
International Journal on Document Analysis and Recognition (IJDAR) (2021) 24:325–337
https://doi.org/10.1007/s10032-021-00374-4

ORIG INAL PAPER

SKFont: skeleton-driven Korean font generator with conditional deep
adversarial networks

Debbie Honghee Ko1 · Ammar Ul Hassan1 · Jungjae Suk1 · Jaeyoung Choi1

Received: 9 May 2020 / Revised: 10 May 2021 / Accepted: 26 May 2021 / Published online: 10 June 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
In our research, we study the problem of font synthesis using an end-to-end conditional deep adversarial network with a
small sample of Korean characters (Hangul). Hangul comprises of 11,172 characters and is composed by writing in multiple
placement patterns. Traditionally, font design has required heavy-loaded human labor, easily taking one year to finish one style
set. Even with the help of programmable approaches, it still takes a long time and cannot escape the limitations around the
freedom to change parameters. Many trials have been attempted in deep neural network areas to generate characters without
any human intervention. Our research focuses on an end-to-end deep learning model, the Skeleton-Driven Font generator
(SKFont): when given 114 samples, the system automatically generates the rest of the characters in the same given font style.
SKFont involves three steps: First, it generates complete target font characters by observing 114 target characters. Then, it
extracts the skeletons (structures) of the synthesized characters obtained from the first step. This process drives the system
to sustain the main structure of the characters throughout the whole generation processes. Finally, it transfers the style of the
target font onto these learned structures. Our study resolves long overdue shortfalls such as blurriness, breaking, and a lack
of delivery of delicate shapes and styles by using the ‘skeleton-driven’ conditional deep adversarial network. Qualitative and
quantitative comparisons with the state-of-the-art methods demonstrate the superiority of the proposed SKFont method.

Keywords Generative models ·Generative adversarial networks · Font generation · Style transfer · Image-to-Image translation

1 Introduction

Font is a fine art that has long been a part of the creative
world. Its manifestations have varied from drawings of letter
after letter on paper, to copperplate engraving, to film. In the
twentieth century, the advent of the computer has resulted in
the emergence of the digital font, which, as the personal com-
puter emerged, has gradually made its return to its original
attributes, “creative”, “unique”, and “personalized”.

B Jaeyoung Choi
choi@ssu.ac.kr

Debbie Honghee Ko
debbie.pust@gmail.com

Ammar Ul Hassan
ammar.instantsoft@gmail.com

Jungjae Suk
jjsuk256@gmail.com

1 School of Computer Science and Engineering, Soongsil
University, Seoul, Korea

The earliest form of digital font was bitmap fonts, fol-
lowed by outline fonts, such as Type1 and TrueType, and
finally, variable fonts, such as OpenType. However, creating
digital fonts still requires heavy human labor. A font designer
needs, at the least, months to create a new font set with a cou-
ple of strokes, serifs, and thickness. Designing one font style
based on the English characters, which are no more than 200
characters including lower and uppercase alphabets, num-
bers, and symbols, can easily take up to a few months. On
the other hand, CJK (Chinese, Japanese, Korean) based lan-
guages consist of a large number of characters. For example,
the Korean alphabet, Hangul, is composed of 11,172 char-
acters; likewise, Chinese Hanja characters in the Chinese
dictionary exceed 50,000. Therefore, it can easily take up to
a year or more to design just one font style for the CJK-based
languages. Furthermore, the complex structures and shapes
of the CJK characters make the font designing process even
more difficult for the font designers.

With the recent advances in deep learning-based approaches,
high-quality image synthesis tasks can now be resolved in an
end-to-end fashion. Recently, the image-to-image translation

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10032-021-00374-4&domain=pdf
http://orcid.org/0000-0002-7321-9682

326 D. H. Ko et al.

(I2I) framework “pix2pix” [1], was proposed, based on con-
ditional generative adversarial networks (cGANs) [2], where
the goal is to translate a reference input image in one domain
into a target output image in another domain, given an input–
output image pair as training data.

Until now, the studies based on deep learning merely
regard the font synthesis task as an I2I translation prob-
lem, where the goal is to learn the mapping from a reference
font style in Domain DR , to any target font style in Domain
DT . This font style domain transfer can be named as F2F,
where the first F is a fixed reference font style and the sec-
ond F is any target font style to be learned. However, there
have been ongoing challenges of the F2F-based approaches
such as blurriness, unexpected serious artifacts, and non-
realistic images especially when the target font style is
different from the reference font style. Additionally, due to
the complex structures of CJK characters, these F2F-based
methods often generate fonts with inconsistent styles and
structures (strokes, serifs, etc.). Even if some of the results
are acceptable, dealing with delicate touches, such as special
stokes/slant/serif details, along with style transfer, is always
challenging.

In this paper, we propose an end-to-end skeleton-driven
Korean font generative model, SKFont, which transfers the
style of a small sample of characters (114) to the structures
(skeletons) of unseen characters (2350) to ensure high-
quality characters with consistent style and structure. Instead
of learning the traditional F2F mapping, we decompose the
font synthesis task into three stages:

1. F2F (Font-to-Font) Mapping: By observing a partial set
of characters (114), the SKFont learns to translate the
style in the reference font into those in the target style.
By the end of the first stage, the full set of target font
characters (2350) are generated.

2. F2S (Font-to-Skeleton) Mapping: This network learns
the structures (skeletons) of target characters which are
generated from the first step F2F. It guarantees the
detailed structure of each glyph sustained throughout the
whole generating processes.

3. S2F (Skeleton-to-Font) Mapping and Style Transfer:
With the estimated target skeletons from F2S, the net-
work learns to synthesize them with the target font style.

