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Abstract

With the increase in the number of documents with various types of charts available on the internet, automatic chart classi-
fication has become an essential task for various downstream applications such as chart data recovery, chart replenishment.
This paper presents a comprehensive survey of the studies reported in the literature since 2001 from the perspective of the
corpus, pre-processing techniques, feature extraction, and methodologies. Considering that the majority of the existing stud-
ies use small datasets with a smaller number of chart types and also reported varying performances, this paper implements
and evaluates 44 different machine learning-based chart classification models. The evaluation is done over a large dataset
curated locally and benchmarks the performances of these 44 different models over a common experimental framework. It
also performs a comprehensive error analysis, identifying two core challenging issues (noise in the charts and confusing chart
pairs) that affect the chart classification performances. Compared with the existing survey papers, this paper presents a more
comprehensive review and experimental analysis.

Keywords Chart survey - Chart image classification - Chart dataset - Chart classification error analysis - Chart’s noise -

Confusing chart pairs

1 Introduction

Data visualizations using charts are quite common in our
everyday lives and are regularly available in newspapers,
journals, online sites, books, etc. A well-designed chart can
usually provide an intuitive comprehension of its underlying
data in an effective way. Charts are powerful summariza-
tion tools that allow researchers to quickly navigate through
results and comprehend them. As the number of scientific
documents with various forms of charts available on the inter-
net increases, automatic chart classification is becoming an
essential task for multiple applications (such as information
mining, redesigning) to better understand intrinsic informa-
tion present in the documents.

Though studies on chart analysis can be traced back to
the year 1991 [4], studies on chart classification have mostly
started from the year 2001 [5]. The process of automatic
chart classification generally consists of three steps; cor-
pus creation, pre-processing, and classification, as shown
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in Fig. 1. In the literature, two types of corpus are generally
used for chart classification; real chart images curated from
the internet, journals, documents, etc., and images generated
from synthetic data. Though generating a large synthetic
dataset is inexpensive (sample size 202k in [6] and 144k
in [7]), such datasets may not capture variational character-
istics present in real charts. While a real dataset captures
the actual variational characteristics of charts, creating a
large-scale real chart dataset is an expensive operation. The
pre-processing step is optional, depending on the nature of the
samples and classifiers used. The pre-processing step gener-
ally refines the representation of the samples by employing
the methods such as dimension reduction, noise removal,
contrast altering, contrast pixel recoloring. Considering the
recent trends, the classifiers used for the chart classification
can be broadly grouped into pre-deep learning and deep
learning era. The pre-deep learning era generally focuses
on hand-crafted features and traditional classifiers such as
SVM, KNN, Decision Tree, Bayesian. The deep learning era
exploits methods like CNN, and its variants (VGGs, Xcep-
tion, ResNets, Inceptions, MobileNet), Deep belief networks
(DBN), etc. Though several studies on chart classification
have been reported in the past, variations in the perfor-
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Table 1 Comparison of three existing survey papers with ours with respect to the areas in which the reviews are done and the contributions made

by each study
Study Review on Contribution
Dataset Chart type Chart image Methodology Chart image Evaluation of the Error analysis
pre-processing Mg TMLB = DLB corpus state-of-art models

[1] - — - VR - - - —

(2] v - v v v v - - _

[3] — - v v v - — —

Our paper v v v v v v v v v

MB, TMLB and DLB represent Model-based, Traditional ML-based and DL-based approaches, respectively

mances of different classification models are evident. It may
be due to differences in the characteristics of the exper-
imental datasets (nature of the images and corpus size),
differences in the number of chart types considered, and clas-
sification methods used. Some studies consider datasets as
small as 129 [8], while some studies consider datasets as
large as 60000 [9]. Some studies consider only two types of
charts, while some studies consider 14 charts [10],! [11].2
Due to a lack of coherence among the experimental setups
reported in different studies, arriving at a consensus regard-

1 Though the authors in [10] have considered 28 classes, only 14 of
them are the chart types and the remaining classes include non-chart
classes such as medical images, natural images. Visualizations that are
considered as chart type in this study are described in Sect. 2.1.

2 Study in [11] provides 15 classes, but one of the classes is the combi-
nation of all non-visualization images such as camera-clicked pictures,
conceptual diagrams
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ing the performance of different chart classification methods
is a non-trivial task. To address the above issue and under-
stand the challenges inherently present in chart classification,
this paper presents a detailed survey and evaluation of 44
chart classification models under a common experimental
setup.

To date, only three reviews [1-3] on chart classification
have been reported in the literature. The review in [1] focuses
only on classification methods of the pre-deep learning era,
viz., model-based and traditional non-neural-based classi-
fiers. The other review in [2] presents a more profound
analysis as compared to the prior. It provides a survey from
three different perspectives: image pre-processing methods,
methodology, and chart image corpus. Unlike the study in
[1], it covers classification methods from both eras. Study
in [3] focuses mainly on reviewing the studies for decod-
ing the visual data from chart images. It examines over
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I:eﬁlzhzartsc?;g:trsy of existing Study iearch Publications Size #class Avg#
ool

[5] Google 840 3 280
[16] ASM 129 2 64
[8] BioMed Central 2800 5 560
[17] Google 653 5 127
[18] Google 200 4 50
[19] Google 210 5 42
[207# Google 2500 10 250
[21] Google 300 3 100
[22] Google 155 4 38
[23] Arxiv 1500 5 300
[24] Google 5000 5 1000
[25] Biodiversity journal 3377 11 307
[26]* Google 6997 10 699
[27]*# Google 4837 10 483
[9] CVPR, ICML, ACL, CHI, AAI 60000 7 8571
[28] ACL, Quartz 807 5 161
[14] Google, Baidu 11174 5

Yahoo, Blng 2234

AOL, Sogou
[29]* Google 2702 10 270
[6]# PubMed Central 4242 7 606
[30]# @ PubMed Central 22923 15 1100
[10] CVPR, ECCV, ICCV 33000 28 1178
[31] Google 2500 2 1250
[32]* Google 2702 10 270
[33] Google, 21099 13 1623

Baidu,

Yahoo,

Bing,

AOQOL, Sogou
[34] Google 3002 10 300
[35]* Google 1400 7 200
[36] Google 8000 10 800
[15] Wikipedia 3629 9 403

AI2D dataset,

SlideWiki
In-house Google, CVP, ICML, 117271 28 4200

Bing, ACL,CHI

Yahoo AAAI, ACM

Avg# denotes an average number of samples per class

* Study that adopts the filtering criteria mentioned in Sect.2
# Study that made their dataset available for public use

@ [30] is the superset of dataset provided by study [6]
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few existing datasets but is not as deep from the perspec-
tive of chart categories. Our survey, on the other hand,
offers a review for every module of the pipeline shown
in Fig. 1. Table 1 shows the comparison of the three cur-
rent survey papers with ours concerning the areas in which
the reviews are done and the contributions made by each
study. From the table, it is clear that our paper, as compared
to the three existing studies, presents a detailed literature
review and benchmarking of various machine learning (ML)
models. In summary, our study contributes to the following
points:

1. Survey: Review of the findings reported in different stud-
ies.

2. Benchmarking: Empirical evaluations of 44 machine
learning models ( 9 traditional ML models and 35 deep
learning (DL) models) are performed to benchmark the
performance over a common evaluation setup. To the
best of our knowledge, 15 (EfficientNet’s eight vari-
ants, EfficientNet V2’s seven variants, NASNetLarge,
and NASNetMobile) of them have never been used in
the domain of chart type classification.

3. Dataset: Our earlier dataset published in [12] is extended
with extra three more chart types. The extended dataset
consists of 117271 samples over 28 chart types. To the
best of our knowledge, this is the largest real chart dataset
consisting of the highest number of chart types in chart
classification.

4. Stability of existing state-of-art models: Performance of
a classification model may be affected by the training
sample size. Some models might give the best perfor-
mance with a small training dataset, and some might not,
and vice-versa. To study this situation, the influence of
different training sample sizes on different classification
models is studied.

5. Noise: One of the challenging problems in chart classi-
fication is the presence of noises in charts. We identify
different noises generally present in charts and investi-
gate their effects on chart classification.

6. Confusing chart pairs: Charts of similar characteristics
is also one of the significant reason for chart misclassifi-
cation. We identify confusing chart class pairs and their
causal effects to understand their influences.

The rest of the paper is organized as follows. Section2
presents our discussion on the existing methods used for the
creation of chart image corpus. It is further extended with
the details of the existing dataset, and chart types that have
been used. Different methods of image pre-processing are
presented in Sect. 3. Section4 presents different methodolo-
gies from two eras: the pre-deep learning era (rule-based
and traditional ML approach) and the deep learning era
(deep learning approach). Section5 presents the evaluation
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Table 3 Summary of existing synthetic chart datasets
Dataset Generation tool Size # class Avg #
[37] XML/SWF 980 5 196
[28] Vega 4318 4 1079
[38] Matplotlib 10000 5 2000
[71 Vega 14471 10 1447
[6] Matplotlib 202550 10 20255
[36] Not-mentioned 10000 10 100
[39] Plotly 120000 20 6000
[30] Matplotlib 17399 12 1000

Avg# denotes the average number of samples per class

of 44 ML models over two common setups to benchmark
different chart classification methods. Two significant chal-
lenges in developing an automatic chart classification model:
Noise, and Confusing chart class pairs, and their effects are
discussed in Sect. 6. Section 7 concludes our study and high-
lights future directions.

2 Chartimages corpus creation

As mentioned in the previous section, two types of the corpus
are generally used: Real chart corpus and Synthetic chart
corpus. Because of the involvement of an expensive and time-
consuming effort in creating large annotated datasets of real
chart images, most of the studies on chart classification with
real chart images consider small datasets. Existing synthetic
chart corpora are large as compared to real chart corpora. This
section briefly reviews the real and synthetic chart datasets
and different chart types used in the earlier studies

2.1 Real chartimage corpora

For such corpora, the samples are generally collected from
different open internet sources. Typically, two approaches are
generally used: (i) search by the name of the chart as a key-
word on image search engines like Google, Baidu, Yahoo,
Bing, Aol, Sogou, etc., and (ii) extract charts from scientific
documents using the tool like PDFfigure [13]. Some of the
scientific publications considered for extracting chart images
in the literature are CVP, ICML, ACL, CHI, AAAI, ECCYV,
ICCYV, PubMedCentral, CVPR, BioMed(BMC), ASM. Once
the images are extracted/collected (applicable for both search
engine-based and extraction from publications), the images
are generally further annotated by human subjects. Some
studies also apply certain filtering criteria, as given below,
to remove noisy images.

