it also accurately identifies all images with tables and sig-
nificantly reduces the number of images without tables from
being processed in the proposed pipeline. Thus, TableDet
addresses both steps of stage 1 of the table text extraction
pipeline which is displayed in Fig. 1.

The table structure ascertainment (or mapping out) is a
more complex task due to the many variations in the table
layouts in documents published by different companies. In
this work, we propose a solution to address the TSR task
in stage 2 of the proposed pipeline, as shown in Fig. 1. This
task can be decomposed into detecting rows and columns [9,
10] which can then be used to identify the locations of cells
within the table. An alternative approach would be to directly
detect the cells of the tables [4, 11, 12]. The tables can appear
with or without line separators between the cells [4]. Fur-
thermore, the presence of the merged cells can also indicate
a hierarchically structured layout of information [11, 12].

To bridge this gap, we present TableStrRec, a deep
learning-based approach to detect and classify rows and
columns in table images. To develop the table images, we
employ TableDet [6] which provides accurate locations of
tables in full page images. Utilizing these locations, we can
extract the tables from such images. In each table image,
we propose detecting and classifying rows as regular rows
(rows without a merged cell) and irregular rows (groups of
regular rows with a shared merged cell). Similarly, we pro-
pose detecting and classifying columns as regular columns
(columns without a merged cell) and irregular columns
(groups of regular columns with a shared merged cell). In
addition, we propose utilizing one Cascade R-CNN archi-
tecture to detect and classify the rows and another to detect
and classify the columns in parallel. Thus, TableStrRec can
detect four classes of objects in a table image. Each Cascade

R-CNN architecture is equipped with a deformable convo-
lution backbone [13] and utilizes Complete IOU loss [14] to
improve its object detection performance.

Our main contributions in this work are as follows:

1. An end-to-end deep learning-based approach that solves
the table structure recognition in data sheet images
(referred to as TableStrRec).

2. Detection of irregular rows and columns in addition to
detecting regular rows and columns to capture the hier-
archical layout of tables with merged cells.

3. Exploring the impact of utilizing a deformable convolu-
tion backbone as a feature extractor and Complete IOU
loss for bounding box regression to improve the detection
performance of the proposed TableStrRec system.

As a result of these contributions, we show that TableStr-
Rec can improve row and column detection by more than 7%
regarding weighted average F1 scores on ICDAR2013 and
TabStructDB test sets and can also outperform state-of-the-
art methods regarding the structure-only TEDS score on the
FinTabNet [15] dataset.

The remainder of this article is structured as follows: In
Sect. 2, we describe the previous works that address table
detection and table structure recognition. In Sect. 3, we
present the steps to solve table structure recognition in data
sheet images. We present the results of the proposed system
in Sect. 4 and conclude this work in Sect. 5.

2 Related work andmotivation

Document analysis has been well investigated from multiple
perspectives, such as the type of document to be processed
and the type of solution employed to analyse the document.
The important information in these documents is presented
in tabular format [16]. Identifying such tables and extract-
ing the content for query answering can help organizations
with automation as well as support data-driven analysis and
decisions [2]. Recent works have shifted from PDF-based
extraction techniques [17] to deep learning techniques on
images [4, 11] to extract this tabular information. As afore-
mentioned, many table detection approaches have achieved
promising results using different types of object detection
models. In this study, we simply use TableDet [6] to extract
tables. Therefore, in this section, we mainly focus on the
studies regarding TSR.

2.1 Table structure recognition

There have been many studies discussing table structure
recognition (TSR) using different problem formulations.
Based on the problem formulations of these studies, we
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Fig. 1 Table text extraction pipeline. This work deals with stage 2 of the proposed pipeline

can categorize them into three groups: cell-level methods,
column–row-level methods and image-to-sequence models.
Cell-level methods usually require extracting table cells first
and then building the associations of the extracted cells.
FLAG-Net [18] is a typical cell-level method that employs
an Element Proposal Network (EPN) to detect table elements
first and then uses a proposed Flexible Context Aggregation
to build the associations of the detected table elements. More
specifically, the EPN in the FLAG-Net is a variation ofMask-
RCNN [19] without the mask branch, the Flexible Context
Aggregation is implemented by a stack of transformer layers
considering the dense and sparse context of the table ele-
ments, and the associations of different table elements are
defined as “same row”, “same column” and “same cell”. Tab-
StructNet [20] is another cell-level approach that detects table
cells first and then builds the cell associations. TabStructNet
also employs a variation of Mask-RCNN, which uses dilated
convolutions in the RPN network, appends a pathway to the
FPN network and adds an extra proposed loss function. After
detecting the table cells, TabStructNet classifies the detected
cells into “same column” and “same row” groups to build
the associations of detected cells with a proposed Struc-
tured Recognition Network implemented by LSTM layers
and two classifiers. Graphical models have also been applied
in cell-level approaches. For example, study [21] introduces
a Neural Collaborative GraphMachines which uses text seg-
mentation bounding boxes as table elements and proposes
Collaborative Blocks to extract and represent features as
directed graphs and, at last, classifies paired table elements

into “same column”, “same row” and “same cell” groups.
Many other studies [22–27] can also be categorized into cell-
level approaches, and most of those methods leverage either
object detection or semantic segmentation methods to locate
table elements, then use different strategies to extract fea-
tures and classify paired table elements into “same column”,
“same row” and “same cell” groups or use a graph model
to represent complex table structures. It is worth mentioning
that not only visual features but also text features have also
been applied in some of these studies [21].

In contrast, column–row-level approaches [9, 10, 28–30]
often detect or segment columns and rows directly or pre-
dict the separator lines of columns and rows. Study [28]
formulates the TSR problem as an object detection prob-
lem and defines six types of table components, including
table, column, row, column header, projected row header
and table spanning cell in the proposed dataset. DeepTab-
StR [9] is another study formulating the TSR problem as
detecting columns and rows. In DeepTabStR, deformable
convolution layers are used to replace conventional convo-
lution layers to build the baseline object detection models,
including Faster-RCNN, RFCN and FPN [29]. Following the
problem formulation of DeepTabStR, study [10] argues that
training two separatemodels detecting columns and rows can
perform better than a single model detecting both columns
and rows simultaneously. Furthermore, study [10] proposes
an anchor optimization method to further refine the anchor
generation process of two-stage detection models by apply-
ing a K-means-based clustering method. Besides detecting
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columns and rows directly, some studies [31–34] also formu-
late the problem of predicting the separator lines of columns
and rows. SPLERGE [32] proposes a solution containing two
models: a Split Model and a Merger Model. The Split Model
is used to predict the separator lines of the table without con-
sidering the spanning cells, and theMerger is responsible for
predicting the table elements and spanning cells. Similarly,
CornerNet+FRCN [35] also follows the pipeline of predict-
ing the separator lines first and thenmerging cells to build the
table structures. More specifically, CornerNet+FRCN uses
a spatial CNN network containing two branches to predict
columns separator lines and row separator lines, respectively,
and employs relation network [33] to merge cells. To sum up,
column–row-level approaches usually either predict columns
and rows or predict separator lines of columns and rows first
and then utilize post-process methods or models to merge
cells. It is worth mentioning that our proposed method in this
paper is also a columns–row-level approach which detects
columns and rows firstly and uses a post-processing method
to build the complex table structure.