Finally, by observing a partial set of characters, the com-
plete font characters can be obtained in the desired target font
style with consistent style and structure. This skeleton-driven
approach, by starting with the skeleton, and later fleshing it
out based on the styles, ensures that our model preserves
its bone structure. We regard the font synthesis task as an
I2I translation problem and utilize conditional GANs for all
three steps.

2 Related works

Various trials have been conducted on font generation using
deep learning. In this study, we first focus on generic font
synthesis methods; thereafter, we mainly focus on methods
that consider font generation as an I2I translation problem.

2.1 Generic font generationmethods

Inspired by the great advances in image recognition achieved
using the convolutional neural network (CNN) [3], “Rewrite”
[4] was proposed for synthesizing Chinese calligraphy.
This method uses a top-down CNN architecture, where a
reference-to-target font image mapping is learned using the
L1 loss. The results are often blurry; further, it can only learn
one font style at a time.

Neural style transfer [5] is awidely usedmethod for image
style transfer. It uses a CNN model to synthesize images
using both the content and style of the image. Inspired by
this method, a neural font style transfer method [6] was pro-
posed. This method transfers the style of one font image to
another font image using the style features extracted from the
intermediate layers of the CNN. In this approach, the images
of various font styles of different languages, such as Arabic,
Japanese, and Korean, are used to generate the font images.

GlyphGAN[7] used adeep convolutionalGAN(DCGAN)
architecture [8] to generate alphabets. GlyphGAN combines
character vector, zc, and style vector, zs (z = zc + zs), as
an input to the generator instead of the plain z vector used
in the original DCGAN. The problem with GlyphGAN is
that the style of the synthesized characters cannot be con-
trolled based on the user’s preference, as the style vector, zs,
is always random (sampled from a normal distribution).

2.2 Image-to-image translationmethods

I2I translation based on cGAN (“pix2pix”, cycleGAN [9])
methods have recently achieved great success. Many font
generation methods are inspired by these I2I translation
frameworks, where a new font is synthesized from the refer-
ence font image provided as an input.

Pix2pixmethod is used for one-to-onemapping problems,
for instance, converting from the edge of a shoe to a complete
shoe image, a day time scene to a night time image, etc. On
the other hand, font generation can be framed as a one-to-
many mapping problem, where the same font character can
appear in various target font styles. To overcome the one-to-
onemapping problem characterizing the pix2pixmethod, the
zi2zi network [10], which exploits category embedding, was
proposed for generatingChinese characters. Thismethod can
generate many target fonts from a reference font by combin-
ing the pix2pix framework with AC-GAN [11] and a domain
transfer network (DTN) [12]. More recently, the DCFont

123

SKFont: skeleton-driven Korean font generator with… 327

[13], which combines the category embedding of the zi2zi
framework with a font feature reconstruction method for
more quality synthesis of Chinese calligraphy was proposed.
The DCFont method combines a pretrained VGG network
for extracting the font style features and latent features from
the encoder and category embedding (borrowed from zi2zi).

Similarly, Chang et al. [14] proposed a method for gen-
erating Chinese characters in a personalized handwritten
style using the DenseNet CycleGAN. The only difference
between this network and CycleGAN is that CycleGAN, by
default, uses ResNets [15] blocks after the encoder, whereas
DenseNet CycleGAN uses DenseNet [16] instead. Hanfei
Sun [17] modified the architecture of zi2zi to synthesize Chi-
nese typography. They also incorporated a pretrained CNN
model that extracts the content features of the input character
image into the modified architecture. They claimed that their
method, because it had strong, soft, and random pairs, was
more flexible than the zi2zi network.

Several works have used the skeleton-driven approach to
synthesize font characters; however, they either apply a man-
ual skeleton extraction technique, which is a cumbersome
task [18], or use a slightly different approach that entails
learning handwriting trajectories from the reference style
to the target trajectories of the characters [19] by utilizing
FlowNet2.0 stacked networks [20].

The common problem with the methods discussed above
is that when the reference font style is different from the tar-
get font style in overall structure and style, such as strokes
and serifs, the synthesized font image is often blurry, bro-
ken, or too close to the reference font style. To address the
problems mentioned above, we employed a skeleton-driven
approach. Compared with related methods, our proposed
skeleton-driven approach focuses on learning the skeleton of
a given font character based on the I2I translation framework.
More specifically, our skeleton-driven approach is inspired
by recent advances in skeletonization techniques, mainly
the modified U-Net architecture [21] for extracting skele-
tons from binary images. Our skeletons consist of the overall
structure of the font character; therefore, our method extracts
the structural information, not the style, of the reference char-
acter when it passes through the encoder. We additionally
concatenate the style information in the latent features, before
passing it to the decoder in all the stages (F2F, F2S, and S2F).

2.2.1 Additional font generation methods

Lian et al. [25] proposed a handwriting font synthesis model,
EasyFont, to generate all personal Chinese characters from
a small number of samples by learning handwriting strokes
and overall handwriting styles. Recent study on generating
Chinese handwriting FontRNN [26] focuses on stroke trac-
ing (writing trajectories) method with monotonic attention
mechanism.

Lopes et al. [27] proposed a generative model for scal-
able vector graphics (SVG) using VAE and SVG decoder.
This work enables systematic font manipulation and its
style propagation. Sun et al. [28] proposed a variational
auto-encoder (VAE) framework to synthesize recognizable
Chinese content (sentences) transferring style from a few
given characters. The model used extra knowledge (the con-
figuration and radical information) which are shared among
all the Chinese characters to get more informative content
representation.

Baluja et al. [29] is one of the pioneers on English
glyph image generation using deep neural networks with a
few samples. Azadi et al. [30] proposed a stacked cGAN
model (MC-GAN) to generate same style glypes from a
few examples, capturing typographic and textual stylization
respectively. On the other hand, AGIS-Net [31] is a one-stage
model which transfers content and texture styles using two
encoders respectively from a few samples.