— More than one data visualization in the same image.
— Partially showing chart plot.
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Table 4 Summary of the chart types considered in various existing Table 4 continued
tudi
Sudes Sl no. Chart type Study # study
Sl no. Chart type Study # study
23 Sunburst [6,7,12,19, 22, 33]
1 Arc [7.12,33] 3 24 Surface [10, 12, 17] 3
[8, 20,25, 37] 25 Table [9, 20, 26-28] 1
2 Area [7,26-29] 21 [10, 12,29, 32, 34]
[10, 12, 32-34] [41]
[5, 16-19, 36] 26 Treemap 7, 12] 2
[41] 27 Venn [14, 20, 26-28] 1
3 Bar [20-22, 24, 26] 22 (10, 12, 29, 32. 34]
[7,9,27, 28, 38] [41]
(6,10, 14,29, 31] 28 Waterfall [12] 1
(36, 41]
[12,32-35]
4 Box [6, 10, 12, 25] 4 — Images with watermarks.
5 Block [10] 1 — Image with resolution below 500 x 500.
6 Bubble [10, 12, 36] 3 — Images with transparent background.
7 Column [8, 12, 25, 37] 8 — 3D chart images.
[6, 10, 36, 38] — Cluttered chart images.
8 Dendrogram [12, 25] 2 — Hand-drawn chart images.
9 Doughnut [36] 1 — Ignore table charts that are in the form of “fill up the
10 Flowchart [8-10, 12, 24] 5 forms.
11 Gantt [12] 1
12 Heatmap (10, 12, 25] 3 Cha’racte.ristics of datasets rfapgrted in earlier studif:s are sum-
13 High-Low (5] | .mar.lzed in Table 2. The majority of them are relatively small
[5. 8. 16-18] in size with fewer chart types. To date, as compared to all
14 Line [19-22. 24] 95 existing studies, the study [9] cpnmdered a higher average
(9. 25-28] number of samples per class, i.e., 8571 (for the classifi-
' cation of five chart types). Except for the paper in [14]
[6,7, 10, 14, 29] .
12, 3234, 36] average sample size (2241), the rest of the papers have con-
[4 ’ ’ sidered an average sample size of less than 2000. Slightly
[41] different from the rest of the studies, the study [15] col-
15 Manhattan [12] lected chart samples (of nine chart types) from Wikipedia,
16 Node [12,25] AllenAl Diagram Understanding (AI2D), and educational
17 Parallel (10, 12, 38] slides from SlideWiki® which is an open educational resource
18 Pareto [8,12,26-28] 10 platform.
[10, 29, 32, 34, 41]
(5, 17-20] 2.2 Synthetic chart image corpora
19 Pie [12, 21,22, 24,25, 37] 25
[7,26-28, 34, 38] In this approach of chart corpus generation, tools like MAT-
[36, 41] LAB, the python library Matplotlib, XML/SWF, and Vega
[6, 10, 14, 29, 32, 33] (and its associated tools) are commonly used in the litera-
20 Radar [14, 20, 26-28] 11 ture for generating synthetic chart images. A study in [28]
[10, 12, 29, 32, 34] has reported that some of the images synthesized with Vega
[41] are found in the Google search. Therefore, the dataset in
21 Reorderable [7, 12, 33] 3 this study may be considered a combination of synthetic and
(8, 17, 20, 24, 25] real chart images. Study in [6] utilizes Matplotlib to gen-
2 Scatter (7,9, 26-28] 21 erate chart samples whose underlying data points are taken

[6, 10, 14, 29, 31]
[12,32-34, 36]
[41]

from real statistics which are available online such as world
development indicators, gender statistics, the government of

3 (https://slidewiki.org/).
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India open data, commodity trade statistics, US census data,
and price-volume data for stocks and EFTs. Unlike the above
datasets, the dataset reported in the study [38] generates its
dataset by randomizing the plot aesthetics as given in the
study [40]. However, study [37] developed its dataset with the
chart images generated using the XML/SWF chart tool (data
for the charts were generated randomly). Recently, study [39]
developed a huge synthetic dataset entirely made with Plotly.
Table 3 presents the characteristics of the existing synthetic
chart datasets. From the table, it can be seen that to date study
[6] has provided the largest synthetic chart dataset of size
202,550, consisting of 10 chart types (20,255 samples/chart

type).
2.3 Chart types

The visualizations considered in the literature under the
“Chart type” differ for various studies. Some studies consider
Map as one of the chart types, while others do not. This study
considers technical data visualization (such as Area, Bar,
etc.), data flow presentation (such as Flowchart and Block
diagram), and Data tables as the chart types. Table 4 summa-
rizes the types of charts considering different studies. All of
the datasets considered in the earlier studies except for our
earlier study in [12] consist of chart types < 15. Area, Bar,
Line, Pie, and Scatter are commonly considered chart types.
As mentioned earlier, this study added three more chart types
to our existing dataset presented in [12]. Our latest dataset
consists of 28 chart types, and except for the surface plot, the
remaining 27 are in 2D. Another point to be re-noted is that
even though the study in [10] considered 28 different classes,
only 14 of them are the chart types. In the same manner, study
[11] used one non-chart class making 14 out of 15 classes a
chart type.

3 Chart image pre-processing

Image pre-processing is the lowest level of abstraction for
image operations. Its objective is to improve image infor-
mation, which removes unwanted distortions or improves
some relevant image characteristics for further processing
and analysis. This section presents a discussion of differ-
ent image pre-processing methods exploited by the various
existing chart classification studies.

The basic image pre-processing applied in most of the
studies is to resize the image, preserving aspect ratio [19,
28]. Depending on the further steps, RGB images are con-
verted to grayscale images [18, 19, 32] or binary images [28].
In the various studies, averaging of the channels is consid-
ered for converting to grayscale and the threshold approach
( using Otsu’s method [42]) is considered for converting to
a binary image. With the image in its grayscale form, var-
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ious studies perform connected component generations [8]
and connected component analysis [19, 43], to separate the
graphic’s region from the text regions. The separation is done
considering a series of filter that takes into consideration of
the size, height and width, aspect ratio, and black pixel den-
sity of each connected component. Further, the classification
can be extended to the removal of the noise components as
most of the noise components are small in size [5]. This
traditional connected component analysis is reported to be
time-consuming [44]. The authors in [45] modify the con-
nected component analysis to reduce the computational time
by using the neighbor-scan labeling approach.

Based on the types of noise expected from the source
and the nature of images, various studies used noise removal
techniques such as Gaussian smoothing, median filters, bilat-
eral filters, and morphological operations. To vectorize over
image edges, which in the future can be used as the features of
the images, edge mapping is one of the pre-processing meth-
ods implemented by some studies [5, 8, 18, 46] using edge
detection algorithms such as canny edge detection or simply
calculating the intensity differences between the neighboring
pixels. With the assumption that chart type is often part of
the image itself, some studies used OCR to extract the text
area and compare the OCR results with the classification
model’s result [17]. The effectiveness of applying the image
pre-processing step in chart classification is discussed in the
study [32]. It has reported an improvement of 9% in accuracy
after applying a series of image pre-processing methods such
as resizing, smoothing, sharpening, and contrast enhance-
ment.

4 Chart classification methodologies

This section briefly reviews different methods reported in
earlier studies on chart classification. Considering the present
trend, the discussion has been presented as pre-deep learning
era and deep learning era.

4.1 Pre-deep learning era

As shown in Fig. 1, all the existing studies in this era have
adopted either a rule-based approach or traditional classifica-
tions using SVM, Bayesian, KNN, decision trees, etc. These
methods generally follow the two-tier process. First, feature
engineering is applied to extract features from the images.
Second, the classifiers are built using the extracted features.
The rule-based and traditional ML approaches used in earlier
studies are briefly discussed below.
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Table 5 Few selected studies published under pre-deep learning era which used traditional ML classification approach
Paper  Year  Feature descriptor Classifier #classes  Dataset
Overlap
[8] 2006  Grapheme statistics MLP 5 -
Region segmentation features,
[17] 2007  Edge continuity features, SVM 5 —
The Scale Invariant Feature Transform (SIFT)
[20] 2011  Image patches codebook SVM 10 —
[21] 2012 Graphical components SVM 3 -
MLP
[22] 2012 Gray Level Co-Occurrence Matrix(GLCM) SVM 5 -
KNN
[23] 2015  Visual—color, edge, lines; HOG, LBP SVM 5 —
KNN
[24] 2015  Local Binary Pattern(LBP) SVM 5 —
Histogram of Oriented Gradients (HOG)
Naive Bayes
[7] 2018  Histogram of Oriented Gradients (HOG) SVM 10 —
KNN
Random forest
[36] 2021  Heterogeneity index (HI) fused with local penta pattern fused with local penta pattern ~ SVM 10 —

Dataset overlap denotes the study that uses same dataset (as the reference study) for training or evaluation process

4.1.1 Rule-based classification approach

In a rule-based approach, a model is generally built using a
sequence of hierarchical rules derived from domain knowl-
edge. Given the basic image features like a set of edges, edge
map, location of the connected components, etc., various
studies developed the rules to identify higher-level abstrac-
tions such as line segment, circular arc, elliptic arc, data
points, tick. Using these segment information, rules to iden-
tify further higher-level abstractions such as line chart, pie
chart, bar chart are formed. Based on the nature of the chart
types, different levels of rules may be applied. At the time of
classification, the extracted features and the layouts are com-
pared against each chart model to determine the likelihood
that the input sample belongs to the target class. Each chart
type has some individual features that help to calculate the
likelihood value. The study in [18] uses two levels of domain
knowledge to identify graphical symbols representing the
data for each chart type. At the top level, it specifies the kind
of graphical symbols that are expected to appear in each chart
type. At the bottom level, the set of graphical primitives and
their constraints are further determined to form the graphi-
cal symbol. For instance, to identify the graphical symbols
of a pie chart, it should have more than one object called
‘pie,” which can be further defined by the occurrences of the
tuple (/1, /2, a;) (where [; and a; refer to a line and an arc,
respectively), and constraints like /; and /; share a common

endpoint, one endpoint of /1 lies on the shape a;, one endpoint
of [ lies on the shape a; and ay, etc.. The study in [19] uses
multiple instance learning by treating a chart image as a bag
containing a set of instances (graphical symbols). It adopts
the idea of the correlation factor of each shape for each chart
type. Studies in [37, 46] focus on learning characteristics of
the edges of different chart types to capture the underlying
shapes and spatial layouts. One of the main disadvantages of
the rule-based approaches is that they are sensitive to small
variations in the chart. Even a slight change in the chart style
may affect the rules [18]. Further, different rules need to be
created for different types of charts, and it may not be scal-
able or difficult to obtain the rules for complex charts. As a
result, to date, studies using rule-based approaches consider
a lesser number of chart types, up to four chart types [46].