Besides cell-level and column–row-level methods, image-
to-sequence models are another popular formulation. Image-
to-sequence models usually utilize a CNN backbone to
extract the input features first and then follow the transformer
encoder–decoder [36] architecture to output the sequence
of HTML tags directly. TableMASTER [37] is a typical
method in this group and contains two transformer decoder
branches to predict theHTMLsequence and bounding boxes,
respectively. TableFormer [38] follows a similar architec-
ture that consists of a CNN backbone network, a transformer
encoder, a Structure Decoder to output HTML tags and a
BBoxDecoder to predict the boundingboxes. It isworthmen-
tioning that for the evaluation of those image-to-sequence
models, TEDS score [39] is the most popular metric because
it can measure the distance between the prediction sequence
and the ground sequence. In this study, even though our
proposed method is a column–row-level method, we can
transform the predictions intoHTML tag sequences and eval-
uate our model with the TEDS score.

3 Methodology

In this section, we describe the steps taken to develop the
TableStrRec systemwhich detects rows and columns on table
images. In addition, it also classifies the rows as regular or
irregular rows and also classifies the columns as regular or
irregular columns. Multiple deep learning-based solutions
have addressed the table detection task in images [3–5, 40].
However, we propose utilizing the detected table region pro-
vided by theTableDet [6] system to develop table images. For
this work, we determined that utilizing a table image which
contains only the table region of a full page image and avoids

the non-table sections of the image would help the TableStr-
Rec system to focus on locating the rows and columns of the
table, as shown in Ref. [5, 9, 11].

3.1 Task definition

The task of TSR in table images involves identifying the
components of the table which can be decomposed into two
classes or components: rows and columns, as shown in Ref.
[5, 9]. It can further be decomposed into a single class or
component: cells, as shown in Ref. [4, 11]. Due to the large
differences in the layouts of different tables, we propose to
detect rows and columns first to understand the layout of the
contentwithin the table. The tableswithin different data sheet
(document) images have different layouts, based on the need
of the author to show different relationships between entries
in the table, or a need to present the content of these tables
in a concise format, or simply aesthetic preferences. This
difference is brought by the presence or absence of merged
cells and the presence or absence of line separators between
rows and columns. We define a merged cell as multiple cells
grouped as one cell that stretches acrossmore than one row or
column [12]. These merged cells indicate the common con-
tent between two or more rows or columns, as shown in the
input table images in Fig. 2. These merged cells are added to
reduce the repetition of content among the rows or columns.
In addition to the existence or absence of merged cells, the
tables may or may not contain line separators between rows
and columns to indicate these merged cells.

3.1.1 Regular and irregular class definitions

We formulate the TSR problem as an object detection task
where the objects to be detected are the rows and columns
of the table. We refer to the rows and columns that do not
contain a merged cell (multiple cells grouped as one cell)
as regular rows and regular columns, respectively. When a
group of regular rows share a merged cell [12] that stretches
across themwe refer to this group of rows as an irregular row.
Similarly, we refer to a group of regular columns that share a
merged cell [12] which stretches across them as an irregular
column. Thus, along with detecting regular rows and regular
columns, we propose detecting irregular rows and irregular
columns to provide more details on the layout of the table
contents.

3.1.2 Detecting groups of components versus detecting
cells

Instead of detecting only the merged cell in this study, we
detect the entire group of rows and columns attached to the
merged cell for two reasons. Firstly, by capturing the group
of regular rows and columns that are part of irregular rows
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Fig. 2 TableStrRec system comprises of two Cascade R-CNN archi-
tectures each with deformable backbones and CIOU loss at each box
head to improve detection performance. One Cascade R-CNN architec-

ture detects and classifies rows, while the other detects and classifies
columns. As a post-processing step the intersecting lines of the detected
rows and columns can be used to generate cells

and columns, respectively, it becomes easier to provide hier-
archical details of which rows and columns share a common
merged cell. Secondly, if we only detect the merged cells
instead of the group of regular rows and columns, then the
object detection architecture would try to detect cells along
with rows and columns which would be redundant. Thus, we
propose not only to detect rows and columns but also to clas-
sify them as regular rows, irregular rows, regular columns
and irregular columns to address TSR in images.

3.2 TableStrRec architecture

State-of-the-art solutions for tasks such as image classi-
fication and object detection utilize deep learning-based
techniques due to the generalization ability of the same archi-
tecture to detect different types of objects, such as natural
objects [41] or objects in data sheet images [4]. In this study,
we utilize a deep learning-based object detection approach
to recognize the structure of a table in data sheet images. For

this task, we determined that the structure of the table can be
decomposed into four classes of objects. Instead of detect-
ing only rows and columns, we propose detecting irregular
and regular rows along with irregular and regular columns
in order to capture the merged cells within the structure. By
identifying these irregular rows and irregular columns, the
object detection architecture would be able to provide more
details about the hierarchical layout of the table.

Thus, we put forward TableStrRec, a deep learning-based
approach that utilizes anobject detection architecture to accu-
rately identify objects of these four classes in data sheet
images.We employ theCascade-RCNN[41] object detection
architecture to develop thisTableStrRec system.TheCascade
R-CNN architecture comprises four components as shown in
Fig. 2: backbone, Feature Pyramid Network (FPN), Region
Proposal Network (RPN) and the Region of Interest or box
head. In this work, we utilize a ResNet [42] architecture as a
backbone to act as the feature extractor. As rows and columns
appear with different scales and orientations, we employ
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deformable convolutions [13] in this ResNet architecture to
enhance the quality of the detected rows and columns. In
addition to utilizing deformable convolutions, we also uti-
lize an FPN to provide rich features to the box head and RPN
of this architecture.

