International Journal on Document Analysis and Recognition (IJDAR) (2020) 23:143-160
https://doi.org/10.1007/s10032-019-00349-6

ORIGINAL PAPER O‘)

Check for
updates

A general framework for the recognition of online handwritten
graphics

Frank Julca-Aguilar' @ - Harold Mouchére? . Christian Viard-Gaudin? - Nina S. T. Hirata'

Received: 4 July 2018 / Revised: 7 September 2019 / Accepted: 6 December 2019 / Published online: 3 January 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract

We revisit graph grammar and graph parsing as tools for recognizing graphics. A top-down approach for parsing families
of handwritten graphics containing different kinds of symbols and of structural relations is proposed. It has been tested on
two distinct domains, namely the recognition of handwritten mathematical expressions and of handwritten flowcharts. In the
proposed approach, a graphic is considered as a labeled graph generated by a graph grammar. The recognition problem is
translated into a graph parsing problem: Given a set of strokes (input data), a parse tree which represents the best interpretation
is extracted. The graph parsing algorithm generates multiple interpretations (consistent with the grammar) that can be ranked
according to a global cost function that takes into account the likelihood of symbols and structures. The parsing algorithm
consists in recursively partitioning the stroke set according to rules defined in the graph grammar. To constrain the number of
partitions to be evaluated, we propose the use of a hypothesis graph, built from data-driven machine learning techniques, to
encode the most likely symbol and relation hypotheses. Within this approach, it is easy to relax the stroke ordering constraint
allowing interspersed symbols, as opposed to some previous works. Experiments show that our method obtains accuracy

comparable to methods specifically developed to recognize domain-dependent data.

Keywords Graphics recognition - Online handwriting recognition - Graph parsing - Graph grammar -

Mathematical expression - Flowchart

1 Introduction

Recognition of online handwriting aims at finding the best
interpretation of a sequence of input strokes [1]. Roughly
speaking, handwriting data can be divided into two broad
categories: text and graphics. In text notation, symbols are
usually composed of strokes that are consecutive relative to
a time or spatial order; and symbols themselves are also

B Frank Julca-Aguilar
faguilar@ime.usp.br

Harold Mouchere
harold.mouchere @univ-nantes.fr

Christian Viard-Gaudin
christian.viard-gaudin @univ-nantes.fr

Nina S. T. Hirata
nina@ime.usp.br

Department of Computer Science, Institute of Mathematics
and Statistics, University of Sdo Paulo, Sao Paulo, Brazil

Laboratoire des Sciences du Numérique de Nantes (LS2N),
University of Nantes, Nantes, France

arranged according to a specific order, for example, from
left to right. The ordering of symbols defines a single adja-
cency, or relation type, between consecutive symbols. By
contrast, graphics encompass a variety of object types such
as mathematical or chemical expressions, diagrams, and
tables. Symbols in graphics notation are often composed of
strokes that are consecutive with respect to neither time nor
spatial order. Furthermore, a diversified set of relations is
possible between arbitrary pairs of symbols. See Fig. 1, for
instance, where a handwritten mathematical expression illus-
trates some characteristics of graphics notation.

Due to the linear arrangement of symbols, text recogni-
tion can be modeled as a parsing of one-dimensional (1D)
data. On the other hand, graphics are intrinsically two-
dimensional (2D) data, requiring a structural analysis, and
there are no standard parsing methods as in the 1D case. Pars-
ing depends on symbol segmentation (or, stroke grouping),
symbol identification, and analysis of structural relation-
ship among constituent elements. Stroke grouping in texts
is relatively simpler than in graphics as already mentioned.
Identification of segmented symbols includes challenges

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10032-019-00349-6&domain=pdf
http://orcid.org/0000-0001-7656-8397

144

F.Julca-Aguilar et al.

above

: right : right :

Fig.1 Handwritten mathematical expression example. Top: a sequence
of strokes where the order (indicated by numbers in blue) is given by the
input time. Symbols Y and z are composed of non-consecutive strokes.
Bottom: The expression is composed of symbols and several types of
spatial relations between them

such as the possibly large number of symbol classes, shape
similarity between symbols in distinct classes, and shape
variability within a same class (e.g., arrows in flowcharts
might include arbitrary curves and be directed toward any
orientation). Structural analysis involves the identification of
relations between symbols and a coherent integrated interpre-
tation. The large variety of relations might define complex
hierarchical structures that increment the difficulty in terms
of efficiency and accuracy. There is a strong dependency
among the three tasks since symbol segmentation and classi-
fication algorithms must often rely on structural or contextual
information to solve ambiguities, and structural analysis
algorithms depend on symbol identification to build coherent
structures.