4.1.2 Traditional ML classification approach

The disadvantages of the rule-based approach are overcome
by traditional ML approaches like SVM, Decision tree, etc.,
by considering graphical elements of charts from the whole
image instead of different segments. However, they rely on
a vast set of training samples. Table 5 presents some of the
selected studies that use traditional ML classification meth-
ods. From the table, it is observed that various studies pair
up different feature descriptors with different classification
models.
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Table 6 Few selected studies published under deep learning era

Paper Year Le Alex VGG ResNet Inception Mobile Xcep Customized #class Dataset
Net  Net 16 19 50 101 152 v3 v4 Net tion CNN Overlap
[26] 2017 v v v 10 [20]
[27] 2017 v 10 —
[9] 2017 v v —
[28] 2017 v [20, 26]
[25] 2017 v 11 —
[38] 2018 v 5 —
[7] 2018 v v v 10 —
[14] 2018 v v v v 5 —
[29] 2019 v 10 [20]
[6] 2019 v v v 10 —
28
[101* 2019 v (14 chart —
types)
[31] 2019 v 2 —
[33] 2019 v v v v 13 —
[32] 2020 v 10 [20]
15
[11]2 2020 v (14 chart —
types)
[47] 2020 v 2 —
[35] 2021 v 2 —
[34] 2021 v 10 [6, 20]
[41] 2021 v 10 [9, 20, 27, 40]

Dataset overlap denotes the study that uses the same dataset (as the reference study) for the training or evaluation process

Various types of features have been used, ranging from
symbols to visuals to textures. There are studies that extract
basic symbols, such as axis coordinates [43], bar [18, 23],
histograms [48], pie [18, 19], lines [16, 49], curves [5].
Study [8] uses the count of 16 graphemes, such as ver-
tical tick, horizontal tick, line segment, curve, branch, as
features to represent chart images and use MLP for the clas-
sification. Some widely used texture descriptors are Local
Binary Pattern (LBP) [23, 24], Histogram of Oriented Gradi-
ents (HOG) [7, 23, 24], and scale-invariant transform (SIFT)
[17, 24]. The study in [17] proposes a classifier based on
the shape and spatial relationship of their primitives, such
as the structure of salient regions present in the image, the
local shape of salient curves, etc. Their extracted features
are based on region segmentation, curve saliency, HOG, and
SHIFT. The study in [20] is the first one to consider ten
chart types and makes the dataset available for public use.
In their study, image patches are provided as the features. It
uses visual dictionaries made up of repeating image patches
or features to learn embedding image representations (visual
words). A predetermined number of visual words are sampled
densely or pseudo-randomly during training by eliminating
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low-variance patches. After that, a visual dictionary is cre-
ated by grouping the visual words and textures, such as lines,
points, curves, arcs, and gradients, using k-mean clustering.
Their study uses multi-class SVM for the classification task.
The study in [22] evaluates three classification models, viz.
SVM, KNN, and MLP, with gray-level co-occurrence matri-
ces (GLCM). The GLCM is extracted fundamental statistics
parameters like entropy, energy, homogeneity, contrast, and
angular second moment as the features. The study in [36]
addresses the challenges of micro-variabilities features. It is
the one feature that makes each image type different from
others, even though chart image belongs to the same class
or categories. It proposed a heterogeneous feature descrip-
tor, namely the heterogeneity index (HI), which was built
based on the similarity of chroma effects and its intensity in
the microstructures. Their study fused HI with local penta
pattern which is a color texture descriptor using five code
patterns. It is one of the good studies that perform a compar-
ison of different traditional feature descriptors (viz. HOG,
SIFT, LBP, GIST) over the classification of chart types.
From Table 5, it is observed that all the studies or works
done during the pre-deep learning era utilize their own
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dataset, and there is no cross-check of their proposed meth-
ods over the datasets collected or used by other studies. It
might be because of the unavailability of the dataset for pub-
lic use (it can be seen from Table 2 that the study in [20] is
the only one that made the dataset available for public use
during the era of pre-deep learning).

4.2 Deep leaning era

In this era, numerous studies exploited several deep learning
methods. The deep learning methods overcome the need of
feature engineering as it automatically learns feature repre-
sentation from the training dataset directly. Numerous studies
built chart classification models considering various existing
CNN architectures such as LeNet [50], AlexNet [51], VGG -
16,19 [52], Inception - V3 [53], Inception - V4 [54], ResNet -
50,101,152 [55], Xception [56], Inception - ResNet-V2 [54],
MobileNet [57], DenseNet [58]. Some studies utilize both
traditional and deep learning approaches to develop classi-
fication models such as [10] use pre-trained VGG-16 as the
feature extractor and fed to the classifier SVMs, the study
in [59] combined ANN and SVM for the classification of
one chart type with different characteristics such as scatter
chart(with and without line), 2D and 3D pie charts. Even
though it is observed from Table 5 that the majority of the
studies used heuristic features with the traditional classifica-
tion model, the study in [23] used heuristic features as the
input for deep belief network (DBN) [60] for the classifica-
tion of five classes.

In another scenario, some studies developed customized
CNN based on the architecture of well-known models. The
study in [25] developed a CNN model inspired from the
LeNet architecture [5S0]. Their study presented the results
provided by the two orientations of networks, pre-trained
on the subset of the large dataset ImageNet* and non-pre-
trained. In their case, the non-pre-trained network provides
better results than the pre-trained network. This could be
because of the significant differences between natural images
contained in the ImageNet dataset and the chart images in
their dataset, which lead to the low performance of the model.
The study in [24] developed a model considering CNN and
DBN. It used CNN for the feature extraction, and DBN was
engaged for dimension reduction with its softmax layer as
the prediction layer. Like most of the studies, because of the
lack of training examples of charts, their network was trained
on the dataset ImageNet ISVCR [61], which contains 1000
categories and 1.2 million images. The study in [34] intro-
duced Siamese CNN in the field of chart classification. Their
study considered their earlier network, Simplified VGG [29],
SigNet [62], and Omniglot [63], and performed the compari-
son in their Siamese network form. With the assumption that

4 https://image-net.org/.

DenseNet provides access to gradients from the loss function
as well as the input layer, the study in [41] developed a chart
classification model based on the architecture of DenseNet.

A summary of the above discussion is presented in Table
6. Among these networks, most of the studies adopted VGG-
16, followed by AlexNet and ResNet-50. From the table, it
is observed that multiple studies, such as studies in [26, 28],
etc., utilize various publicly available datasets for the devel-
opment and validation of their proposed methods. Among the
publicly available datasets, the one provided by the study in
[20] is commonly used and acts as a benchmarking dataset.
It is because of the chart samples it has, which are very noisy
(discussed in detail in Section 6.2), and they provide chal-
lenging factors to the proposed methods.

5 Benchmarking of chart classification
methods

In the above sections, we have presented a brief review of
different approaches of chart classification reported in earlier
studies since 2001 (discussed in Sect.4.1.1, and shown in
Tables 5 and 6). The following observations can be noted.

1. Dataset Types: Two types of datasets have been com-
monly used; real dataset—chart images extracted from
real documents, and synthetic dataset—created synthet-
ically using mathematical models.

2. Small dataset size: Except for the synthetically gener-
ated dataset, most of the existing studies consider small
datasets.

3. Small number of chart types: All the existing studies
consider a small number of chart types—14 being the
highest and five being common.

4. Differences in model performance: Differences in
performance between different models are reported in
different studies. For example, the study in [26] observes
that the deep learning-based model, Inception, performs
better than AlexNet, whereas study [14] reports the oppo-
site. Another example is that the study in [7] presents a
traditional classifier, SVM, which performs better than
KNN, while the opposite is reported in the study in [22].

Motivated by the above observations, in this paper, as men-
tioned in Sect.1, we build 44 different ML models (9
traditional and 35 deep learning) and evaluate them over a
common setup to benchmark their performances and to iden-
tify their limitations, and understand the inherent challenges
in chart classification. None of the existing surveys evalu-
ate the methods over the common frameworks (except our
earlier study [64] and [12]). The remaining part of the paper
focuses on the following points:
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— Common Experimental Setup: We rebuild all the 44
classification models. The models are evaluated using
the following two experimental setups.

1. Fivefold cross-validations: The performances of 44 ML
models are compared under random fivefold valida-
tion of alocally curated dataset. The models are tested
over three publicly available datasets [20, 27, 30].

2. With different training sizes: Different studies have
considered datasets of different sizes, and incon-
sistencies in the reported performances have been
observed as shown in Tables 5 and 6. To understand
the sensitivity of the models to different training sam-
ple sizes, we build the models with different training
sample sizes and evaluate their performances.

— Noisy chart type: As charts are created for different
needs, they come with different types of noises, which
may hinder the classification performance. We identify
different types of noise present in the chart and study their
effects.

— Confusing chart pairs: A classifier may confuse charts
of different characteristics belonging to different classes
or chart types. We identify charts of confusing nature and
their effects.

— Potential future directions: For building an effective
chart classifier, we would need to address the problem
of noise and confusing chart class pairs. We discuss the
potential future approaches to handle the above chal-
lenges.