The Cascade R-CNN architecture uses three box heads
to refine the bounding boxes for each image [41] at mul-
tiple Intersection Over Union (IOU) values [43]. The IOU
value ismeasured as the IntersectionOverUnion of proposed
bounding box B = (x1, y1, x2, y2) generated by the archi-
tecture and ground truth Bgt = (xgt1 , ygt1 , xgt2 , ygt2 ) bounding
box, as shown in (1). Furthermore, each box head receives
multi-scale feature maps from the FPN and the final layer
of the backbone along with proposal bounding boxes for
refinement, as shown in Fig. 2. The first box head receives
the proposal bounding boxes from the RPN and refines the
bounding boxes which achieve an IOU value greater than
50%. These improved boxes are provided as proposals to the
second box head where the bounding boxes greater than 60%
IOU value are refined and are then sent to the third box head
where the boxes above 70% IOU value are refined and pro-
vided as the final output. At each box head, the bounding
boxes are refined by calculating the bounding box regres-
sion loss to measure the difference between the proposed
and ground truth boxes. In addition, a cross-entropy loss is
also calculated at each box head to measure the difference
between the predicted and ground truth object class labels.
Both losses are calculated together as a multi-task loss as
formulated in (2).

IoU(B, Bgt) = B ∩ Bgt

B ∪ Bgt (1)

L(pi , ti ) = 1

Ncls

∑

i

Lcls(pi , p
∗
i )

+λ
1

Nreg

∑

i

p∗
i L reg(ti , t

∗
i ) (2)

3.2.1 IOU-based regression loss

The standard bounding box regression loss utilized by each
box head [41] is the l1 loss. However, the bounding box
regression performance of each box head is evaluated in
terms of an IOU value. To bridge this gap between the met-
rics for loss calculation and evaluation, IOU loss [44] was
introduced. Furthermore, rows and columns can appear with
different scales and orientations in table images. Utilizing
aspect ratio as a parameter in the regression loss calcula-
tion can be beneficial towards refining the bounding boxes
for objects with multiple scales and orientations as shown in
[14].

v = 4

π2

(
arctan

wgt

hgt
− arctan

w

h

)2

(3)

α = v

(1 − IoU + v′)
(4)

LCIoU = 1 − IoU + ρ2(b, bgt)

c2
+ αv (5)

Thus, we propose utilizing Complete IOU (CIOU) [14]
which operates with parameters such as distance between the
centre points of the two boxes (ρ(.)), diagonal length of the
boxwhich is denoted as c and the aspect ratio of the bounding
boxes to accurately detect the object. CIOU loss considers
the consistency of the aspect ratio (v) and a positive trade-off
parameter (α) as given in (3) and (4), respectively. To accu-
rately detect and classify the rows and columns, we employ
CIOU loss at all three boxheads of theCascadeR-CNNarchi-
tecture which is utilized to develop the TableStrRec system.

In this work, we detect regular and irregular rows along
with regular and irregular columns to gain more information
about the table structure. However, rows generally appear
with a horizontal alignment, while columns appear with a
vertical alignment [45] within the table. Thus, our proposed
TableStrRec system consists of two Cascade R-CNN archi-
tectures, each detecting two classes of objects in the same
table image as shown in Fig. 2. Each architecture utilizes a
deformable backbone and CIOU loss at each box head to
improve bounding box predictions. As shown in Fig. 2, we
employ one Cascade R-CNN architecture to detect the rows
(regular and irregular) and the secondCascadeR-CNNarchi-
tecture to detect the columns (regular and irregular) in the
table images. Both architectures work together in parallel to
provide these results. The final result of the TableStrRec sys-
tem is the locations of regular and irregular rows along with
regular and irregular columns. Hence, TableStrRec detects
four classes of objects in a single inference.

We display the inference process of the TableStrRec in
Fig. 2. Since there are two Cascade R-CNN architectures
working in parallel within the TableStrRec system, we pro-
vide a two copies of input table images to the TableStrRec
system. The input table image in Fig. 2 has objects of all four
classes. Thus, the TableStrRec system provides the locations
of each of the four object classes. We denote the detected
irregular rows and columns with blue dotted boxes, while
the detected regular rows and columns are denoted with red
boxes to indicate the output of the TableStrRec system. Fur-
thermore, as post-processing step we utilize the intersecting
lines of the detected rows and columns to generate cell loca-
tions, as indicated in Fig. 2. The cell locations display not
only the locations of regular cells (cells not stretching over
multiple cells) but also the locations of merged cells. The
irregular rows and irregular columns consider the merged
cell and the regular rows and regular columns, respectively.
Thus, the intersecting lines developed by these four detected
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object classes presents an easier pathway to locate themerged
cells in the tables, as shown in the final result in Fig. 2. By
locating the merged cells, the TableStrRec system can accu-
rately identify the hierarchical layout of data within the table
image.

3.3 Post-processing algorithm

In this section,we discuss the post-processing algorithm after
the columns and rows are detected and classified. As afore-
mentioned, we classify columns and rows with merged cells
as “irregular”, as shown in Fig. 4. Therefore, we can infer
the merged cells by the regular and irregular results. Algo-
rithm 1 shows an example of inferring merged cell through
detected regular and irregular columns. It is worth mention-
ing that interoperation in Algorithm 1 means calculating the
intersection area. Similarly, we can also use irregular and
regular rows to infer merged cells. And the regular cells are
the intersection areas of regular rows and regular columns.
After regular columns, regular rows and merged cells (span-
ning cells) are obtained, we can further apply the algorithm in
study [28], which can be implemented by its code base [46]
to generate the HTML and CSV files.

Algorithm 1 Finding the merging cells
Input: The detected regular columns (R) and irregular columns (I)
Output: Merged cells in the table

1: Initialize an empty Dict D
2: while I.size() > 0 do
3: Visit irregular column in from I
4: Initialize an empty List L
5: while R.size() > 0 do
6: Visit regular column rk from R
7: Calculate the score sk=inter(in , rk ) / rk
8: if sk > threshold then
9: Add rk into L
10: end if
11: end while
12: Add {in : L} into D
13: end while
14: Initialize an empty List M
15: while D.size() > 0 do
16: Visit key j and value list l j
17: Calculate the union area u j of l j
18: Exclude the union area u j from key j to obtain merged cell c j
19: Add c j into M
20: end while
21: RETURN M

3.4 Dataset

We utilize three data sheet (document) image datasets in
this work; ICDAR2013 [1], TabStructDB [9] and FinTab-
Net [15]. All datasets consist of only the table regions of
each image. The ICDAR2013 dataset [1] contains 67 Amer-