Although recognition of 2D objects is a subject of study
since long ago [2], many of the efforts are still focused
on solving specific aspects of the recognition process (e.g.,
detection of constituent parts or classification of components
and their relations). A large number of works that tackle the
entire recognition problem is clearly emerging, but they are
often restricted to specific application domains and have lim-
itations [3-5].

Motivated by the problem of online handwritten math-
ematical expression recognition, we have examined issues
related to the recognition process and identified three features
that are desirable. The first feature is multilevel information
integration. By multilevel information integration, we mean
integrating symbol- and structural-level information to find

@ Springer

the best interpretation of a set of strokes. In mathematical
expression recognition, methods that seek information inte-
gration have already been the concern of several works [6-8],
but it is still one of the most challenging problems. The
second feature is related to model generalization. Existing
methods often limit the type of expressions to be recognized
(for instance, do not include matrices), consider a fixed nota-
tion (for instance, it adopts either) 7_, x; or Zr,l_l Xj), or
limit the set of mathematical symbols to be recognliEed. Any
extensions regarding these limitations may require major
changes in the recognition algorithms. The third feature is
computational complexity management. A general model
often results in exponential time algorithms, making its appli-
cation unfeasible. Existing models handle time complexity
issues by adopting constraints that limit the recognizable
structures [8,9].

To deal with the issues described above, we have elab-
orated a general framework for the recognition of online
handwritten mathematical expressions. We show its gener-
ality by building a flowchart recognition system using the
same framework. We model a mathematical expression as
a graph and represent the recognition problem as a graph
parsing problem. The recognition process is divided into
three stages: (1) hypothesis identification, (2) graph pars-
ing, and (3) optimal interpretation retrieval. The first stage
computes a graph, called hypothesis graph, that encodes plau-
sible symbol interpretations and relations between pairs of
such symbols. The second stage parses the set of strokes to
find all interpretations that are valid according to a predefined
graph grammar, using the hypothesis graph to constrain the
search space. The parsing method is based on a recursive
search of isomorphisms between a labeled graph defined in
the graph grammar and the ones derived from the hypothesis
graph. The last stage retrieves the most likely interpretation
based on a cost function that models symbol segmentation,
classification, and structural information jointly.

Conceptually, the valid structures are defined through a
graph grammar and then the most likely structures in the
input stroke set are captured in the hypothesis graph. Thus,
the proposed framework enhances independence of the pars-
ing step with respect to specificities of the mathematical
notation considered. As a consequence, we have a flexible
framework with respect to different mathematical notations.
For instance, new expression structures can be included in
the family of expressions to be recognized by just including
the structures in the grammar rules. Similarly, the class of
mathematical symbols to be recognized can be extended by
just including new symbol labels in the grammar and in the
hypothesis graph building procedure.

With respect to graphics in general, among them there is
large difference in the set of symbols and relations between
symbols. Thus, recognition techniques are often developed

A general framework for the recognition of online handwritten graphics

145

for a specific family of graphics, introducing constraints that
not only limit their effectiveness, but also their adaptation to
recognize different families of graphics. In spite of these dif-
ferences, graphic notations share common concepts—a set
of interrelated symbols spread over a bidimensional space,
organized in hierarchical structures that are decisive to the
interpretation. We argue that the flexibility of the proposed
framework encompasses other families of graphics. This
argument is supported by the fact that graphs have already
proven adequate to model graphics in general and by previ-
ous examples that show specification of families of graphics
by means of graph grammars [5,10,11]. In addition, creation
of hypothesis graphs is greatly facilitated by modern data-
driven approaches.