5.1 Experimental setups
5.1.1 In-house dataset

As mentioned above, most of the earlier studies considered
small datasets with a small number of chart types. It may be
noted that several new chart types have been used in recent
scientific documents. Many of these chart types have not
been considered yet. Motivated by this, we have created a
large annotated dataset of 110,182 samples over 25 chart
types in our previous work [12]. In this previous work, we
have come up with 25 chart types considering: (i) all the data
visualizations mentioned in the various existing state-of-the-
art chart classification studies and (ii) Google’s responses on
searching chart types as a keyword. With the above two ways
of searching different chart types, we considered only those
types in which we can collect at least 1500 samples.> So we
ignore some chart types that we found in existing studies
and Google searches, such as Interval, Doughnut, high-low

> To keep the balance between the sample size, we aim to set the min-
imum sample size of every chart type as 1500.
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Table 7 Comparison of four datasets

Dataset
Chart type D1 D2 D3 In-house
P SE

Arc — - — 936 1105
Area 39 246 172 2401 4321
Bar 51 346 787 1251 3757
Box — - 763 762 1427
Block — - 1872 1140
Bubble — - — 1590 1624
Column 65 340 5454 2011 3188
Dendrogram — - — 747 2274
Doughnut — - — 120 1947
Flowchart — — — 891 3210
Gantt - — — 56 2103
Heatmap — — 197 650 2569
High-low — — — 628 1382
Line 85 488 10556 2763 5128
Manbhattan - — 176 792 1899
Node — — — 1733 4200
Parallel — — — 389 1713
Pareto 63 262 — 738 4683
Pie 27 365 242 2605 2614
Radar 50 50 — 2101 3173
Reorderable — — — 386 1618
Scatter 90 556 3168 2841 5890
Sunburst - - 1002 2465
Surface - — 155 3002 3440
Table 42 267 — 4034 2507
Treemap - — - 261 2927
Venn 44 343 75 2011 4199
Waterfall - — - 46 2149
Total sample 320 3867 21745 38619 78652

P and SE denote two different sources, viz. Publications and Search
Engine, respectively

(because we failed to collect at least 1500 samples for each
of them).

With time and following the same procedure in our ear-
lier work (considering both ways of collection, i.e., using
the search engine Google, and papers published under CVP,
ICML2, ACL, CHI, AAAI, and ACM), we are able to col-
lect at least 1500 samples for three chart types we ignored
during the publication of our earlier work: Block, Doughnut,
and High—low chart. Our extended in-house dataset consists
of 117,271 samples over 28 chart types. Figure2 shows an
example of each of the 28 chart types. Our dataset is the
largest real chart image dataset with the highest number of
chart types, to the best of our knowledge. We plan to make
this extended final dataset public.
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Table 8 Mean accuracy and standard deviation (of the five accuracy
scores) for 9 traditional ML-based chart classifiers under fivefold cross-
validation of in-house dataset

Model Training  Testing
D1 D2 D3 In-house
HOG + SVM 88.67 7420 7949 80.75  85.06
+0.56 +0.14  +0.15 £031 +£0.31
LBP + SVM 82.67 68.45 81.06  80.16  80.95
+0.78 +0.50 *1.21 £0.71 +£0.87
GLCM + SVM  83.01 64.08 7322 80.02  82.39
+0.78 +0.32  £097 +045 £0.54
HOG + KNN 82.78 70.91 78.31 79.21 80.84
+0.69 +0.38 +0.82 +0.76  £0.97
LBP + KNN 83.04 73.05 7755 7999  81.80
+0.92 +0.17 *131 091 +£0.87
GLCM + KNN  82.78 7717 T1.55 80.54  81.19
+0.78 +0.78 +0.64 057 +£0.71
HOG + RF 82.87 72.81 79.49  79.21 82.76
+0.82 +0.52  +£091 +0.84 £0.82
LBP + RF 83.78 67.66  73.60 7872  82.67
+0.49 +0.83  £0.54 +0.84 £0.55
GLCM + RF 83.06 69.40  73.64 79.06  82.14
+0.87 +£0.76  £0.67 £091 £0.79

The performance is reported for both training and testing. Bold entries
represent the highest accuracy score

On top of our dataset, as mentioned earlier, this study
considers another three publicly available real chart datasets
for inference. They are provided by the studies [20, 27] and
[30].% For the rest of this paper, these three datasets have
been designated as D1, D2, and D3, respectively. It is impor-
tant to note that some of the samples in D1 and D2 were
found to be non-functional due to a lack of maintenance in
their repositories. Some of the links provided for D1 resulted
in errors or pointed to irrelevant images, while some of the
files in D2 were also found faulty when opened. As a result,
these datasets were carefully examined, and only functional
samples were included in the study. On the other hand, the
third dataset D3 is free from those errors. Even though our
dataset, in-house, considers a larger number of chart types,
D3 comprises two chart types that are not considered in our
dataset, namely Interval (both horizontal and vertical), and
Map. Therefore, D3 is not equal to the dataset provided by
study [30] but a subset of it which have all the samples of
all the chart types except for the aforementioned two types.
Table 7 compares four datasets.

6 The dataset provided by study [30] is the superset of the one provided
by the study in [6]. Apart from increasing the number of samples to the
existing dataset provided by the study in [6], the study in [30] added
Heatmap, Manhattan, and Venn as new chart types.
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5.1.2 Setting up the classifiers

In the pre-deep learning era, SVM, KNN, and Random for-
est are commonly used classifiers in chart classification (see
Table 5). Further, three methods of feature extraction, namely
Histogram of Oriented Gradients (HOGs), Local Binary Pat-
tern (LBP), and Gray Level Co-Occurrence Matrix (GLCM),
are commonly used in chart classification [7, 23, 65-68]
as well as object detection [69, 70]. Considering this, we
evaluate the performance of three classifiers (SVM, KNN,
and Random forest) with three different feature extraction
methods (HOG, LBP, and GLCM). We briefly describe the
experimental setups below.

— Feature Extraction:

— Histogram of Oriented Gradients (HOG): HOG rep-
resents an object using the local distribution of inten-
sity gradients and edge directions. Itis the normalized
histogram of image gradients with respect to various
orientations collected within localized regions in the
image. We segment the images into local patches and
extract the features from the patches. We have exper-
imented with various HOG cell sizes of 16 x 16,
28 x 28, 32 x 32, and 64 x 64. Though study [7]
recommends using 28 x 28 cell size, an empirical
study on our dataset observes that the cell size of
16 x 16 provides the best performance. As a result,
HOGe-related experiments in this paper use cell size
of 16 x 16.

— Local Binary Pattern (LBP): In general, LBP encodes
local pixel neighborhoods using binary representa-
tion. First, we segment the original image resolution
256 x2561into 16 x 16 patches with size ((256/16) x
(256/16)). Then, in each patch, the LBP feature with
radius 2 is extracted and developed a histogram.’
Finally, a global histogram is created by concatenat-
ing histograms obtained from all the patches.

— Gray Level Co-Occurrence Matrix (GLCM): Gray
Level Co-Occurrence Matrix (GLCM) extracts fea-
tures from an image using a co-occurrence martrix.
A co-occurrence matrix of an image is a matrix rep-
resenting the distribution of co-occurring values at
a specific offset. The GLCM has been applied in
a variety of image analysis applications [61, 71].
As in the study [22], we consider the statistical
measure of an image such as area, median, mini-
mum and maximum intensity, contrast, homogeneity,
energy, entropy, mean, variance, standard deviation,

7 In study [24], patches of 16 and radius with 2 give the better result,
and hence we follow their way.
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and correlation, as our features to construct the co-
occurrence matrix.

— Classifiers: The classifiers SVM, KNN, and Random for-
est (RF) are built considering features extracted using
HOG, LBP, and GLCM. For KNN, we use 7 as the param-
eter ’k” which is the number of neighbors to be selected.®
For SVM, the default parameters in Scikit-Learn [72] are
used. For random forest, 105 random trees are consid-
ered.’

For the deep learning methods, we consider 35 CNN-based
models: AlexNet, Inception-v4, and all 33 different CNN-
based models provided by keras,'® namely VGG -16, 19,
ResNet-50(vl,v2),101 (vl,v2),152(v1,v2), Inception-v3,
Inception - ResNet, Xception, MobileNet - v1, v2, DenseNet
- 121, 169, 201 [44], EfficientNet - BO, B1, B2, B3, B4,
B5, B6, B7 [73], EfficientNetV2-B0, B1, B2, B3, S, M,L
[74], NASNetLarge [75], and NASNetMobile [75]. Except
for the EfficientNets, EfficientNetV2s, NASNetLarge, and
NASNetMobile, all other models have been used in the chart
classification task in the literature. To analyze the behavior
of the models more deeply, this study evaluates them under
two scenarios:

1. Training the model from scratch: In this scenario, the
default models are initialized with random weights and
then trained on the in-house dataset from scratch. This
means that the models are not based on any pre-existing
knowledge or training, but instead, they start with random
weights as a blank slate.

2. Training the model with transfer learning: In this sce-
nario, our study leverages the pretrained version of the
model, trained on the ImageNet ISVCR dataset with 1000
classes [61]. We initialized the models with pre-trained
weights and froze all layers except for the last convolu-
tional layer (and the dense layers). As done in studies [76,
77], such a transfer learning setup allows us to leverage
the powerful feature extraction capabilities of pre-trained
models while fine-tuning their last layers to the specific
classification task at hand. In the process, the last layer
is replaced (because it is trained for the classification of
1000 classes) by another dense layer with 28 classes. The
changes made in the model’s architecture are different for
different models. The CNN models, such as Xception,
EfficientNets, DenseNets, MobileNets, NASNetLarge,
and NASNetMobile, utilize separable convolutional lay-

8 We tune the value of K ranging from 1 to 10 and finalized to 7 as it
gives the best performance.

9 The 105 number of random tress has been decided after a brief empir-
ical analysis of values between 50 and 120.

10" https://keras.io/api/applications/.

ers to reduce the number of parameters. In order to
achieve the goal of parameter reduction in models with
separable convolutional layers, we adopt the common
practice of using global average pooling. This technique
reshapes the output tensor from the last convolutional
layerinto a 1D vector, which is then fed into a dense layer.
In contrast, models like AlexNet, VGGs, and ResNets
employ normal convolutional layers. For these models, a
simpler approach is taken where the tensor from the last
convolutional layer is flattened into a 1D vector before
being passed to the dense layer. By adopting the reshaping
technique to match the specific architecture and objec-
tive of each model, the efficiency and effectiveness of
the parameter reduction process can be maximized.

We use Stochastic Gradient Descent (SGD) as an optimizer,
0.9 as momentum, 0.0001 as learning rate, 40 as batch size,
and 2 as steps-per-epoch.