Table 1 Datasets statistics

Dataset Train Test Validation

ICDAR2013 125 31 –

TabStructDB 731 350 –

FinTabNet 78537 9289 9650

ican and European Union documents. There are a total of
238 pages combining all documents of the dataset which are
converted to images. This dataset provides a total of 156
tables. The TabStructDB was developed by [9] who utilized
the ICDAR2017 POD competition dataset [7] to extract a
total of 1081 tables. We maintain the same training and test
split as [9] for both datasets. As shown in Table 1, 125
tables of ICDAR2013 dataset are used for training and 31
tables for testing. Similarly, 731 tables and 350 tables from
TabStructDB are used for training and testing, respectively.
We manually corrected the row and column annotations of
each image to ensure that the rows and columns within the
image are aligned with each other and they do not capture
merged cells. We refer to these rows and columns as reg-
ular rows and regular columns, respectively. Moreover, we
develop annotations for irregular rows and irregular columns
as well. An irregular row is annotated by drawing a single
bounding box over a group of regular rows and the merged
cell that stretches over these regular rows. Thus, an irregu-
lar row annotation captures the regular rows as well as the
merged cell shared by them. Similarly, we develop annota-
tions for irregular columns which group together multiple
regular columns and include the merged cell that stretches
over these regular columns. FinTabNet is a popular dataset
collected from the annual reports of S&P 500 companies.We
first processed the annotations to align with the other two
datasets. As a result, we obtained 78,537, 9650 and 9289
tables for the training, validation and testing, respectively.

4 Performance study

In this work, we propose detecting regular rows, irregu-
lar rows, regular and irregular columns in table images to
address the task of TSR. There are four object classes in
a table image to accurately identify the layout of content
in the table. We evaluate the performance of our presented
TableStrRec system on ICDAR2013 [1], TabStructDB [9]
and FinTabNet [15] datasets, which have annotations for all
four object classes. To the best of our knowledge, the state-of-
the-art solution for rowand columndetection on ICDAR2013
and TabStructDB datasets is the DeepTabStr [9] system. The
DeepTabStr system only detects rows and columns and does
not classify them into regular and irregular classes. Thus,
we train the DeepTabStr system on the training sets of the
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Fig. 3 Combined version a and separate versions b of the TSR systems

two available datasets and fairly evaluate the row and column
detection performance of our presented systemwith the state-
of-the-art solution. In addition, image-to-sequence methods
have achieved promising results recently, but these methods
usually require a large dataset. Therefore, we also use the
FinTabNet dataset to train our model and further transform
the outputs into HTML format with a post-processing step
and compare the structure-only TEDS scores with state-of-
the-art methods.

The TableStrRec system utilizes the Cascade R-CNN
architecture with ResNet50 backbone, while the DeepTab-
Str system utilizes the deformable FPN architecture with a
ResNet-101 backbone. We display the difference between
the separate and combined versions of these two TSR sys-
tems in Fig. 3 and also analyse the impact of utilizing these
version types in this section. The separate version uses two
deep learning architectures where one architecture detects
and classifies columns and another detects and classifies
rows. As shown in Fig. 3a in the combined version, a sin-
gle architecture detects all four objects. For instance, the
separate versions of TableDetStr and DeepTabStr utilize
two Cascade R-CNN and two deformable FPN architectures
along with a ResNet-50 and ResNet-101 backbone, respec-
tively. Similarly, the combined versions of TableDetStr and
DeepTabStr utilize a single Cascade R-CNN and a single
deformable FPN architecture along with a ResNet-50 and
ResNet-101 backbone, respectively, to detect all four object
classes. In our analysis, we determine that the separate ver-
sion of TableStrRec is able to outperform DeepTabStr in
detecting and classifying both rows and columns. The results
of our approach can be seen in Fig. 4.

4.1 Training details

In this work, we propose detecting and classifying rows as
well as columns to address the task of TSR in table images.
We train separate and combined versions of the DeepTabStr
and our proposed TableStrRec systems to analyse the impact
of each version. The separate versions comprise of one archi-
tecture trained to detect regular and irregular rows, while the
other architecture is trained to detect regular and irregular
columns. The combined versions comprise one architecture
that is trained to detect all four object classes. The separate
versions are individually trained for 60 epochs, whereas the
combined versions are trained for 70 epochs.Both versions of
each system are trained on the training set of the ICDAR2013
and TableStructDB datasets, as shown in Table 1.

The final inference of both systems irrespective of their
versions is the locations and classes of the four object
types. TableStrRec has been developed with the Detec-
tron2 library [47]. Furthermore, Group Normalization [48]
enhances the detection performance of object detection archi-
tectures such as Cascade R-CNN when the training batch
size is small. We train the separate and combined versions
of TableStrRec with a batch size of 2 images. Thus, we
utilize Group Normalization in the architecture of both ver-
sions instead of the standard Batch Normalization [49] to
improve their detection performance. We utilize a learning
rate of 0.002 with an SGD optimizer to train the systems.
All versions of TableStrRec and DeepTabStr have been
trained on a single NVIDIA Tesla V100 GPU with 32GB
RAM. It is worth mentioning that to compare with differ-
ent types of state-of-the-art TSR methods, we trained the
Table-Transformer [28] and TableMaster [50] using FinTab-
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Fig. 4 Results of TableStrRec on table image. Detected irregular and
regular columns in image (a) and (d) and irregular and regular rows in
image (b) and (e) are shown with irregular type in blue colour dotted

line box and regular type in red colour line box, respectively. Result of
post-processing step where the intersections of columns and rows from
are used to generate cell locations for images (c) and (f), respectively

Net datasetwith their official codebases [46, 51] andobtained
their structure-only TEDS scores.

4.2 Results

In this section, we present the improvements in TSR on
table images brought on by our proposed TableStrRec sys-
tem. The system approaches the task of TSR as an object
detection task. The system detects four classes of objects;
regular rows, irregular rows, regular columns and irregu-
lar columns. It detects all four object classes in a single
inference to provide the locations of content in a table
image, as shown in Fig. 2. As discussed in Sect. 2.1, there
are different formulations for the TSR problem, including
cell-level, column–row-level and image-to-sequence for-
mulations. Cell-level formulations often use F1 scores on
the cell level to evaluate the performance, while column–
row-level and image-to-sequence formulations usually use
detection metrics and TEDS scores, respectively. Therefore,
we utilize the ICDAR2019 Table Detection and Recogni-
tion competition [8] evaluation metric to evaluate the TSR
performances that are achieved by TableStrRec and the state-
of-the-art DeepTabStr method on the two ICDAR2013 and
TabStructDB datasets. As per thismetric the F1 scores at four
IOU values (60, 70, 80, 90) are calculated. Following upon
this, the corresponding IOU values are used as the weights to
each F1 scores. The product of the weights and the F1 scores
are then added to develop the weighted average F1 scores
(W. Avg F1).