The main contributions of this work are thus twofold. First,
we present a general framework in which the parsing process
is independent of the family of graphics to be recognized and
a control of the computational time is possible by means of a
hypothesis graph. Second, we demonstrate an effective appli-
cation of the framework to the recognition of mathematical
expressions and flowcharts.

The remaining of this text is organized as follows. In
Sect. 2, we review some methods and concerns in previous
works related to the recognition of mathematical expres-
sion and flowcharts, as these types of graphics served as the
ground for the development of the method described in this
manuscript. We also briefly comment on some works that
proposed graph grammars for the recognition of 2D data and
influenced our work. In Sect. 3, we detail the proposed frame-
work. Then, in Sect. 4, we describe how the elements and
parameters required by the framework have been defined for
the recognition of mathematical expressions and flowcharts.
In Sect. 5, we present and discuss the experimental results for
both applications, and in Sect. 6 the conclusions and future
works are discussed.

2 Related works

In this section, we review some characteristics of the recog-
nition process in previous works, with emphasis on methods
for mathematical expression [12—14] and flowchart recogni-
tion [15-17].

Early works related to the recognition of mathemati-
cal expressions were predominantly based on a sequential
recognition process consisting of the symbol segmentation,
symbol identification, and structural analysis steps [18-20].
However, a weakness of sequential methods is the fact that
errors in early steps are propagated to subsequent steps. For
instance, it might be difficult to determine if two handwritten
strokes with shape “)” and “(”, close to each other, form a
single symbol “x”, or are the closing and the opening paren-
theses, respectively. To solve this type of ambiguity, it may be

necessary to examine the relations of the strokes with other
nearby symbols or even with respect to the global structure
of the whole expression. This type of observation has moti-
vated more recent works to consider methods that integrate
symbol- and structural-level interpretations into a single pro-
cess. Most of them are based on parsing methods as described
below.

Given an input stroke set, the goal of parsing is to find
a parse tree that “explains” the structure of the stroke set,
relative to a predefined grammar. From a high-level perspec-
tive, parsing-based techniques avoid sequential processing by
generating several symbol and relation interpretations, com-
bining them to form multiple interpretations of the whole
input stroke set and selecting the best one according to a
score (based on the whole structure).

An important element in parsing-based approaches is the
grammar. A grammar defines how we model a (graphics) lan-
guage. For mathematical expressions, most approaches [21-
25] use modifications of context-free string grammars in
Chomsky normal form! (CNF). Such grammars define a set
of production rules of the form A % BC, where r indicates
a relation between adjacent elements of the right-hand side
(RHS) of the rule. For instance, expression 42 can be modeled

through a rule TERM *"" 5" NUMBER NUMBER.
However, as such grammars impose the restriction of having
at most two elements on the RHS of a rule, structures with
more than two components, like 2 + 4, or Zf Xx;, must be
modeled as a recursive composition of pairs of components.
MacLean et. al. [8] proposed fuzzy relational context-free
grammars to overcome this limitation. They included pro-
duction rules of the form: A — A1Ay ... Ay, where r
indicates a relation between adjacent elements of the RHS of
the rule. However, the model assumes that the relation can
only be of vertical or horizontal types.

Graph grammars offer a more powerful representativeness
than string grammars. Although several graph grammar-
based methods for graphics recognition have been pro-
posed [9,26-30], their applications have been limited to
specific languages, or assume constraints that make their
generalization difficult. One of the first of such methods, pro-
posed by Bunke et al. [26], aims at the recognition of circuit
diagrams and flowcharts. In addition to a graph grammar that
defines the structure and semantics of a graphic, the authors
introduce a control diagram that defines how the production
rules of a graph grammar should be applied to generate a
graphic. There is then the need of defining a new control dia-
gram for each type of graphic. Lavirotte et al. [30] proposed
graph grammars to parse printed mathematical expressions.
The approach introduces several spatial assumptions that are

I'a CNEF, all production rules either have the form A — a,or A —
BC, where a is a terminal and A, B, and C are non-terminals