5.2 Experimental observations

Table 8 shows the average accuracy over fivefold cross-
validation of SVM, KNN, and Random forest with HOG,
LBP, and GLCM feature extractors on the in-house dataset.
It also shows that the performance of the models is observed
for both validations (during training) and testing datasets (D1,
D2, D3, and testing dataset of in-house). From the table, we
observe the following.

— One of the important point to be considered while evaluat-
ing ML models is overfitting. We investigate the possible
case of overfitting using two parameters: (i) mean accu-
racy: the large difference between mean training accuracy
and testing accuracy may be considered as the indicator
of a particular model suffering from overfitting., and (ii)
standard deviation (of accuracy): large standard deviation
of the performances among the fivefold (for both training
and testing accuracy) can also be considered an indica-
tor of a particular model suffering from overfitting. From
the table, it can be seen that there is no drastic or major
difference in the performance (mean accuracy score) of
all the classifiers during training and testing (concerning
in-house). In average, the difference in the accuracy score
for all the classifiers while training against testing is 2%
(the difference in accuracy scores of training and testing
on the in-house dataset ranges from 0.11% to 3.61%). It
can be further noted that the standard deviation obtained
by all the classifiers in both training and testing (con-
cerning in-house) is less than £1.00 (ranges from +0.11
to +3.61). These two observations can be an indication
that all the classifiers are steady and free from overfitting
issues.
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Table 9 Evaluation of deep learning methods under the first scenario: performance of 35 CNN-based chart classification models under fivefold
cross-validation of in-house dataset

Model Training Testing
D1 D2 D3 In-house
I o m o i o m o m o
VGG 16 64.21 +1.27 54.41 +0.21 34.16 +0.74 49.02 +0.71 59.16 +0.35
19 66.21 +0.72 58.45 +0.23 63.21 +0.41 58.92 +0.73 64.21 +0.89
ResNet 50 vl 56.73 +0.93 44.24 +0.51 40.03 +0.28 39.61 +0.74 50.01 +2.02

v2 52.13 +0.07 41.02 +0.62 3227 +0.25 29.05 £0.15 4743 +0.67
101 vl 67.12 +1.32 41.22 +0.56 43.44 +1.56 39.07 +1.51 59.32 +1.23
v2 62.05 +1.02 41.04 +0.83 45.67 £2.76 52.03 +0.52 56.04 +0.67
152 vl 59.36 +1.21 32.07 +1.56 41.09 +0.63 50.05 +1.18 51.09 +0.86
v2 58.43 +0.87 39.24 +0.57 40.35 +0.78 48.03 +0.49 52.64 +0.78

Inception v3 61.01 £0.56 54.17 +0.69 43.67 +0.69 44.22 +0.41 57.93 +0.74
v4 67.23 +0.56 55.45 +0.6 60.06 £0.75 60.31 +0.61 63.37 +0.74
AlexNet 45.21 +0.72 34.57 +0.56 38.16 +0.62 40.01 +0.80 43.37 +0.67
Xception 65.11 +0.67 55.82 +0.73 59.67 +0.66 59.47 +0.55 64.67 +0.71
Inception -ResNet 59.12 +0.81 45.15 +0.51 50.07 +0.31 46.49 +0.22 56.79 +0.32
MobileNet Vi 62.48 +0.74 57.55 +0.72 56.59 +0.79 56.98 +0.71 58.87 +0.89
V2 64.47 +0.74 56.14 +0.89 59.74 £1.06 57.81 +1.26 54.27 +0.63
DenseNet 121 68.31 +1.69 53.61 +0.56 58.12 +0.72 59.64 +0.86 62.41 +1.65
169 61.56 +0.78 54.56 +1.35 54.07 +0.34 55.78 +0.85 59.49 +0.75
201 63.21 +0.56 57.14 +0.33 52.19 +0.61 55.31 +0.57 60.65 +0.74
EfficientNet BO 50.17 +3.32 42.38 +0.54 45.98 +0.68 46.53 +0.50 48.19 +0.89
Bl 51.12 +0.04 47.98 +0.71 44.94 +0.72 46.15 +0.90 49.55 +0.73
B2 50.69 +2.14 44.17 +0.21 46.21 +0.25 47.02 +1.06 48.95 +1.67
B3 54.74 +1.02 47.42 +0.34 47.15 +0.73 49.42 +1.47 52.19 +0.75
B4 50.12 +1.78 81.01 +0.71 42.07 +1.67 41.94 +0.92 48.14 +0.38
B5 52.17 +0.62 44.70 +0.29 47.71 +0.93 46.03 +0.30 49.72 +0.49
B6 55.13 +1.26 47.16 +0.23 44.16 +0.95 45.67 +1.09 54.17 +0.58
B7 53.21 +0.24 47.64 +1.07 47.12 +1.09 44.66 +1.53 51.56 +1.58
EfficientNet V2 BO 58.12 +1.80 47.19 +1.20 52.18 +0.49 52.04 +1.05 55.23 +1.09
B1 54.22 +1.02 51.07 +1.09 51.04 +1.08 51.07 +1.04 52.06 +0.57
B2 55.27 +0.34 52.10 +0.71 49.20 +0.61 49.12 +1.03 54.83 +1.08
B3 55.51 +1.02 48.02 +1.06 51.81 +1.09 49.01 +1.02 48.23 +1.06
S 55.12 +0.62 51.02 +0.61 51.08 +0.55 51.73 +0.36 53.34 +0.05
M 53.07 +0.54 50.16 +1.09 51.09 +1.42 49.12 +0.54 51.02 +0.78
L 55.78 +1.04 51.32 +1.03 50.12 +1.03 50.57 +0.48 49.25 +1.02
NASNetLarge 62.03 +1.07 57.05 +0.35 54.26 +1.02 58.73 +0.28 60.26 +0.04
NASNetMobile 61.03 +0.56 60.15 +0.74 58.16 +1.07 57.17 +1.82 60.02 +0.62

1 and o denote mean accuracy and standard deviation, respectively. The performance is reported for both training and testing. Bold entries represent
the highest accuracy score

— All the nine classifiers provide better classification per- — In most cases, while testing the new samples, the classi-
formance when tested with the in-house dataset than the fiers with HOG as a feature extractor outperformed the
testing on the D1, D2, and D3. It may be because of the classifiers with LBP or GLCM.
fact that the in-house dataset has a smaller percentage — While training and testing, the classifier SVM with HOG,
of noisy samples as compared to the other three. Noise i.e., (HOG + SVM), provides better performance com-
analysis is discussed in Sect. 6.2. pared to others and hence outperforms the rest.
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Table 10 Evaluation of deep learning methods under the second scenario: performance of 35 CNN-based chart classification models under fivefold

cross-validation of in-house dataset

Model Training Testing
D1 D2 D3 In-house
I o m o n o n o m o
VGG 16 94.21 +0.67 78.54 +0.59 81.06 +1.00 81.77 +0.51 89.46 +0.55
19 94.74 +0.52 78.24 +1.09 81.05 +1.21 84.21 +0.31 88.83 +0.47
ResNet 50 vl 85.33 +1.53 69.74 +0.76 72.73 +0.56 79.46 +0.55 79.02 +1.01
v2 86.73 +0.62 69.84 +0.52 73.28 +0.85 80.81 +0.72 78.93 +0.55
101 vl 88.32 +0.72 69.62 +0.3 72.61 +1.03 81.72 +0.47 83.40 +0.53
v2 87.60 +0.52 70.28 +0.28 74.2 +3.46 81.78 +0.47 83.90 +0.47
152 vl 87.33 +0.61 71.05 +0.39 72.69 +1.03 80.04 +0.81 83.59 +0.55
v2 88.11 +0.57 69.04 +0.81 73.65 +0.53 81.35 +0.70 83.44 +0.45
Inception v3 89.21 +0.81 72.37 +0.71 73.03 +0.71 79.79 +0.21 79.89 +0.57
v4 88.01 +0.62 72.55 +0.6 74.10 +0.15 79.86 +0.41 79.53 +0.94
AlexNet 88.21 +0.52 75.57 +1.39 78.51 +0.56 81.51 +0.57 84.10 +0.94
Xception 95.21 +0.31 85.68 +0.07 86.77 +0.01 87.79 +0.21 90.34 +0.11
Inception -ResNet 88.62 +0.98 74.58 +1.72 79.57 +0.61 80.17 +0.66 81.57 +1.12
MobileNet \%! 92.34 +0.28 76.55 +0.63 78.25 +1.19 80.81 +1.45 88.98 +0.19
V2 92.47 +0.54 76.34 +0.78 77.94 +1.22 80.28 +0.49 88.87 +0.53
DenseNet 121 93.71 +0.89 84.63 +0.74 85.82 +0.65 86.51 +0.48 89.81 +0.25
169 94.81 +0.54 84.06 +0.63 85.20 +1.14 85.61 +1.07 89.74 +0.8
201 85.31 +2.89 83.94 +0.63 84.39 +1.21 84.11 +0.74 89.05 +1.70
EfficientNet BO 70.67 +2.02 58.73 +1.15 55.69 +0.46 84.92 +0.75 64.91 +1.59
Bl 91.32 +2.01 82.09 +0.41 82.84 +0.50 85.72 +0.63 89.05 +0.49
B2 92.10 +1.31 83.37 +1.95 84.11 +0.04 86.62 +0.47 86.59 +0.43
B3 93.21 +0.92 85.28 +2.04 84.71 +0.42 88.12 +0.55 89.09 +0.15
B4 94.02 +1.32 81.01 +0.21 81.67 +0.47 81.02 +0.75 89.54 +0.38
B5 94.07 +1.02 82.40 +0.46 80.43 +0.55 81.79 +0.71 89.62 +0.37
B6 93.21 +0.89 82.26 +1.13 81.66 +0.79 81.72 +0.88 89.87 +0.30
B7 94,21 +0.92 81.64 +0.67 80.92 +0.79 81.15 +0.45 89.56 +0.38
EfficientNet V2 BO 94.62 +0.98 84.49 +0.23 84.68 +1.19 85.05 +0.37 89.23 +0.49
B1 94.32 +0.82 85.37 +0.69 85.74 +0.58 86.18 +0.17 89.96 +0.17
B2 93.67 +0.54 81.90 +1.71 83.80 +0.57 85.09 +0.44 89.63 +0.18
B3 95.61 +0.52 85.12 +0.26 86.08 +0.39 87.02 +0.36 90.03 +0.06
S 95.12 +0.62 85.44 +0.96 86.18 +0.89 86.82 +0.57 90.15 +0.08
M 93.67 +0.54 85.36 +0.09 86.09 +0.72 87.12 £0.15 90.12 +0.38
L 95.48 +0.54 84.72 +0.93 86.62 +0.54 87.57 +1.27 90.05 +0.09
NASNetLarge 95.80 +0.17 85.16 +1.67 86.06 +0.09 86.71 +0.25 90.16 +0.04
NASNetMobile 93.17 +0.42 82.85 +0.44 82.46 +0.57 81.58 +0.88 89.89 +0.22

1 and o denote mean accuracy and standard deviation, respectively. The performance is reported for both training and testing. Bold entries represent

the highest accuracy score

As stated earlier, the evaluation of 35 CNN-based models
is done in two scenarios. Tables 9 and 10 show the fivefold
cross-validation results of 35 models on the in-house (and
further tested on D1, D2, and D3) under the first and sec-
ond scenarios, respectively. From these tables, the following

observations may be noted.