Besides, to comparewith state-of-the-art image-to-sequence
methods,wechoose structure-onlyTree-Edit-Distance-Based
Similarity (TEDS) [39] for the FinTabNet dataset, which can
overcome the drawbacks of adjacency relation metrics [52],

and can be defined as Eq.6.

TEDS(Ta, Tb) = 1 − EditDist(Ta, Tb)

max(| Ta |, | Tb |) (6)

where EditDist is the tree-edit distance, and T is the number
of nodes in the tree. Notably, we focus on the TSR problem
without considering the impact of OCR tools that extract text
content from images. Therefore, we consider the structure-
only TEDS, which means that we only transform the model
outputs into HTML tags without extracting the tag contents
from the images.

We evaluate the impact of utilizing a deformable convo-
lution [13] backbone instead of a conventional convolution
backbone. Furthermore, we examine the detection perfor-
mance improvement brought on by using separate versions of
the systems over combined versions as well. This analysis is
conducted on the ICDAR2013 and TabStructDB datasets, as
shown in Tables 2 and 3, respectively. All systems are trained
to detect regular rows, regular columns, irregular rows and
irregular columns. While the systems detect four classes of
objects, wemeasure their detection performance on howwell
they detect and classify rows and columns as shown in Tables
2 and 3. We infer that the TableStrRec system should utilize
two Cascade R-CNN architectures, each with deformable
backbones and CIOU loss to accurately detect and classify
rows and columns separately. Furthermore, we measure how
efficient the separate version of TableStrRec is over DeepT-
abStr on detecting objects of each of the four classes in Table
4.We alsomeasure the generalization capability of both solu-
tions, as shown in Table 5. To demonstrate the effectiveness
of the deformable convolution backbone, we compare it with
conventional convolution backbone using the separated ver-
sion of the proposed method. The experimental results are
shown in Table 7.
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Table 6 Experimental results on FinTabNet dataset with structure-only
TEDS score

Model TEDS-struc.(%)
Sim. Com. All

EDD [39] 88.40 92.08 90.60

GTE [15] – – 87.14

GTE(FT) [15] – – 91.02

TableFormer [38] 97.50 96.00 96.80

TableMaster 98.36 98.28 98.32

Table-Transformer* 97.89 97.07 97.47

TableStrRec (Ours) 98.41 98.27 98.34

4.2.1 ICDAR2013 dataset

As shown in Table 2, we evaluate the performance of
DeepTabStr [9] and TableStrRec on the ICDAR2013 test
set [1]. Both systems are trained on the training set of the
ICDAR2013 to detect four classes of objects. We evaluate
the impact of utilizing the separate and combined versions
of both TableDetStr and DeepTabStr. The separate versions
outperform the combined versions, especially on the task
of detecting and classifying rows. The separate version of
TableStrRec outperforms the separate version of DeepTab-
Str with a 26.4% and 7% increase in performance in terms of
weighted average F1 scores for rows and columns, respec-
tively.At each IOUvalue, the separate version ofTableStrRec
achieves a higher F1 scores than the separate version of
DeepTabStr in detecting and classifying rows and columns.
In Fig. 5a, we display the consistent higher F1 scores that
TableStrRec achieves in detecting and classifying rows. In
Fig. 5b, we show that TableStrRec can achieve higher F1
scores at all four IOU values, especially at 90% IOU value.

The separate version of the TableStrRec achieves the high-
est F1 scores as compared to the other systems at all IOU
values for both rows and columns. Furthermore, the separate
versions of all systems displayed in Table 2 achieve higher F1
scores andweighted average F1 scores for detecting and clas-
sifying rows and columns. Thus, we infer that the separate
versions of the systems offer a more efficient solution for this
problem. In addition we also display the training improve-
ments provided by utilizing CIOU loss as a bounding box
regression loss in Fig. 6a. We noted the average regression
loss achieved by the separate version of TableStrRec when
l1 loss or CIOU loss is used in the architecture.

It is worth noting that the architectures which are trained
to detect and classify rows and columns with CIOU loss con-
verged faster than the architectures which are trained with l1
loss. As shown in Fig. 6a and Table 2, utilizing CIOU loss
for bounding box regression in TableStrRec improves its row
and column detection performance. We further evaluate how
well the separate versions of the TableStrRec and DeepT-

abStr can detect each of the four object classes in Table 4.
TableStrRec is able to achieve the highest weighted average
F1 scores for all four object classes, as shown in Table 4.
It achieves a 99.8% and 85.2% weighted average F1 scores
for irregular rows and columns, respectively. Thus, it can be
concluded that TableStrRec can improve the detection per-
formance of not only regular rows and regular columns but
also irregular rows and irregular columns.

4.2.2 TabStuctDB dataset

We perform a similar analysis on the TabStructDB dataset to
evaluate the performance improvement achieved by our pro-
posed approach. All systems are trained on the TabStructDB
training set for this analysis. The separate version ofTableStr-
Rec achieves the highest weighted average F1 scores for both
detecting and classifying both rows and columns, as shown
in Table 3. It outperforms the separate version of DeepTab-
Str by 11.8% and 9.1% on rows and columns, respectively,
in terms of weighted average F1 scores. It also achieves the
highest F1 scores on all four IOU values for both detect-
ing and classifying rows and columns as shown in Table 3.
We display the results that the separate versions of TableStr-
Rec and DeepTabStr achieve in Fig. 7. At each IOU value,
TableStrRec achieves a higher F1 scores in detecting and
classifying rows and columns, as shown in Fig. 7a and b.

In addition, we also display the quicker convergence
enhancement providedbyutilizingCIOU loss in theTableStr-
Rec architecture in Fig. 6b. Employing CIOU loss for bound-
ingbox regressionnot only helpsTableStrRec converge faster
but also improves the detection capability of the system to
detect and classify rows and columns, as indicated in Table
3. Similar to our analysis on the ICDAR2013 test set, we
conclude that the separate versions of the systems are more
efficient solutions for this task on the TabStructDB test set,
as shown in Table 3. The separate version of TableStrRec
also achieves the highest weighted average F1 scores for not
only regular and irregular rows but also regular and irreg-
ular columns, as shown in Table 4. Furthermore, while the
combined version of TableStrRec provides results in 2 s, the
separate version takes just an additional 0.2 s to providemore
accurate results.