3 SKFont description

We propose an end-to-end deep neural network to take small
sample of characters designed by the font designer in a
specific font style and then synthesize the complete set of
character images in the sample style. In order to have struc-
ture and style consistency, especially for Korean Hangul
characters (this can be applied for Chinese), which are com-
plex in shapes and large in numbers, we have designed our
architecture to predict the set of the most commonly used
Korean Hangul characters (2350) by observing very small
examples (114). For this task, we divide this problem into
three steps (three subnetworks): predicting the full set of char-
acters from the small samples, structure (skeleton) modeling,
and style transfer.

Our first network, F2F, predicts the full set of the target
font characters by observing small sample of characters. The
second network, F2S, generates the overall structure of the
target characters generated by the first network, and our third
network, S2F learns to flesh out the generated skeletons by
transferring the style. Each of our subnetwork conform to
the conditional GAN (cGAN) architecture modified for the
specific font problem (one-to-many mapping). The SKFont
is pretrained on 85% of the 81 font styles, where each style
contains the 2350 most commonly used Hangul characters.
To learn a specific font style, the network is fine-tuned on
114 sample characters, and then a complete font set (2350) is
generated in that specific font style. In the following sections,
wefirst describe the cGANmodel briefly, and thendiscuss the
architecture and details of our proposed three-stage network
architecture and the loss functions.

123

328 D. H. Ko et al.

Fig. 1 Overview of our subnetworks F2F, F2S, and S2F networks, respectively, with their respective references and the generated images

3.1 cGAN

The vanilla GAN [32] is composed of two models: a gen-
erator and a discriminator. A generative model G(z; θg) is a
differentiable function with parameter θg, which learns the
distribution of sample data, x , from a prior input noise vari-
able px (z). G’s goal is to mimic the distribution as close as
possible to x . On the other hand, the discriminator model,
D(x; θd), determines whether the sample it takes is from G
(generator’s distribution pg) or the ground truth (GT) data
x . The output of D is a single scalar [0–1] as a probability.

D and G appear to play a minimax game with value func-
tion, V (G, D). G and D are trained simultaneously. The
model adjusts the parameters for D to maximize the proba-
bility of both the real samples and the generated samples. On
the other hand, it adjusts the parameters for G, to minimize
the probability to only the generated samples,

min
G

max
D

V (D,G) = Ex ∼ pdata(x)[log D(x)]
+ Ez ∼ pz(z)[log(1 − D(G(z)))].

(1)

The cGAN is simply an extension of the vanilla GAN,
wherein any conditional information, c, is added to both the
generator and the discriminator for the parameter intended
to be controlled.

min
G

max
D

V (D,G) =Ex ∼ pdata(x)[log D(x |c)]
+ Ez ∼ pz(z)[log(1 − D(G(z|c)))].

(2)

We follow the cGAN settings in each of our subnetworks
(F2F, F2S, and S2F) to generate the whole set of characters
with style and structure consistency by observing limited
characters. We use a reference image as an input to the gen-
erators in all the subnetworks as the condition, and ignore
the noise, z, similar to pix2pix model.

3.2 SKFont architecture

Our model consists of three subnetworks: Font-to-Font net-
work (F2F), Font-to-Skeleton network (F2S), and Skeleton-
to-Font network (S2F), as depicted in Fig. 1.

Fig. 2 Problems of existing skeletonization mathematical approaches
vs F2S. By column order: GT font, [22–24], and F2S (ours) methods
respectively

3.2.1 F2F network

The F2F network conforms to the same principle underlying
the traditional methods for generating a full set of font char-
acters; it learns a target font style from a fixed reference font
style. The reference font is chosen based on the most com-
mon style and structure of the Hangul fonts; i.e., the overall
structure and style of almost all Hangul font styles can be
derived from this font. The input to this network is a ref-
erence font image x which is downsampled via an encoder
to extract the high-level features. Here, we combine a style
vector with the encoded features. This latent is then passed
through a series of upsampling layers to generate the target
font image. More network details are described in Sect. 3.3.

3.2.2 F2S network

Our main goal for employing a traditional F2F network is
to estimate the full set of target domain font characters from
the small sample characters. We then utilize the F2S gen-
erator that learns to translate the estimated font character
from F2F to its corresponding skeleton. The training tar-
get skeletons are produced using a Python-based model that
used Lee’s method proposed in this work [24]. The reason
for training a GAN-based F2S network over mathemati-

123

SKFont: skeleton-driven Korean font generator with… 329

Fig. 3 Architecture of skeleton-to-font (S2F) network. Our generator
takes a skeleton character as an input, and passes it through the encoder
to obtain the content features of a given skeleton. The content features

are then combinedwith a styled vector to recover the style-related details
of the target font glyph via the decoder

cal algorithms was that we found some problems, such as
disjointedness, attached complicated elements, and serious
artifacts in the skeletons generated by [24] (and other math-
ematical approaches [22,23]), as shown in Fig. 2.

3.2.3 S2F network

Finally, the S2F network learns to transfer the style to the
synthesized skeletons from the F2S network to the target
fonts. In all of the networks, we use the same architecture, but
learn different mapping functions; in the F2F, the reference
domain is a specific font style and the generator learns the
target domain font style by observing 114 sample characters.
While in the F2S, the reference image is from the font domain
and the generator learns to transform it into the corresponding
skeleton domain. And in the S2F, the generator learns to style
transfer from the skeletons generated by F2S to the target font
style. In the next section, we present the network details of
our model.