— As done with nine traditional ML classifiers, we investi-
gate the overfitting issues for all 35 CNN-based models.
In the same manner, we consider two parameters for the
investigation, namely mean accuracy and standard devi-
ation. In Tables 9, and 10, the similar characteristics that
we noted for traditional classifiers (reported in Table 8)
are observed. We observe no major difference in the mean
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training accuracy and testing accuracy (concerning in-
house). It is further observed that most of the models
accrued small standard deviations indicating that they
are stable over different sample sets. On average, the dif-
ferences between mean training accuracy and the testing
accuracy are 5% (ranges from 1 to 8%), and 4% (ranges
from 1% to 6%) for all models under the first and second
scenario, respectively. Regarding the standard deviation,
it is observed that the majority of the models accrued
less than +1.00 for both training and testing (concern-
ing in-house) in both scenarios (ranges from +0.04 to
+3.22 in the first scenario, and +0.17 to £2.89 in the
second scenario). From all these observations, it can be
said that all 35 CNN-based models are stable and free
from overfitting issues.

— All the models provide better performance with the pre-
trained weights.

— The best performance while training is provided by
DenseNet-121 and NASNetLarge for the first and sec-
ond scenarios, respectively. It is further observed that
in the case of the first scenario, the performances of
the models are inconsistent while evaluating the test-
ing datasets, such as NASNetMobile provides the best
result on D1, but VGG-19 outperforms the rest on D2,
and Xception outperforms others on D3, and in-house.
The opposite behavior is observed in the case of the sec-
ond scenario, i.e., the consistency behavior is observed.
The best performance is provided by NASNetLarge while
training (multiple models also provide almost similar
accuracy scores, such as Xception, EfficientNet V2 B3,
EfficientNet V2 S, and EfficientNet V2 L). Still, Xception
outperforms the rest while evaluating against all testing
datasets.

— Various models provide different performance charac-
teristics for different scenarios. For instance, AlexNet
outperforms all the versions of ResNet, and all the ver-
sions of EfficientNet V2 in the second scenario, while
it underperforms them in the first scenario. In another
instance, both versions of MobileNet outperform all the
versions of EfficientNet V2 (except for EfficientNet V2
L) in the first scenario. Still, the opposite relationship is
observed in the second scenario.

From Tables 9 and 10, it can be concluded that using pre-
trained weights, all the models provide better performance.
As all the models provide their best performance in the sec-
ond scenario where they are loaded with pre-trained weights,
we present their performance discussion and analysis (while
evaluating against the new samples or testing datasets) con-
sidering the second scenario.

— All 35 classifiers provide the best results with the in-
house dataset. In the traditional classification approach,
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all the models perform poorly over dataset D1 compared
to D2 and D3. However, in this case, EfficientNet B5, B6,
and B7 provide better results over D1 than the other two.
Most of the models provide better results in the given
sequence: in-house, D3, D2, and D1.

— With the in-house dataset, the best-performed models
are Xception, EfficientNet V2-B3, S, M, L, and NAS-
NetLarge. These six models provide a mean accuracy
of > 90%. Following them, VGG-16, all versions of
DenseNet, all variants of EfficientNet (except for BO,
and B2), EfficientNet V2-B0, B1, B2, and NASNetMo-
bile provide a mean accuracy above > 89%. Further, both
versions of MobileNet and VGG-19 provide mean accu-
racy above 88%. Finally, other remaining models provide
a mean accuracy of less than 85%. It can be seen from
the table that all six best-performed models provide con-
sistent performance as denoted by small o.

— With Dataset D1, Xception, EfficientNet-B3, Efficient-
Net V2-B3, S, M, NASNetLarge outperforms all other
models by accruing a mean accuracy of >85%. Among
them, Xception and EfficientNet V2-M provide more
consistent performance with o of only £0.07, and £0.09,
respectively.

— In case of Dataset D2, with the mean accuracy of >
86%, the best performance comes from seven models:
Xception, EfficientNet V2-B3, S, M, L, NASANetLarge.
Among these seven models, Xception and NASNetLarge
provide more consistent performance with the o of only
+0.01 and £0.09, as shown in the table.

— Finally, with dataset D3, there are three best-performed
models, viz: Xception, EfficientNet V2-B3, M, and L,
with a mean accuracy of >87%. EfficientNet V2-M
offered a more stable performance with a o of only
40.15. Xception follows it with a o of +0.21.

— Among all the classifiers, ResNet, Inception, and com-
bined provide the least performance for all the datasets.

— As observed in the above points, Xception and Efficient-
Net - V2 B3 are common models for all four datasets that
provide high mean accuracy. Among these two models,
Xception delivers more consistent performance.

5.2.1 Effect of training sample sizes on classification
performance

As noted above, different studies have considered datasets of
different sizes and reported different performances. To under-
stand the sensitivity of the models, we further built the above
models with different training sample sizes. Our dataset is
divided into fivefold, and onefold is kept as a testing set. We
build four classifiers from the remaining folds by incremen-
tally considering samples in onefold, twofold, threefold, and
fourfold. These four classifiers are built for all nine tradi-
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Table 11 Accuracy of 9 traditional classification setups with the
increase in the training example

Model Training size (# sample)

23454 46908 70362 92816
HOG+SVM 79.36 83.97 87.02 87.62
LBP+SVM 68.91 78.01 82.78 78.22
GLCM+SVM 75.67 80.18 80.21 81.34
HOG+KNN 75.64 81.43 81.67 81.96
LBP+KNN 68.08 74.12 82.01 81.52
GLCM+KNN 70.03 76.04 80.59 82.71
HOG+RF 68.01 72.02 7791 82.45
LBP+RF 70.21 79.32 82.01 81.17
GLCM+RF 81.01 83.98 87.12 84.42

tional classification setups and the 35 CNN-based models.
For the first set of experiments with a single fold, the number
of training samples ranges from 400 to 1600. On average, it
has 800 training samples per chart type. In the second set of
experiments with twofold, another proportionate number of
samples is added to the first setup for all the chart types, and
SO on.

Tables 11 and 12 show the accuracy of all the nine tradi-
tional classification setups and 35 CNN-based models (as
the pre-trained CNN-based models provide better perfor-
mance and outperform their version which is trained on chart
samples from the scratch, we consider only the pre-trained
version), respectively. The tables show that different classifi-
cation models provide different convergence characteristics
with the increase in training size. We observe the following
different convergence characteristics:

1. Some models manage to increase the accuracy with the
increase in training size. Among the traditional classifier,
GLCM + SVM, and GLCM + KNN provide increasing
performance with the increase in training size. For the
CNN-based models, the same characteristics is observed
in the following 18 models: AlexNet (AN), ResNet-
101 v1 (R101v1), ResNet - 101 v2 (R101v2), Inception
- ResNet (IR), DenseNet-121 (Dv121), DenseNet-169
(Dv169), EfficientNet B1 (EB1), EfficientNet B2 (EB2),
EfficientNet B3 (EB3), EfficientNet B4 (EB4), Efficient-
Net B6 (E64), EfficientNet B7 (EB7), EfficientNetV2 B1
(Ev2B1), EfficientNetV2 B3 (Ev2B3), EfficientNetV2
Smaller (Ev2S), EfficientNetV2 Medium (Ev2M), NAS-
NetMobile (NNM), and NASNetLarge (NNL). Hence
they might be able to provide more profound performance
with the increase in the training samples.

2. It is observed that an increase in the training size does
not affect the performance of some models after some
instances. HOG + KNN, MobileNet - v2 (MNv2), and

EfficientNet V2 BO (Ev2BO0) converge at the second fold,
which means they reached their saturation point with
only 46,908 samples, and the increase in their training
size has no effect afterward. In the same manner, the
following two traditional classification setups and ten
CNN-based models converge at the third fold: (HOG
+ SVM, HOG + RF), (VGG-16, VGG-19, ResNet-152
vl (R152v1), ResNet-152 v2 (R152v2), DenseNet - 201
(Dv201), Xception, MobileNet vl (MNv1), EfficientNet
B5 (EBS), EfficientNet V2 B2 (Ev2B2), EfficientNet
V2 Smaller (Ev2S)). So, they all reached their best-
performed version with only 70,362 training samples.

3. We observed another situation where the models pro-
vided better performance with a lesser number of training
samples. The following four traditional classification
setups and five CNN-based models show their perfor-
mance under this situation: ( LBP + SVM, LBP + KNN,
LBP + RF and GLCM + RF ), ( ResNet-50 v1 (R50v1),
ResNet-50 v2 (R50v2), Inception v3 (Inv3), and Incep-
tion v4 (Inv4), EfficientNet BO (EBO) ). Except for EBO
(which provides the highest accuracy at the second fold),
all other models provide the best performance at the third
fold, but a drop in accuracy is observed at the fourth fold.
In other words, we can state that they fail to provide
coherent performance with the training size.

It can be inferred from the above observations (considering
results provided by both traditional ML and DL models) that
an increase in training sample size may not always provide
a proportionate improvement in performance. However, an
appropriate number of samples should be considered for each
chart type to obtain convergence in performance. In our study,
most of the classification setups start converging at the third
fold. So the appropriate number of samples is about 2400
(= 800 x 3) samples for each chart type in this study.