4.2.3 FinTabNet

Table 6 shows the experimental results on the FinTabNet
dataset, which uses structure-only TEDS scores as the evalu-
ation metric. It is worth mentioning that we re-trained Table-
Master [50] and Table-Transformer* [28] based on their offi-
cial code bases. For the implementation Table-Transformer*,
we use Deformable-DETR [53] as the base model, which
can achieve better performance and faster divergence. We
applied the post-processingmethod described inAlgorithm 1
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Table 7 TSR results comparison for conventional CNN backbone and deformable CNN backbone on ICDAR2013 and TabStrDB datasets

Data set Component Row Column

F1 score at each IoU W.Avg F1 score at each IoU W.Avg

60 70 80 90 F1 60 70 80 90 F1

ICDAR2013 Conventional CNN + l1 98.3 94.2 91.3 72.8 87.8 93.8 90.6 88.5 81.1 87.8

Deformable CNN + l1 97.9 94.5 90.7 67.8 86.2 90.9 90.4 87.9 80.4 86.8

Conventional CNN + CIoU 98.9 95.8 92.1 77.6 89.9 93.1 91.7 90.7 82.6 89.0

Deformable CNN + CIoU 98.2 96.9 93.9 77.4 90.5 92.1 91.7 89.6 85.2 89.6

TableStructDB Conventional CNN + l1 84.3 79.9 71.9 44.8 68.1 87.1 83.3 77.6 56.3 74.4

Deformable CNN + l1 82.4 80.5 71.6 47.9 68.7 87.5 84.4 77.0 56.9 74.8

Conventional CNN +CIoU 83.5 81.3 74.1 47.9 69.8 90.0 87.7 80.2 58.3 77.4

Deformable CNN + CIoU 84.4 82.6 75.3 54.8 72.7 91.2 89.0 81.1 59.4 78.5

Fig. 5 Comparing detection performances of separate versions of TableStrRec and DeepTabStR on ICDAR2013 test set

Fig. 6 L1 loss and CIOU loss comparison at each training epoch achieved by separate versions of TableStrRec for detecting and classifying rows
and columns on ICDAR2013 test set (a) and TabStructDB test set (b)
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Fig. 7 Detection performances of separate versions of TableStrRec and DeepTabStR on TabStructDB test set

Fig. 8 Examples of generated HTML and CSV files. a is the original table, b is the generated CSV file, and c is the generated HTML file. Notably,
we filled the cell content to the CSV file to show the structure of the generated table

to obtain table columns, table rows and table spanning cells.
Further, we used the post-processing algorithm described in
study [28, 46] to generate the CSV and HTML files. Fig-
ure8 shows a generated CSV file and an HTML file whose
input image is from the test set of FinTabNet. The experimen-
tal results show that our proposed method can outperform
column–row-level models and is as competitive as state-of-
the-art image-to-sequence models.

4.2.4 Cross dataset

As shown in Table 2, 3 and Figs. 5, 7, utilizing the sepa-
rate version of TableStrRec provides high-quality rows and
columns detection results. To measure the generalization
capability of our proposed approach, we conduct the exper-
iment presented by Siddiqui et al. [9], as shown in Table 5.
We utilize the separate version of TableStrRec and the sep-
arate version of DeepTabStr to measure the generalization

potential of both solutions. As we have conducted exper-
iments on ICDAR2013 and TabStructDB datasets in this
work, the systems are trained on one dataset and evaluated
on the test set of the other dataset to evaluate how well the
systems generalize to the test dataset. For instance, we train
the systems on ICDAR2013 training set and test their rows
and columns detection performance on the TabStructDB test
set and TabStructDB complete set. Similarly, as shown in
Table 5, we train the systems on TabStructDB training set
and test their detection performance on the ICDAR2013 test
set and ICDAR2013 complete set. The systems are trained
to detect and classify each object in the image into one of
the four object classes; regular rows, irregular rows, regular
columns and irregular columns.

Furthermore, the table images in both datasets appear in
different types of documents. Thus, we conduct this test
to evaluate which method would perform better when it is
exposed to unseen table images such as tables from data
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sheets. Due to the lower number of training images and
the difference in structures of tables between ICDAR2013
and TabStructDB datasets, the systems provide lower results,
especially in the case of detecting rows. However, in the case
of detecting columns the systems achieve greater than 50%
weighted average F1 scores. In the second case, the systems
are trained on the TabStructDB training set and evaluated on
the test set of ICDAR2013 and complete set of ICDAR2013.
TableStrRec is able to achieve greater than 67% weighted
average F1 scores for detecting both rows and columns, on
these test sets.At all IOUvalues, TableStrRec achieves higher
F1 scores as compared to DeepTabStr for all four test sets
except at 60% IOUvalue for ICDAR2013 complete setwhere
the twomethods share the same F1 scores. Thus, we infer that
the separate version of TableStrRec systemwith twoCascade
R-CNN architectures, each with a deformable backbone and
CIOU loss not only can improve rowand columndetection on
two public test sets but also can have a higher generalization
potential than DeepTabStr (Table 7).

5 Conclusion

A large volume of data is shared between global organiza-
tions in tabular format on a daily basis to streamline activities
and ensure the efficient functioning of these organizations.
Extracting the content of these tables and assembling them
for analysis can help such organizations with automation and
enables them to take data-driven decisions. The first step to
extracting such content is to detect the tables, and the second
step is to identify the rows and columns to provide context
about the layout of information in the table.

In this work, we have proposed TableStrRec, a deep
learning-based approach to detect and classify rows and
columns, in table images. TableStrRec comprises one Cas-
cade R-CNN architecture to detect and classify rows as
regular and irregular rows and another Cascade R-CNN
architecture to detect and classify columns as regular and
irregular columns to solve the TSR task. Each Cascade R-
CNN architecture employs a deformable convolution back-
bone and utilizes Complete IOU loss to improve detection
performance. With these enhancements, TableStrRec has
been shown to achieve 90.5% and 89.6% weighted aver-
age F1 scores under the ICDAR2013 test set for rows and
columns, respectively. Under the TabStructDB test set, it
achieves 72.7% and 78.5% weighted average F1 scores for
rows and columns, respectively.

Over the state-of-the-art solution, it achieves greater than
5.7% and 3.1% improvement in detecting and classifying
rows and columns, respectively, on both test sets. We have
also shown that while detecting four classes of objects, and
with some post-processing, TableStrRec can generate accu-
rate cell locations that also capture the hierarchical layouts

of tables with merged cells in a single inference. Further-
more, we show that TableStrRec has a higher generalization
potential than the state-of-the-art solution and can be adopted
to different types of table images. Open issues and opportu-
nities included in the future agenda include exploring the
possibility of avoiding empty cells from being generated.