3.3 Network details

For all of the subnetworks, we use the same network archi-
tecture, therefore we only present the details of the S2F
network, as shown in Fig. 3 (applicable to all the networks
with respective reference and target images). In all networks,
the generator employed a U-Net architecture [33], instead of
the vanilla autoencoder. The only difference is that U-Net
uses skip connections from every encoder layer to the corre-
sponding decoder layer except the last layer and the first layer
of the decoder. The reference image is passed through the
series of downsampling layers (encoder) to obtain high-level
features of the image, which we call the “content features”.
Then these content features are concatenated with a vector
named “style vector” which is used to distinguish multiple
styles. The style vector used in our networks is a one-hot
encoded vector indicating various styles. The style vector
in our network plays the key role for learning various font
styles. During training time, our network learns various font

123

330 D. H. Ko et al.

styles based on this one-hot encoded style vector. For the
unseen font style, we do a fine-tuning step. The goal of
this fine-tuning step is to learn the new style vector (one-
hot encoding) of the new font style. The dimension of the
style vector is evaluated based on the total number of train
and test fonts. For example, the content features from our
encoder have a dimension of (batchsize, 1, 1, 512). Then, we
concatenate these features with the style vector (batchsize, 1,
1, length(train+test font styles)). This concatenated vector is
passed to the decoder that upsamples (reverses the encoder
operations) to generate the target image. The skip connec-
tions between the encoder and decoder layers ensure that the
rich information is not lost during downsampling.

PatchGAN method [1] is employed in our discriminator
model. It only penalizes structure at the scale of patches.
A normal discriminator is determined by the input image;
this discriminator outputs a scalar for a real or fake image,
whereas the patch discriminator runs convolutionally across
the image, and outputs a patch (30×30) where each patch in
the image is either real or fake. In this process, the responses
are averaged for the final decision. The purpose of this is
to obtain more detailed results. We additionally add fully
connected layers at the end of the discriminator to predict the
styles of the generated images. This layer helps in controlling
embeddings to generate a specific style image (skeleton or
font).

3.4 Loss function

The loss function of our SKFont consists of an adversarial
loss, style classification loss, and L1 loss. Because of the
recent success of adversarial networks in generative prob-
lems, we utilize an adversarial loss. More specifically, we
use the Non-Saturated GAN loss for both the generator and
discriminator.We foundwith our experiments that this loss is
more stable and converges quickly, compared to the saturated
loss [34].

The vanilla cGAN generates the data distribution from the
noise distribution (G : z → y); however, our SKFont learns
a mapping from the reference (skeleton or font) domain to
the target domain (G : {x} → y), where x is the input
image of the reference domain, and y is GT of the target
domain. Unlike the vanilla discriminator that downsamples
the input image to a one-dimensional scalar, our discrimina-
tor classifies whether the N ∗ N patch is real or fake. Our
GAN’s non-saturated LosscGANns(G, D) objective function
is formulated as follows:

LosscGANns(D) = Ey[log D(y)] + Ex [log(1 − D(G(x)))],
(3)

LosscGANns(G) = −Ex [D(G(x))]. (4)

Target domain font images can be of various styles, where
a one-character skeleton can correspond to many target char-
acter font styles. For example, the skeleton of one Hangul
character can have a variety of different styles in the target
domain. To control the target font image style, we employ
a style classification loss. This loss corresponds to the style
vector which is concatenatedwith the structure vector, before
being passed on to the decoder (unlike in the pix2pix or cycle-
GANmethods). This loss function in our network serves as a
style transfer unit. From a given reference image of a Hangul
character (skeleton or font), the style vector and style classi-
fication loss forces our generator to generate font images in
various target domain font styles. The discriminator’s job is
not only to check if the input image pair is real or fake, but
also check whether the generated image is of the same style
as the target font style. Our style classification loss implied
from the GAN loss is as follows:

LosscGANsc(G, D) = Ey[log Dsc(y)]
+ Ex [log(1 − Dsc(G(x)))]. (5)

In order to generate font images that have the same overall
structure as the target domain font image, we use the L1 loss.
The L1 loss attempts to minimize the pixel-by-pixel differ-
ence between the generated image,Y ^, and the corresponding
target image, Y . Further, the L1 loss minimizes the blurring,
unlike the L2 loss. This loss is formulated as follows:

LossL1 = Ex,y[||(y − G(x))||1]. (6)

By combining these three loss functions, we formulate our
final loss function of the proposed methods as

G∗ = argmin
G

max
D

LosscGANns(G, D)

+ LosscGANns(G, D) + λLossL1.
(7)

4 Experiments and results

In this section, we first describe the dataset and implementa-
tion details of our proposed method. Then, we evaluate the
performance of the proposed method from various perspec-
tives to verify the proposed model’s advantages over other
approaches.

4.1 Dataset

Hangul is composed of 11,172 syllables and has multiple
patterns in its construction. There are 19 consonants and 21
vowels in the Korean alphabet (Table 3 in Appendix A.1). To
construct Korean characters, we need to place those alphabet

123

SKFont: skeleton-driven Korean font generator with… 331

patterns in phonetic order using six placements (Fig. 9 in
Appendix A.1).

We validate our model with 81 Korean font styles
(we gathered our Korean public fonts from the following
source1). Each font consists of 2350 of the most commonly
used Korean characters. We trained our model with 85%
of these collected font styles. For testing the generalization
capability of our model, we used the remaining 15% unseen
font styles (the font which were not observed by the model
during training time).

For our F2S and S2F networks, where the reference or
target is the skeleton of a given font character, we used a
Python-based module that generates the skeletons of font
characters. We generated skeletons from the state-of-the-art
mathematical algorithms of skeletonization [22–24]. Then
through visual analysis, we selected Lee’s skeletonization
method [24] for pretraining our networks, because this algo-
rithm generates reasonable font skeletons, compared to other
algorithms.We then prepared a paired dataset where, for F2S
network we had font characters in the reference domain and
corresponding font skeletons in the target domain. For the
S2F network, we prepared the inverse of the F2S networks
paired dataset, i.e., font skeletons in the reference domain
and corresponding font characters in the target domain.