6 Error analysis

The above sections show that the best classification perfor-
mance is about 90.34% mean accuracy, which is obtained
with Xception over the in-house dataset. The reduction in
performances of all the classifiers is also observed with the
datasets D1, D2, and D3. To understand the reason for the low
performances of the classification models and the reduction
of performances over the other three datasets, we perform
the following error analysis. Considering Xception as one of
the most stable classification models with all four datasets,
as observed in the above sections, we consider it for the error
analysis. The analysis has been performed from two different
perspectives:
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Table 12 Accuracy of 35 CNN-based chart classification models with
the increase in the training example

Model Training size (# sample)

23454 46908 70362 92816
AN 71.87 79.56 83.14 88.34
VGG16 67.89 73.98 88.82 88.23
VGG19 71.08 74.87 89.98 89.45
R50v1 67.12 69.14 78.09 74.99
R50v2 68.34 7291 79.78 77.24
R101vl 71.11 7791 81.89 83.06
R101v2 74.14 78.12 81.90 83.98
R152v1 77.76 79.12 83.01 83.87
R152v2 78.67 81.04 84.48 84.05
Inv3 68.12 71.67 80.98 79.12
Inv4 72.12 77.04 80.45 79.01
IR 69.21 74.21 79.34 82.16
MNv1 68.12 73.67 87.00 87.05
MNv2 62.31 89.67 89.12 89.67
Xception 72.90 82.12 91.35 91.57
Dv121 67.42 72.89 89.95 90.48
Dv169 71.01 74.12 86.12 89.67
Dv201 78.34 81.67 89.98 89.99
EBO 62.34 64.22 62.12 63.67
EB1 58.99 66.43 78.98 88.55
EB2 60.23 64.69 75.33 86.32
EB3 64.22 68.89 78.21 89.12
EB4 62.89 64.89 79.34 89.45
EB5 62.89 72.11 89.67 89.90
EB6 59.89 67.12 79.12 88.98
EB7 71.09 79.78 85.98 90.01
Ev2B0 7222 89.76 89.11 89.99
Ev2B1 69.21 78.34 89.99 90.12
Ev2B2 69.01 79.76 89.34 89.98
Ev2B3 71.11 78.78 88.63 90.12
Ev2S 69.78 73.89 89.11 89.98
Ev2M 73.11 88.90 89.92 91.02
Ev2L 74.11 84.32 90.02 90.57
NNL 69.35 69.11 89.34 90.12
NNM 57.98 64.13 78.98 90.02

— Confusing Chart-pairs: Charts of similar characteristics
may lead to misclassification.

— Noise in Chart: Presence of noise may lead to mis-
classification.

6.1 Confusing chart class pairs and their effects
In order to identify confusing chart class pairs leading to

misclassifications, we analyze the distribution of the misclas-
sified samples across all chart class pairs. Table 13 shows
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the average number of classification outputs (over fivefold
cross-validation, rounded to integer) obtained with the Xcep-
tion model. The rows indicate the input chart types, and
the columns indicate the predicted chart types. The diago-
nal element could be interpreted as the percentage of correct
classification for any given sample. Among all, any samples
from the Arc chart have 100% of correct classification. It is
followed by a column chart with a correct classification of
96%, and so on. It can be further stated that among all 28
chart types, classifying box charts correctly is the most chal-
lenging, followed by the waterfall chart. If the probability of
misclassifying a sample from chart type x as chart type y
is above a threshold ¢, we consider the class pair as confus-
ing class pair. We have experimented ¢ with 0.02, 0.03, and
0.04. With 0.04 (i.e., 4% of misclassification), we are able to
find a strong overlapping characteristic among the misclas-
sified samples.!! Considering the 4% threshold, we observe
the following 15 confusing chart class pairs from Table 13.
The chart type-wise error characteristics and their confusing
class pairs are briefly reported below.

1. Area chart: Area charts with multiple regions denoted
by parallel or nearly parallel sharp edges are often con-
fused with bar charts. In addition to this, some Area chart
samples that have distinct colored edges but fill up with
shaded color are sometimes classified as line charts. So,
with Area chart, we obtained two confusing class pairs:
(Area, Bar) and (Area, Line).

2. Box chart: Some Box chart samples with huge-sized
multiple boxes are often confused with Dendrogram. So,
with the Box chart, we have one confusing chart pair:
(Box, Dendrogram).

3. Block Diagram: Some block diagram samples with
multiple shapes such as rectangles, trapezium, rhom-
bus are often confused with flowcharts. So, with the
block diagram, we have one confusing class pair: (Block,
Flowchart).

4. Bubble chart: The bubble charts with small-size bub-
bles and highly visible background grids are sometimes
classified as Node links. From the Bubble chart, we have
one confusing class pair: (Bubble, Node).

5. Doughnut chart: Visually Doughnut chart is very close
to pie chart. Some doughnut charts with very little space
in the middle are often confused with pie charts. With
the doughnut chart, we have one confusing class pair:
(Doughnut, Pie).

6. Line chart: Line charts with bigger sizes of nodes to
indicate data points are sometimes confused with Node

11 With 0.02 or 0.03 as ¢, we fail to confidently draw a similar
characteristic among the misclassified samples; instead, most of the
misclassification is mainly because of noisy samples (which will be
discussed in the next section) and lack of training samples.
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Table 13 Average (of fivefold cross-validation, rounded to integer) classification outputs over in-house dataset
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links. Further, some of the Line charts with various col-
ored backgrounds are sometime identified as Bar charts.
So, with the Line chart, we observed two confusing class
pairs: (Line, Node) and (Line, Bar).

7. Manhattan chart: Manhattan charts with an enormous
amount of data with no clear edges to indicate vertical
margins are often classified as Scatter charts. From Table
13, it is observed that these two charts are among those
charts which are highly confused. So, with Manhattan
scatter, we have one confusing class pair: (Manhattan,
Scatter).

8. Node Link: Some samples of Node links with small
nodes but low-intensity links are frequently classified as
Scatter charts. So, with this chart type, we have one con-
fusing class pair: (Node, Scatter).

9. Pie chart: It is observed that Pie charts with one par-
tition dominating the other are sometimes classified as
Venn. In another case, chart images with multiple pies
which have minimum gaps between them are also prone
to be classified as Venn. So, with Pie chart, we have one
confusing class pair: (Pie, Venn).

10. Radar chart: Although most Radar charts have hexag-
onal outer layers, they may have a circle or nearly
circle-like outer layers. Those samples are often misclas-
sified as Venn diagrams. So, with this chart type, we only
have one confusing class pair: (Radar, Venn).

11. Scatter Chart: The scatter charts with lines are some-
times misclassified as line charts. Like the pair (Manhat-
tan, Scatter) these two charts are among those which are
highly confused. So, with the Scatter chart, we have one
confusing class pair: (Scatter, Line).

12. Table: Some samples of Table charts without borders and
with crowded data are often classified as the scatter chart
type. So, we have one confusing class pair with Table:
(Table, Scatter).

13. Treemap : From Table 13, it is observed that 11% of
Treemap samples are classified as Heatmap. They appear
to be visually similar most of the time. The main differ-
ence is that Treemap has thick or highly visible edges
for each block. So, we have another confusing class pair:
(Treemap, Heatmap).

Table 14 shows the classification outputs of the confus-
ing class pairs over the four datasets using Xception. As
mentioned above, a pair (X, Y) in the table denotes the
misclassification of the input samples from the chart type
X as chart type Y. So, the five samples of D1 that con-
tribute to the pair (Area, Bar) are five area chart samples
(with the particular characteristics mentioned at the begin-
ning of this section ) which get classified as Bar chart type.
The CTS in the table shows the percentage of confusing
chart samples for a given testing dataset. It is defined as
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Table 14 Performance of Xception with respect to the 15 confusing
chart class pairs for all four datasets. 7 P and F'N are the true positive
classification and false negative classification, respectively

Confusing Dataset
Chart pair In-house D1 D2 D3

TP FN TP FN TP FEN TP FN
(Area, Bar) 2179 1 4 1 21 - -
(Area, Line) 16 47 0 0 0 0 - -
(Box,
Dendrogram) 11 31 - - - - 0 14
(Block,
Flowchart) 16 28 - - - - - -
(Doughnut,
Pie) 9 42 - - - - - -
(Bubble, Node) 20 37 - - - - - -
(Line, Bar) 11 15 0 0 0 0 2 51
(Line, Node) 9 32 0 0 2 20 33
(Manhattan,)
Scatter) 5 37 - - - - - -
(Node,
(Scatter) 21 11 - - - - - -
(Pie, Venn) 12 60 0 0 4 6 3 21
(Radar, Venn) 14 56 0 0 0 0 0 0
(Scatter, Line) 21 197 0 0 9 45 4 71
(Table,)
(Scatter) 19 34 0 0 1 24 3 42
(Treemap, 11 94 - - - - - -
Heatmap)
CTS 7.36 1.56 343 5.39
TCMC 83.30 80.00 87.21 94.30
TCMCO 6.51 1.25 3.00 5.14
CTS = Z“-“(TP;“S”FNX*”) x 100, where T Py.y, and

FN(x.yy are the true positives and false negatives, respec-
tively, for (X, Y) pair, and TS denotes the entire testing
samples. From Table 14, it can be seen that the in-house
dataset contributes to all 15 confusing chart pairs by occupy-
ing 7.36% of the whole testing dataset. D3 dataset contributes
to only six confusing chart pairs: (Box, Dendrogram), (Line,
Bar), (Line, Node), (Pie, Venn), (Scatter, Line), and (Table,
Scatter). These six confusing chart pairs occupy 5.39% of D3
dataset. D2, on the other hand, contributes only 3.43% of its
population by five types of confusing chart pairs ((Area, Bar),
(Line, Node), (Pie, Venn), (Scatter, Line), (Table, Scatter)).
Among the four datasets, the smallest contribution of con-
fusing chart pairs comes from D1. It contributes only 1.56%
of its population by only one type of confusing chart pair,
which is (Area, Bar).