References

1. Göbel, M., Hassan, T., Oro, E., Orsi, G.: Icdar 2013 table competi-
tion. In: 12th International Conference on Document Analysis and
Recognition, pp. 1449–1453 (2013)

2. Brynjolfsson, E., McElheran, K.: Data in action: data-driven
decision making and predictive analytics in U.S. manufacturing.
Entrepreneurship & Economics eJournal (2019)

3. Siddiqui, S.A., Malik, M.I., Agne, S., Dengel, A., Ahmed, S.:
Decnt: deep deformable cnn for table detection. IEEE Access 6,
74151–74161 (2018)

4. Prasad, D., Gadpal, A., Kapadni, K., Visave, M., Sultanpure, K.:
Cascadetabnet: An approach for end to end table detection and
structure recognition from image-based documents. In: Proceed-
ings of the IEEE/CVFConference on Computer Vision and Pattern
Recognition (CVPR) Workshops (2020)

5. Kara, E., Traquair, M., Simsek,M., Kantarci, B., Khan, S.: Holistic
design for deep learning-based discovery of tabular structures in
datasheet images. Eng. Appl. Artif. Intell. 90, 103–551 (2020)

6. Fernandes, J., Simsek,M., Kantarci, B., Khan, S.: Tabledet: an end-
to-end deep learning approach for table detection and table image
classification in data sheet images. Neurocomputing 468, 317–334
(2022)

7. Gao, L., Yi, X., Jiang, Z., Hao, L., Tang, Z.: Icdar2017 competition
on page object detection. In: 2017 14th IAPR International Con-
ference on Document Analysis and Recognition (ICDAR) 01, pp.
1417–1422 (2017)

8. Gao, L., Huang, Y., Déjean, H., Meunier, J.L., Yan, Q., Fang, Y.,
Kleber, F., Lang, E.: Icdar 2019 competition on table detection and
recognition (ctdar). In: 2019 International Conference on Docu-
ment Analysis and Recognition (ICDAR), pp. 1510–1515 (2019).
https://doi.org/10.1109/ICDAR.2019.00243

9. Siddiqui, S.A., Fateh, I.A., Rizvi, S.T.R., Dengel, A., Ahmed, S.:
Deeptabstr: deep learning based table structure recognition. In:
2019 International Conference on Document Analysis and Recog-
nition (ICDAR), pp. 1403–1409 (2019)

10. Hashmi, K.A., Stricker, D., Liwicki, M., Afzal, M.N., Afzal, M.Z.:
Guided table structure recognition through anchor optimization.
IEEE Access 9, 113,521-113,534 (2021)

11. Jiang, J., Simsek, M., Kantarci, B., Khan, S.: Tabcellnet: deep
learning-based tabular cell structure detection. Neurocomputing
440, 12–23 (2021)

12. Chi, Z., Huang, H., Xu, H., Yu, H., Yin, W., Mao, X.: Complicated
table structure recognition. CoRR arXiv:1908.04729 (2019)

13. Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., Wei, Y.:
Deformable convolutional networks. In: IEEE International Con-
ference on Computer Vision (ICCV) pp. 764–773 (2017)

14. Zheng, Z., Wang, P., Liu, W., Li, J., Ye, R., Ren, D.: Distance-IoU
loss: Faster and better learning for bounding box regression. In:
AAAI (2020)

15. Zheng, X., Burdick, D., Popa, L., Zhong, P., Wang, N.X.R.: Global
table extractor (gte): a framework for joint table identification and
cell structure recognition using visual context. In: Winter Confer-
ence for Applications in Computer Vision (WACV) (2021)

123

https://doi.org/10.1109/ICDAR.2019.00243
http://arxiv.org/abs/1908.04729


144 J. Fernandes et al.

16. Zanibbi, R., Blostein, D., Cordy, J.: A survey of table recognition.
IJDAR 7, 1–16 (2004). https://doi.org/10.1007/s10032-004-0120-
9

17. Liu, Y., Bai, K., Mitra, P., Giles, C.L.: Tableseer: automatic table
metadata extraction and searching in digital libraries. In: In Tech-
nical Report, pp. 91–100 (2007)

18. Liu, H., Li, X., Liu, B., Jiang, D., Liu, Y., Ren, B., Ji, R.: Show, read
and reason: table structure recognition with flexible context aggre-
gator. In: Proceedings of the 29th ACM International Conference
on Multimedia, pp. 1084–1092 (2021)

19. He, K., Gkioxari, G., Dollár, P., Girshick, R.B.: Mask r-cnn.
IEEE InternationalConference onComputerVision pp. 2980–2988
(2017)

20. Raja, S.,Mondal, A., Jawahar, C.: Table structure recognition using
top-down and bottom-up cues. In: European Conference on Com-
puter Vision, Springer, pp. 70–86 (2020)

21. Liu, H., Li, X., Liu, B., Jiang, D., Liu, Y., Ren, B.: Neural collabora-
tive graphmachines for table structure recognition. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 4533–4542 (2022)

22. Chi, Z., Huang, H., Xu, H.D., Yu, H., Yin, W., Mao, X.L.: Compli-
cated table structure recognition. arXiv preprint arXiv:1908.04729
(2019)

23. Xue, W., Yu, B., Wang, W., Tao, D., Li, Q.: Tgrnet: A table graph
reconstruction network for table structure recognition. In: Pro-
ceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 1295–1304 (2021)

24. Xiao, B., Simsek, M., Kantarci, B., Alkheir, A.A.: Table
structure recognition with conditional attention. arXiv preprint
arXiv:2203.03819 (2022)

25. Raja, S., Mondal, A., Jawahar, C.: Visual understanding of com-
plex table structures from document images. In: Proceedings of
the IEEE/CVF Winter Conference on Applications of Computer
Vision, pp. 2299–2308 (2022)

26. Ichikawa,K.: Image-based relation classification approach for table
structure recognition. In: International Conference on Document
Analysis and Recognition, Springer, pp. 632–647 (2021)

27. Long, R., Wang, W., Xue, N., Gao, F., Yang, Z., Wang, Y., Xia,
G.S.: Parsing table structures in the wild. In: Proceedings of the
IEEE/CVF International Conference onComputerVision, pp. 944–
952 (2021)