@ Springer

146

F.Julca-Aguilar et al.

valid for printed expressions, but that might be easily violated
in handwritten data. To recognize handwritten mathemati-
cal expressions, Celik and Yanikoglu [9] propose a method
based on graph grammars with production rules of the form
A — B, where both A and B are graphs, and B represents
the components of a subexpression as vertices and their rela-
tions as edges. However, the authors limit the grammars to
have specific structures (each graph in a rule is either a single-
vertex graph, or a star graph—a graph with a single central
vertex and surrounding vertices that are connected only to
the central one), largely restricting the set of recognizable
expressions. In [11], the authors propose an attributed graph
grammar that allows attributes to be passed from node to node
in the grammar, both vertically and horizontally, to describe
a scene of man-made objects. Projection of rectangles are
used as primitives. However, passage of attributes must be
evaluated during parsing, making the parsing algorithm be
context-dependent. In [10], entity—relationship diagrams are
modeled by a context-sensitive graph grammar with the
“left-hand side of every production being lexicographically
smaller than its right-hand side.” A critical part of the parsing
algorithm is to find matchings of the right-hand side of a rule
to replace the left-hand-side, making it very complex.

Most grammar-based algorithms proposed in the literature
for the recognition of mathematical expressions are based on
the CYK algorithm [31]. The CYK algorithm assumes that
the input (in our case) strokes form a sequence and the gram-
mar is in CNF. Those based on bottom-up approaches build
a parse tree by first identifying symbols (leaves) from sin-
gle or groups of consecutive strokes and then combining the
symbols recursively to form subcomponents (subtrees), until
obtaining a component that covers the whole input set. To
adapt the CYK algorithm to the recognition of mathematical
expressions, Yamamoto et. al. [24] introduced an ordering of
the strokes based on the input time. Other approaches avoid
the stroke ordering assumption, but introduce different con-
straints to satisfy the decomposition of the input into pairs
of components [21-23,25]. MacLean et. al. [8] proposed a
top-down parsing algorithm that does not assume grammars
in CNF, but assumes that the input follows either a vertical or
horizontal ordering (the fuzzy relational context-free gram-
mars mentioned above). Methods that use the CYK algorithm
or others borrowed from the context of string grammars must
decompose the 2D input into a set of 1D inputs. As there is no
guarantee that such decomposition is possible, these methods
may present strong limitations with respect to parsable 2D
structures and be completely inappropriate for other types of
2D data.

On the other hand, methods that consider graph gram-
mars face computational complexity issues. A key step of
any parsing algorithm is the definition of how a stroke set
can be partitioned according to the RHS of a rule. Let us
consider a set of n strokes. Assuming stroke ordering and a

@ Springer

CYK-based algorithm as in [21-25], the rules would have at
most two components in the RHS and therefore the number
of meaningful partitions would be O (n)—the first i strokes
being assigned to the first component and the rest to the sec-
ond, with i € {l,...,n — 1}. On the other hand, if we do
not impose CNF, but keep the stroke ordering assumption
as in [8], then a rule could have k symbols in its RHS, and
the number of meaningful partitions would be O(}), corre-
sponding to k — 1 split points on the sequence of n strokes. In
graph grammars, without any restriction and assuming a rule
with k vertices in the RHS, the number of partitions would
be O(n*)—any non-empty stroke subset can be mapped to
any vertex. Restricting the graph structures in the grammar,
for instance to star graph structures as done by Celik and
Yanikoglu [9], helps to manage the parsing complexity. Note,
however, that in this case the set of recognizable expressions
would be constrained not only by the parsing algorithm but
also by the grammar.

Flowcharts in general have a smaller symbol set than
mathematical expressions. However, their structure may vary
greatly. For instance, the flowchart shown in Fig. 2 includes
two loops, and adjacent symbols can be located at any (ver-
tical, horizontal, or diagonal) position relative to each other,
regardless of the relation type. In contrast, in mathematical
expressions, for a given relation type between two symbols
(e.g., superscript) it is expected that one symbol is located
at some specific area relative to the other (e.g., top-right).
Thus, for flowcharts it may be difficult to establish a spatial
ordering of the input strokes.