For the experiments, we tested various fonts based on
the overall style and structure of the characters in the ref-
erence and target domains, to evaluate the model’s diversity
in generating various fonts in different styles. We selected
114 characters that cover the combinations of 114 first con-
sonants (Chosung), 42 medial consonants (Joongsung), and
27 final consonants (Jongsung) as the input set. With these
basis characters of new unseen style, our model generates the
rest of the characters in the same style, i.e., with 114 sam-
ples, our model can see sufficient examples to understand the
overall structures of the glyphs, even those with complicated
structures and different styles from the reference font.

4.2 Network details and parameter settings

For our experiments, the input and output character images
are both 256× 256× 3 (RGB). We tested various data sizes:
64×64, 128×128, and 256×256, and discovered that 256×
256 was the best. A machine recognizes object images as a
collection of pixels and it needs to look at every single pixel,
resulting in slow processing time: for our training dataset
images of size 256× 256× 3 that involve approximately 40
million pixel’s calculations, it took three days to train our
model.

For all of the networks, the encoder contains seven down-
sampling layers. Every layer in the encoder consists of a

1 https://software.naver.com/software/fontList.nhn?
categoryId=I0000000.

convolution operation followed by Batch Normalization [35]
and Leaky ReLU activation function [36,37] except the first
layer where Batch Normalization is not used. We used 2× 2
stride in all layers, except the last, wherewe have a stride of 1;
the batch size was set to 1, and the learning rate was 0.0002,
decayed by half after 10 iterations. We trained our model
using the Adam optimizer. The decoder consists of seven
upsampling layers. Each layer has a deconvolution opera-
tion followed by Batch Normalization and ReLU activation
function. As an exception to the above operation flow, Batch
Normalization is not applied to the last layer of the decoder,
and the tanh activation function is used instead of ReLU.

After pretraining, when it comes to learn an unseen new
font style, we fine-tune our model with the 114 sample char-
acters that represent the overall structure of all the other
Korean Hangul characters. This fine-tuning process helps
the network to learn the new font style with its specific style
embedding. This way the pretrained model converges fast
compared to the one trained from scratch as it has already
seen various Hangul characters of various shapes and styles
resulting in our model being robust for various target font
styles. After learning the new font-style embedding during
the fine-tuning phase, our network generates the rest of unob-
served 2236 characters in the newly learned style during
testing (this can easily be extended to generate 11,172 char-
acters).

4.3 Performance evaluation

In this subsection, we compare our model qualitatively with
some recently proposed methods to verify the effectiveness
of ourmodel. Additionally,we also compare the results quan-
titatively.

4.3.1 Qualitative evaluation

We used pix2pix [1] and zi2zi [10] as our baselines, and
compared them to our proposed SKFont generator. For a fair
comparison, we pretrained all three models using the same
dataset, and fine-tuned them with the same unseen styles.
Both baselines are trained using the implementations pro-
vided by the authors.

As shown in Fig. 4, our method produces non-blurry and
photorealistic typefaces showing great dominance over oth-
ers in visual appearance. Although the other methods can
style transfer the overall font style, the synthesized font
images are mostly of low quality with serious artifacts.
When the synthesized images are zoomed, the results yielded
by the baselines exhibit poor smoothness, broken strokes,
and blurriness. When the target font style (BinggraeTaomB)
is intensely different from the reference font style, broken
results and poor quality are observed in the baselines. On the
other hand, SKFont preserves the consistency of style and

123

https://software.naver.com/software/fontList.nhn?categoryId=I0000000
https://software.naver.com/software/fontList.nhn?categoryId=I0000000

332 D. H. Ko et al.

Fig. 4 Comparison of synthesized glyphs in three different styles using the proposed model and other methods

structure while ensuring the smoothness of the font images.
In Appendix A.2, we have attached more synthesized images
of our model compared with the GT and the other two meth-
ods.

In addition to comparing the effectiveness of our method
with baselines, we also compared the characters generated
by our model and the ground truth basis characters. From the
114 basis characters designed by the designer, we generated
a complete set of commonly used font characters using the
SKFont, and combined them together to generate paragraphs
to visually estimate the quality of these synthesized charac-
ters. As shown in Fig. 5, we generated a sentence based on
three font styles using our method. The highlighted charac-
ters (characters in red box) are the GT basis characters that
were used during the fine-tuning process to learn a specific
font style. Other characters are generated by our model in the
corresponding font style. FromFig. 5, we can clearly observe
that the characters generated by the SKFont are almost con-
sistent in style (strokes and thickness) and are very nearly
indistinguishable from those designed by the font designer.

In Fig. 14 (Appendix A.4), we visualize more unobserved
font styles generated by our proposed model and the figure
shows that the font images synthesized are photorealistic.