28. Smock, B., Pesala, R., Abraham, R.: Pubtables-1m: Towards
comprehensive table extraction from unstructured documents. In:
Proceedings of the IEEE/CVFConference onComputerVision and
Pattern Recognition, pp. 4634–4642 (2022)

29. Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., Wei, Y.:
Deformable convolutional networks. In: Proceedings of the IEEE
international conference on computer vision, pp. 764–773 (2017)

30. Qiao, L., Li, Z., Cheng, Z., Zhang, P., Pu, S., Niu, Y., Ren, W.,
Tan, W., Wu, F.: Lgpma: complicated table structure recognition
with local and global pyramid mask alignment. In: International
Conference on Document Analysis and Recognition, Springer, pp.
99–114 (2021)

31. Zhang, Z., Zhang, J., Du, J., Wang, F.: Split, embed and merge: an
accurate table structure recognizer. Pattern Recognit. 126, 108–565
(2022)

32. Tensmeyer, C., Morariu, V.I., Price, B., Cohen, S., Martinez, T.:
Deep splitting and merging for table structure decomposition. In:
2019 International Conference on Document Analysis and Recog-
nition (ICDAR) (IEEE), pp. 114–121 (2019)

33. Zhang, J., Elhoseiny, M., Cohen, S., Chang, W., Elgammal, A.:
Relationship proposal networks. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp.
5678–5686 (2017)

34. Lin, W., Sun, Z., Ma, C., Li, M., Wang, J., Sun, L., Huo,
Q.: Tsrformer: table structure recognition with transformers. In:

Proceedings of the 30th ACM International Conference on Multi-
media, pp. 6473–6482 (2022)

35. Ma, C., Lin, W., Sun, L., Huo, Q.: Robust table detection and
structure recognition from heterogeneous document images. Pat-
tern Recognit. 133, 109,006 (2023)

36. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need.
In: Advances in Neural Information Processing Systems 30, (2017)

37. He, Y., Qi, X., Ye, J., Gao, P., Chen, Y., Li, B., Tang, X., Xiao, R.:
Pingan-vcgroup’s solution for icdar 2021 competition on scientific
table image recognition to latex. arXiv preprint arXiv:2105.01846
(2021)

38. Nassar, A., Livathinos, N., Lysak, M., Staar, P.: Tableformer: table
structure understanding with transformers. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 4614–4623 (2022)

39. Zhong, X., ShafieiBavani, E., JimenoYepes, A.: Image-based table
recognition: data, model, and evaluation. In: European Conference
on Computer Vision, Springer, pp. 564–580 (2020)

40. Schreiber, S., Agne, S.,Wolf, I., Dengel, A., Ahmed, S.: Deepdesrt:
deep learning for detection and structure recognition of tables in
document images. In: 2017 14th IAPR International Conference on
Document Analysis and Recognition (ICDAR) 01, pp. 1162–1167
(2017)

41. Cai, Z.,Vasconcelos,N.:CascadeR-CNN:delving into highquality
object detection. In: 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition pp. 6154–6162 (2018)

42. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for
image recognition. CoRR arXiv:1512.03385 (2015)

43. Lin, T., Maire, M., Belongie, S.J., Bourdev, L.D., Girshick,
R.B., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick,
C.L.: Microsoft COCO: common objects in context. CoRR
arXiv:1405.0312 (2014)

44. Yu, J., Jiang, Y., Wang, Z., Cao, Z., Huang, T.S.: Unitbox:
an advanced object detection network. CoRR arXiv:1608.01471
(2016)

45. Paliwal, S., Vishwanath, D., Rahul, R., Sharma, M., Vig, L.:
Tablenet: Deep learning model for end-to-end table detection and
tabular data extraction from scanned document images. In: 2019
International Conference on Document Analysis and Recognition
(ICDAR) pp. 128–133 (2019)

46. Smock, B., Pesala, R.: Table Transformer. https://github.com/
microsoft/table-transformer (2021)

47. Wu, Y., Kirillov, A., Massa, F., Lo, W.Y., Girshick, R.: Detectron2.
https://github.com/facebookresearch/detectron2 (2019)

48. Wu, Y., He, K.: Group normalization. In: Proceedings of the Euro-
pean conference on computer vision (ECCV), pp. 3–19 (2018)

49. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. In: International
Conference on Machine Learning (PMLR), pp. 448–456 (2015)

50. Ye, J., Qi, X., He, Y., Chen, Y., Gu, D., Gao, P., Xiao, R.:
Pingan-vcgroup’s solution for icdar 2021 competition on scientific
literature parsing task b: table recognition to html. arXiv preprint
arXiv:2105.01848 (2021)

51. He, Y., Qi, X., Ye, J., Gao, P., Chen, Y., Li, B., Tang, X.,
Xiao, R.: TableMASTER-mmocr https://github.com/JiaquanYe/
TableMASTER-mmocr (2021)

52. Hurst, M.: A constraint-based approach to table structure deriva-
tion. In: Seventh International Conference on Document Analysis
and Recognition, 2003. vol. 3, IEEE Computer Society, pp. 911–
911 (2003)

53. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable detr:
deformable transformers for end-to-end object detection. arXiv
preprint arXiv:2010.04159 (2020)

123

https://doi.org/10.1007/s10032-004-0120-9
https://doi.org/10.1007/s10032-004-0120-9
http://arxiv.org/abs/1908.04729
http://arxiv.org/abs/2203.03819
http://arxiv.org/abs/2105.01846
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1405.0312
http://arxiv.org/abs/1608.01471
https://github.com/microsoft/table-transformer
https://github.com/microsoft/table-transformer
https://github.com/facebookresearch/detectron2
http://arxiv.org/abs/2105.01848
https://github.com/JiaquanYe/TableMASTER-mmocr
https://github.com/JiaquanYe/TableMASTER-mmocr
http://arxiv.org/abs/2010.04159


TableStrRec: framework for table structure recognition in data sheet images 145

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123


	TableStrRec: framework for table structure recognition in data sheet images
	Abstract
	1 Introduction
	2 Related work and motivation
	2.1 Table structure recognition

	3 Methodology
	3.1 Task definition
	3.1.1 Regular and irregular class definitions
	3.1.2 Detecting groups of components versus detecting cells

	3.2 TableStrRec architecture
	3.2.1 IOU-based regression loss

	3.3 Post-processing algorithm
	3.4 Dataset

	4 Performance study
	4.1 Training details
	4.2 Results
	4.2.1 ICDAR2013 dataset
	4.2.2 TabStuctDB dataset
	4.2.3 FinTabNet
	4.2.4 Cross dataset


	5 Conclusion
	References