The TCMC (Total Confusing pairs misclassification) and
TCMCO (Total Confusing pairs misclassification overall)
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Fig.3 Samples of nine types of chart noise: a Composite Chart (CC),
b Hard Background Grid (HBG), ¢ Additional Information (AI), d
Text Noise (TNS), e Transparent Background (TB), f Improper Image

rows in Table 14 further show the error contributions (because
of confusing chart pairs) with respect to the total confusing
pair samples and with respect to the entire dataset, respec-
tively. It is estimated as the macroaverage percentage of
sample misclassification between the confusing chart pairs,

e, TCMC = (Sx.r) mrmeifiey ) % 100. Similarly,
TCMCO is defined by the percentage of misclassifications

from the confusing pairs over the entire testing samples (TS)

and estimated as below.TCMCO = (M) x 100.

From the table, the following points are observed:

— In-house dataset: 83.30% of the confusing samples are
misclassified. It is further observed that 6.51% of the
misclassification (overall) is because of the confusing
samples.

— DI Dataset ): 80% of the confusing samples are misclas-
sified. It contributes 1.25% of misclassifications overall.

— D2 Dataset: 87.21% of the confusing samples are mis-
classified. It contributes 3% of misclassifications overall.

— D3 Dataset: 94.3% of the confusing samples are misclas-
sified. It contributes 5.41 % of misclassifications overall.

From the above discussion, it is observed that confus-
ing chart class pairs affect the performance of the chart
classification model. They contribute more than 5% of the
misclassification in the case of in-house and D3 datasets but
less than 5% for the datasets D1 and D2. Among the four
datasets, both in-house and D3 (in which misclassification
of confusing class pairs is high) have a higher number of

Screenshot (IIS), g Complex Background (CB), h Numerous Compo-
nent (NC), i Patterned Background (PB)

samples per class than the other two. This can infer that with
the increase in chart type and the inclusion of various sam-
ples, the number of confusing class pairs is likely to increase.

6.2 Noise types and their effects

Apart from confusing chart pairs, misclassification can also
be due to the presence of noise. In order to identify noise types
leading to misclassifications, we analyze the distribution of
the misclassified samples of all chart types. We observe the
following 9 noise types. The noise type, error characteristics,
and their effects are discussed below.

1. Composite-like chart type (CC): A chart with an extra
component that resembles other chart types, as shown in
Fig.3a. Itis actually a bar chart but composed of bars and
two lines.

2. Hard Background Grid (HBG): A chart with hard and
dominating background grid lines as shown in Fig. 3b.

3. Additional Information (AI): A chart with embedded
information presented in the form of shapes such as cir-
cles, rectangles as shown in Fig. 3c.

4. Text Noise (TNS) : A chart with an enormous amount
of additional information presented in the form of text as
shown in Fig. 3d.

5. Transparent Background (TB): A chart image with a
completely transparent background, as shown in Fig. 3e.

6. Improper Image Screenshot (IIS): An image with
some additional unrelated document regions as shown
in Fig. 3f.
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Table 15 Performance of Xception with respect to the nine noise types over four datasets. 7 P and F N are the true positive classification and false

negative classification, respectively

TP +FN,

Testing  Noise type NTS TNMC TNMCO
dataset CC HBG Al TNS TB 1IS CB NC PB
TP FN TP FN TP FN TP FN TP FN TP FN TP FN TP FN TP FEN

In-house 0 340 181 O 0 0 0 0 o0 0o o0 0 0 0 0 172 184 520 37.73 3.65

DI 0 3 12 10 2 6 5 1 0 0 3 2 6 8 0 3 1 14 2750 6363 1750
D2 0 38 176 0 79 46 81 O 14 26 4 39 101 O 5 8 79 18.08 77.60 14.03
D3 6 20 45 95 148 94 11 67 O 9 0 0 14 9% 5 9 16 105 19.64 65.80 12.37

7. Complex Background (CB): A chart with a distinct (Zl’\’ L)) x 100. Similarly, TNMCO is defined by

background watermark, as shown in Fig. 3g.

8. Numerous Components (NC): A chart with multiple
chart components, such as additional shapes and text, as
shown in Fig. 3h.

Patterned Background (PB): A chart image that has a
background with patterns, such as shown in Fig. 3i. It is
an area chart, but because of the vertical blocks in the
background, it is misclassified.

For any given testing dataset, we manually collect the noisy
samples considering the characteristics and patterns dis-
cussed above. So, for any testing dataset, we form a subset
considering only the identified noisy samples. Table 15 shows
the classification outputs of the noisy samples of the four
datasets using Xception. Among all four testing datasets, In-
house contributes very few noisy samples as compared to the
other remaining datasets. The NTS in the table shows the per-
centage of noisy samples for a given testing dataset. For any
given dataset with N number of noise types, the NTS may be

N T p, .
defined as NT S = w x 100 where T P; and

F N; are the true positives and false negatives, respectively,
for the noise type i. In-house dataset contributes to only two
types of noise, viz., Hard background grid (HGB) and Pat-
terned background (PB) by providing NTS of only 5.2%.
Except for the noise type Transparent background (TB), the
dataset D1 contributes to all noise types. 27.50% of its dataset
is occupied by the noisy samples. Leaving the noise type
Composite chart (CC), the dataset D2 contributes to all other
remaining nine noise types. Noisy samples from these nine
types occupy 18.08% of its dataset. Finally, the dataset pro-
vided by D3 occupies 19.64% of its dataset with nine noise
types (leaving Improper Image Screenshot (IIS)).

The TNMC (Total noise misclassification) and TNMCO
(Total noise misclassification overall) rows in Table 15 fur-
ther show the overall error contributions with respect to
chart noise and over the entire dataset. TNMC is esti-
mated as the macroaverage percentage of sample mis-
classification between the noisy samples, i.e., TNMC =

@ Springer

the percentage of misclassifications from the noisy sam-
ples over the entire testing samples (TS) and estimated as

N .
TNMCO = Z’T—gwl x 100. From the table, the follow-

ing points are observed:

In-house dataset: 37.73% of the noisy samples are
misclassified. It is further observed that 3.65% of the
misclassification (overall) is because of the noisy sam-
ples.

DI Dataset ): 63.63% of the noisy samples are misclas-
sified. It contributes 17.5% of misclassifications overall.
It may be noted that not a single instance of CC and NC
types are correctly classified.

D2 Dataset: 77.60% of the noisy samples are misclassi-
fied. It contributes 14.03% of misclassifications overall.
It may be noted that not a single instance of Al, TB, and
NC types is correctly classified.

D3 Dataset: 65.80% of the noisy samples are misclassi-
fied. It contributes 12.37% of misclassifications overall.
It may be noted that not a single instance of TB is cor-
rectly classified.

From the above discussion, it is observed that besides confus-
ing chart class pairs, chart noise is another issue to consider
while developing a chart classification model. Apart from the
in-house dataset, it can be said that the primary cause of the
misclassification is noisy samples.

6.3 Response of the model on 3D samples

As our study does not consider 3D chart images except for
surface plots, 3D samples present in other publicly avail-
able datasets become one reason for misclassification. The
datasets D1 and D2 have only two and five 3D samples, which
are classified incorrectly. The dataset D3 has 99 3D samples,
of which 21 are classified correctly. Itis because those images
are not entirely in the third dimension, but only some of the
chart’s components are.
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Fig. 4 Grad-CAM [78] visualization result: Comparison of the visu-
alization results of input image (images in first row), responses from
Xception (images in the second row), and responses from EfficientNet

7 Conclusions and potential future
directions

This paper presented a review of the studies on chart clas-
sification reported in the literature since 2001. Noting that
the majority of the earlier studies had considered smaller
datasets with a smaller number of classes, this paper further
evaluated chart classification methods (44 in total) under a
common experimental framework over a large dataset with
a larger number of classes (28 classes). To the best of our
knowledge, this paper has considered the largest number of
chart classification models and the largest dataset. In addi-
tion to a theoretical review of the existing methods, it also
attempted to benchmark their performances under different
experimental setups. Further, it also identified two challeng-
ing aspects: noise in the chart and confusing chart pairs. In
short, this paper made the following contributions.

1. Brief survey: This study reviewed studies on chart classi-
fication studies since 2001 from three different aspects—
datasets, feature extractors, and methods.

2. Largest chart image corpus: The paper provides the
extended version of the dataset reported in our earlier
study. It consists of 117,271 samples over 28 chart types.
To the best of our knowledge to date, the in-house is
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v2 B3 (images in the last row). The grad-CAM visualization is calcu-
lated from the last convolutional outputs. P denotes the softmax score
of each network for the classified class

the largest dataset among the publicly available and non-
publicly available datasets in terms of sample size and
the number of chart types.

3. Evaluation of 44 ML models: The paper evaluates 44
machine learning-based chart classification models under
acommon experimental framework. It is the largest com-
parison reported in the domain of chart classification.

4. Challenges in chart classification: On top of the chal-
lenges reported in our earlier paper, this paper also
contributed on discovering more confusing chart class
pairs and also investigated their effects on chart classifi-
cation performances.

As evident in Tables 14 and 15, noise present in the chart
and confusing chart class pairs affect the classification per-
formance significantly. It brought out an interesting future
research aspect. To understand it deeper, Fig.4 presents a
visualization of the attentive positions captured in the last
convolution layer of chart classification models (Xception,
and EfficientNet V2 B3) of a noisy/confusing image sample.
The attentive positions inherently captured in a vector can
be visualized using Grad-CAM [78]. Grad-CAM calculates
the attentive spatial positions in a convolution layer using
gradients. It can be seen that the attentive positions captured
by both Xception and EfficientNet v2 B3 do not match the
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target chart regions for most of the input images. As a result,
they fail to classify the input images correctly. It is further
observed that Xception misclassifies any chart type with low
confidence compared to EfficientNet V2 B3. As shown in
the figure, for the input chart type scatter (fourth input image
from the left), both the models classified it as node link type,
but EfficientNet V2 B3 is more confident than Xception by
providing a probability score of 0.97.

As several studies on image classification (not explored
with chart classification yet) tasks have shown encouraging
performances with attention-based models, a study exploring
attention-based deep learning models for chart classifica-
tion could be a future research direction for handling chart
noise. Further, the issue of confusing chart pairs may also
be addressed by exploring triplet loss learning. As applied
in several studies [79-81], triplet loss can incorporate intra-
class and increase inter-class distances while generating
embedding of the samples. Therefore, incorporating triplet
loss into chart classification models could also be an inter-
esting research direction.
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