Fig. 5 Text rendered in three different styles generated by our method
SKFont. The GT basis characters by human designers are highlighted
in red; the rest are SKFont generated characters in the corresponding
font style (Color figure online)

123

SKFont: skeleton-driven Korean font generator with… 333

Table 1 Quantitative evaluation of proposed method and two other methods

Font styles Pix2pix Zi2zi SKFont
HCCS L1 loss L2 loss HCCS L1 loss L2 loss HCCS L1 loss L2 loss

Arita-buriM 0.9603 0.2635 0.2529 0.9779 0.2661 0.2521 0.9955 0.2304 0.2275

BinggraeTaomB 0.9158 0.3347 0.2632 0.9236 0.2612 0.2475 0.9234 0.2496 0.2439

DXMyeongjo 0.9451 0.2682 0.2564 0.9583 0.2720 0.2553 0.9789 0.2549 0.2515

Interpark Gothic 0.9326 0.2589 0.2497 0.9517 0.2657 0.2567 0.9824 0.2311 0.2267

Jeju Myeongjo 0.9681 0.2412 0.2265 0.9791 0.2478 0.2411 0.9716 0.2489 0.2359

KBIZmjo L 0.9120 0.3048 0.2716 0.9216 0.2879 0.2655 0.9425 0.2368 0.2214

KoPubWorld 0.9238 0.2789 0.2899 0.9105 0.2941 0.2874 0.9368 0.2741 0.2694

SunBatang 0.9015 0.3814 0.3569 0.9087 0.3776 0.3655 0.9115 0.3213 0.3102

4.3.2 Quantitative evaluation

We also performed a quantitative evaluation of the proposed
model against the baselines. For the quantitative evaluation,
we computed the L1 and L2 losses between the synthe-
sized image and the GT image. Additionally, we computed
the Hangul Character Classification Score (HCCS). For the
HCCS, we pretrained a CNN model to correctly classify the
Hangul characters. This CNN model achieves a 99.4% test-
ing accuracy on real Hangul characters. At inference time,
we calculated the HCCS by predicting the character’s label
using our model and the baselines. As shown in Table 1,
we can see that our model outperforms the other two meth-
ods on various font styles. These font styles were randomly
chosen from the test set for evaluating quantitative metrics.
Ourmodel achieves the lowest L1 and L2 loss and the highest
HCCS accuracy, which clearly shows our proposedmethod’s
superiority.

4.4 Generalization capability of SKFont

To test the generalization capacity of our proposedmodel, we
conducted an experiment. We performed a cross-language
evaluation test, Korean to Chinese and English. These Chi-
nese and English characters are new to the model, i.e., this
model has never seen English and Chinese fonts during pre-
training and fine-tuning phases.

For this experiment, we fine-tuned our pretrained model
on specificKoreanHangul styles. Style 1was chosen because
of its specific strokes (KoreanMing font style), whereas Style
2 based on its thickness (Korean Gothic font style). For the
contents, a simple font style is chosen (without special strokes
or thickness) as shown in Fig. 6.

Then, we fed some unseen English and Chinese charac-
ters to this fine-tuned model as content images. As depicted
in Fig. 6, the model is able to synthesize the images of these
unseen language characters with an impressive quality. The
row of the Reference Style 1 and Style 2 show that the

model is able to synthesize the unseen Chinese and English
characters by learning the Korean reference font Style 1
and Style 2, respectively. This experiment demonstrates the
generalization ability of our proposed model even for the
cross-languages. This test also demonstrates that with the
skeleton-driven approach, the model is able to transfer the
style on the content images.

4.5 Ablation study

4.5.1 Effectiveness of skeletonization introduced in SKFont

To investigate the effectiveness of skeletonization introduced
in our proposed SKFont method we performed an ablation
study. For this ablation study, we compared our proposed
method (three-stage F2F–F2S–S2F model) with a single
F2F network that directly synthesizes target font style. We
trained both methods on same number of font styles and then
evaluated on unseen fonts (font styles not used during pre-
training). All the hyperparameters and network structures
were same for both F2F and SKFont method.

We observed via visual comparisons that the proposed
SKFont method based on skeletonization smooths the syn-
thesized images and unlike the F2Fmethod, the breaking and
blurry problems of synthesized characters are not found. This
phenomenon is demonstrated in Fig. 7.

Additionally, we conducted quantitative analysis to com-
pare our proposed skeletonization-based method to the F2F
method. For this experiment, we calculated the average SSIM
and L1 distances between the ground truth and the synthetic
images generated by both methods across the entire testing
set discussed in Sect. 4.1. Table 2 contains the compari-
son results. We can see that in both metrics, the proposed
method with skeletonization outperforms the single stage
F2F method.

123

334 D. H. Ko et al.

Fig. 6 Chinese and English font synthesis using the SKFont model with two Korean styles (Reference Style 1 and 2). First row demonstrates the
input images for content

4.5.2 Number of basis characters in fine-tuning phase

We also performed an ablation study to explore the relation-
ship of the quality of synthesized font characters by changing
the number of basis characters in the fine-tuning step for
learning unobserved font styles.

For this experiment, we trained SKFont with three differ-
ent basis character sets; i.e., default 114 basis characters, 256
basis characters, and 512 basis characters (the latter twowere
chosen based on the Handwritten Korean Character Recog-
nition project [38]).

For evaluation, we performed qualitative and quantitative
results as shown in Fig. 8. For the quantitative evaluation,
we computed the structural similarity index measure (SSIM)
between the ground truths and the synthesized characters
for each model (model fine-tuned with 114, 256, 512 basis
characters respectively).

The results in Fig. 8 depict few things: first, our selected
special 114 basis characters are influential in getting good
quality results that closely match the large number of the
basis characters quality. Secondly, as expected with the large
number of basis characters (512), the quality of the synthe-
sized characters positively increases; however, the goal is to
use less number of basis characters and produce high quality
results.

5 Discussion and future work

Here, we describe the theoretical intuition behind the results
of our model. Related methods learn from a fixed reference
font style to synthesize any target font style. Employing the
reference font image as an input to the encoder results in the
synthesized image close to the reference font image, since the
downsampled latent features are the combination of both the
content and style attributes of the reference font image. Ide-
ally, we would like the encoder to downsample the structural
attributes of the reference font image as the latent features.
Based on this latent, the decoder upsamples the target domain
font style, using separate font style information. In such cases
where both the target and the reference images are very differ-

Fig. 7 Single stage F2F versus proposed three-stage SKFont

Table 2 Examining the
effectiveness of skeletonization
through a quantitative
comparison of F2F and the
proposed SKFont method

Method SSIM L1 loss

F2F 0.9025 0.2623

SKFont 0.9287 0.2441

Fig. 8 Effect of fine-tuning basis characters

ent in style, the generator gets confuse, and starts generating
blurry, broken, or confused images (that are closer to the
reference domain font style) as outputs.

Our first F2F network also uses a fixed reference font
style to synthesize any target font style; however, our goal
to deploy this model is to generate the full set of target
characters in the fine-tuning phase, where we have a small
number of target characters (114 in our case). F2F network
is deployed to learn the target domains full set of charac-

123

SKFont: skeleton-driven Korean font generator with… 335

ters (2350 in our case). This network helps in estimating the
rough style and structure of all the target domain characters.
Once we have these characters, the second stage network
extracts the skeletons from these estimated target domain
characters. Finally, the third network style transfers the tar-
get domain font style onto these skeletons. This three-step
learning, unlike the single-stage learning of the baselines,
impacts the final results significantly.

For our future work, we shall examine font synthesis as a
multi-domain I2I translation problem. Currently, our three-
stage method composed of the F2F, F2S, and S2F networks
has limited scalability and robustness in tackling the three
domains, as a result ofwhichwehave to train differentmodels
for each of the paired datasets. However, we wish to use a
single generator to learn the multiple domains. This not only
improves the scalability and robustness of our model, but can
also greatly improve the training performance.Wewould like
to continue working on synthesizing high-quality fonts with
very cursive or artistic styles.

6 Conclusion

In this study, we designed a skeleton-driven Korean font
generator using an end-to-end conditional deep adversarial
network, with small sample of Korean characters (Hangul).
We observed that this model provided robust photo-realistic
results, and also markedly improved the traditional problems
in font synthesis models, such as blurriness, severe artifacts,
and non-photo realistic results. Compared with the baselines,
the experimental results of our “skeleton-driven” approach
exhibited outstanding qualities based on visual perceptions,
and as established by quantitative evaluations. The general-
ization capability of the SKFont demonstrates that it can be
used for transferring the style of one language to another, as
depicted in the experiments.

Funding This work was supported by Institute of Information & com-
munications Technology Planning & Evaluation (IITP) grant funded by
the Korea government (MSIT) (No.2016-0-00166).

A Appendix

A.1 About Hangul

There are 11,172 Korean (Hangul) syllables. They can be
constructed in six ways (Fig. 9). The syllable blocks are
arranged in phonetic order, the initial (Chosung), medial
(Joongsung), and final (Jongsung).

There are 19 consonants (14 singles + 5 doubles) for
Chosung, 21 vowels (10 basics + 11 combined) for Joong-
sung, and 27 consonants (14 basics+ 11 combined+ 2 dou-

ble) for Jongsung; Here, “single” indicates one consonant,
“double” indicates a doubled consonant, and “combined”
indicates two different consonants (Table 3).

Fig. 9 Hangul placements and their examples

Table 3 19 Consonants and 21 vowels for Hangul

A.2 More comparison results with other models

See Figs. 10, 11 and 12.

Fig. 10 Style 1: Arita-buriM

123

336 D. H. Ko et al.

Fig. 11 Style 2: BinggraeTaomB

Fig. 12 Style 3: DXMyeongjo

A.3 Generating stylized font styles

We also fine-tuned the proposed model to synthesize cursive
and pixel based stylized font styles. As shown in figure below
our model can synthesize these font styles in a decent quality
although these kind of font styles were not used in the pre-
training phase (Fig. 13).

Fig. 13 Cursive and Pixel font style generation

A.4 More qualitative and quantitative results of the
proposed SKFont

Wesynthesized various font styles from the proposedSKFont
method and evaluated the generated images from visual and
performance metrics perspective. We generated various font
styles from which 7 are visually displayed in Fig. 14.

123

SKFont: skeleton-driven Korean font generator with… 337

Fig. 14 Font characters generated in various font styles by SKFont

References

1. Isola, P., Zhu, J., Zhou, T., Efros. A.: Image-to-image translation
with conditional adversarial networks. In: CVPR (2017)

2. Mirza, M., Osindero, S.: Conditional Generative Adversarial Nets
(2014). arXiv preprint arXiv:1411.1784

3. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based
learning applied to document recognition. In: Proceedings of IEEE,
pp. 2278–2324 (1998)

4. Tian, Y.: Rewrite: neural style transfer for Chinese fonts (2016).
https://github.com/kaonashityc/Rewrite

5. Gatys, L.: Image style transfer using convolutional neural net-
works. In: CVPR (2016)

6. Atarsaikhan, G., Iwana, B.K., Narusawa, A., Yanai, K., Uchida, S.:
Neural font style transfer. In: Proceedings of the 14th International
Conference 25 on Document Analysis and Recognition (ICDAR),
vol. 5, pp. 51–56 (2017)

7. Hayashi, H., Abe, K., Uchida, S.: GlyphGAN: style-consistent
font generation based on generative adversarial networks. In:
Knowledge-Based Systems, vol. 186 (2019)

8. Radford, A., Metz, L., Chintala, S.: Unsupervised representation
learning with deep convolutional generative adversarial networks
(2015). arXiv preprint arXiv:1511.06434

9. Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image
translation using cycle-consistent adversarial networks. In: Pro-
ceedings of the IEEE International Conference onComputerVision
(ICCV) (2017)

10. Tian, Y.: zi2zi: Master Chinese calligraphy with conditional adver-
sarial networks (2017). https://github.com/kaonashi-tyc/zi2zi

11. Odena, A., Olah, C., Shlens, J.: Conditional image synthesis with
auxiliary classifier GANs. In: Proceedings of the 34th International
Conference on Machine Learning, pp. 2642–2651 (2017)

12. Taigman, Y., Polyak, A., Wolf, L.: Unsupervised cross-domain
image generation. In: 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24–26, 2017,
Conference Track Proceedings

13. Jiang, Y., Lian, Z., Jianguo, Y., Xiao, J.: DCFont: an end-to-end
deep Chinese font generation system, SIGGRAPH Asia, p. 22, TB
(2017)

14. Chang, B., Zhang, Q., Pan, S., Meng, L.: Generating hand-
written Chinese characters using cyclegan (2018). CoRR.
arXiv:1801.08624

15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for
image recognition. In: CVPR (2016)

16. Huang, G., Liu, Z., Weinberger, K.Q., van der Maaten, L.: Densely
connected convolutional networks. In: CVPR (2017)

17. Sun, H.: Luo, Y., Ziang , L.: Unsupervised Typography Transfer
(2018)

18. Guo, Y., Lian, Z., Tang, Y., Xiao, J.: Creating new Chinese fonts
based onmanifold learning and adversarial networks. In: Diamanti,
O., Vaxman, A. (eds.) Proceedings of the Eurographics—Short
Papers. The Eurographics Association (2018)

19. Jiang, Y., Lian, Z., Tang, Y., Xiao, J.: SCFont: Structureguided
Chinese Font Generation via Deep Stacked Networks (2019)

20. Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox,
T.: Flownet 2.0: Evolution of optical flow estimation with deep
networks. In: CVPR, vol. 2, no. 6 (2017)

21. Panichev, O., Voloshyna, A.: U-net based convolutional neural
network for skeleton extraction. In: The IEEEConference on Com-
puter Vision and Pattern Recognition (CVPR) June (2019)

22. Zhang, T.Y., Suen, C.Y.: A fast parallel algorithm for thinning dig-
ital patterns. Commun. ACM 236–239 (1984)

23. Guo, Z., Hall, R.W.: Parallel thinning with two-subiteration algo-
rithms. Commun. ACM 32, 359–373 (1989)

24. Lee, T.C., Kashyap, R.L., Chu, C.N.: Building skeleton models via
3-D medial surface/axis thinning algorithms. Comput. Vis. Graph.
Image Process. 56, 462–478 (1994)

25. Lian, Z., et al.: EasyFont: a style learning-based system to easily
build your large-scale handwriting fonts. ACM Trans. Graph. 38,
61–618 (2019)

26. Tang, S., et al.: FontRNN: generating large-scale Chinese fonts
via recurrent neural network. Comput. Graph. Forum 38, 567–577
(2019)

27. Lopes, R.G., et al.: A learned representation for scalable vector
graphics. In: 2019 IEEE/CVF International Conference on Com-
puter Vision (ICCV), pp. 7929–7938 (2019)

28. Sun, D. et al.: Learning to write stylized Chinese characters by
reading a handful of examples. In: IJCAI (2018)

29. Baluja, S.: Learning typographic style (2016). arXiv:1603.04000
30. Azadi, S. et al.: Multi-content GAN for few-shot font style transfer.

In: 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 7564–7573 (2018)

31. Gao, Y., et al.: Artistic glyph image synthesis via one-stage few-
shot learning. ACM Trans. Graph. (TOG) 38, 1–12 (2019)

32. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, Bi., Warde-
Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adver-
sarial nets. In: NIPS (2014)

33. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional net-
works for biomedical image segmentation. In: MICCAI, pp.
234–241 (2015)

34. Kurach, K., Lucic, M., Zhai, X., Michalski, M.: The GAN land-
scape: losses, architectures, regularization, and normalization. In:
International Conference on Learning Representations (2019)

35. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. In: Proceedings
of the 32nd International Conference on Machine Learning, in
PMLR, vol. 37, pp. 448–456 (2015)

36. Maas, A., Hannun, A., Ng, A.: Rectifier nonlinearities improve
neural network acoustic models. In: Proceedings of ICML, vol. 30
(2013)

37. Xu, B., Wang, N., Chen, T., Li, M.: Empirical evaluation of rec-
tified activations in convolutional network (2015). arXiv preprint
arXiv:1505.00853

38. Eck, P.: Handwritten Korean character recognition with tensorflow
and android (2017). https://github.com/IBM/tensorflow-hangul-
recognition

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/1411.1784
https://github.com/kaonashityc/Rewrite
http://arxiv.org/abs/1511.06434
https://github.com/kaonashi-tyc/zi2zi
http://arxiv.org/abs/1801.08624
http://arxiv.org/abs/1603.04000
http://arxiv.org/abs/1505.00853
https://github.com/IBM/tensorflow-hangul-recognition
https://github.com/IBM/tensorflow-hangul-recognition

	SKFont: skeleton-driven Korean font generator with conditional deep adversarial networks
	Abstract
	1 Introduction
	2 Related works
	2.1 Generic font generation methods
	2.2 Image-to-image translation methods
	2.2.1 Additional font generation methods

	3 SKFont description
	3.1 cGAN
	3.2 SKFont architecture
	3.2.1 F2F network
	3.2.2 F2S network
	3.2.3 S2F network

	3.3 Network details
	3.4 Loss function

	4 Experiments and results
	4.1 Dataset
	4.2 Network details and parameter settings
	4.3 Performance evaluation
	4.3.1 Qualitative evaluation
	4.3.2 Quantitative evaluation

	4.4 Generalization capability of SKFont
	4.5 Ablation study
	4.5.1 Effectiveness of skeletonization introduced in SKFont
	4.5.2 Number of basis characters in fine-tuning phase

	5 Discussion and future work

	6 Conclusion
	A Appendix
	A.1 About Hangul
	A.2 More comparison results with other models
	A.3 Generating stylized font styles
	A.4 More qualitative and quantitative results of the proposed SKFont

	References