To cope with the structural variance of diagrams, some
approaches introduce strong constraints in the input, as
requiring all symbols to have only one stroke [32], or loop-
like symbols to be written by consecutive strokes [15]. With
respect to symbol recognition, detection of texts (or text box)
and arrow symbols are regarded as more difficult, as they do
not present a fixed shape. For instance, Carton et. al. [16]
determine box symbols (like decision and data structure)
and then select the best interpretations using a deformation
metric. Text symbols are recognized only after box symbols.
Bresler et. al. [17] also first recognize possible box and arrow
symbols and leave text recognition as the last step. After sym-
bol candidates are identified, the best symbol combination is
selected through a max-sum optimization process.

Some more recent methods [33-38] apply deep learning
models based on encoder—decoder networks along with atten-
tion techniques. These methods are able to process offline
representations of the expressions (images) [33,34,37] as
well as raw strokes, and combination of both data [36,38].
We note that these end-to-end approaches rely on a lin-
ear description of the recognition result (e.g., typesetting in
I4TEX, which is not a simple task for graphics in general) or
may require a large amount of training data. Thus, extension
of the methods to other types of graphics can be challenging.

A general framework for the recognition of online handwritten graphics

147

m—— terminator
data

m— process

e lecision

|
&
&

Fig.2 Flowchart example. Strokes are colored according to the symbol
type they belong to

2
—_—

—_—

3 The proposed recognition framework

In the method proposed in this work, instead of CYK-based
algorithm (that assumes a grammar in CNF), we define a
graph grammar and use a top-down parsing algorithm, simi-
lar to the one in [8], but without assuming any ordering of the
input strokes. To avoid context-aware algorithms during pars-
ing, we consider stroke partitions drawn from a previously
built hypothesis graph (see Sect. 3.4) to match the right-hand
side of the rules. By doing this, we decouple the parsing
algorithm from the particularities of the family of graphics
and achieve independence of the target notation. In addition,
it is important to note that target domain knowledge can be

fully exploited in the graph grammar definition and in the
hypothesis graph building. It is expected that this character-

Input Hypothesis graph

4%~ horizontal

istic will make the method general enough to be applied to
the recognition of a variety of graphic notations.

As illustrated in Fig. 3, the proposed recognition frame-
work is composed of three main parts: (1) hypothesis graph
generation, (2) graph parsing, and (3) optimal tree extrac-
tion. In the first part, stroke groups that are likely to represent
symbols and a set of possible relations between these stroke
groups are identified and stored as a graph, called hypothesis
graph. In the second part, valid interpretations (potentially
multiple of them) are built from the hypothesis graph by
parsing it according to a graph grammar. The interpretations
found are stored in a parse forest. Then, in the third part an
optimal tree is extracted from the parse forest, based on a
scoring function.

We first discuss the two main input data of the framework,
ahandwritten input graphic to be recognized (a set of strokes)
and a graph grammar, and then detail the three parts, keeping
an abstraction level suitable for the recognition of a variety of
graphics in general. Concepts are illustrated using mathemat-
ical expressions as examples. Implementation-related details
regarding the application of the framework to the recognition
of mathematical expressions and flowcharts are presented in
Sect. 4.

3.1 Stroke set

Online handwriting consists of a set of strokes. Each stroke
is, typically, a sequence of point coordinates sampled from
the moment a writing device (such as a stylus) touches the
screen up to the moment it is released. We assume that each
stroke belongs to only one symbol. (This assumption is com-
mon when dealing with handwritten graphics). Otherwise, a
preprocessing step could be applied to split a stroke that is
part of two or more symbols [39]. These concepts are illus-
trated in Fig. 4a, b.

Parse forest

oIm

= & 2 superscript above
Hypothesis oo
dlﬁ —— ‘ Graph ‘ z) horizontal

Generation
subscript

Fig.3 Our proposed method consists of three steps: hypothesis graph
generation, graph parsing, and optimal tree extraction. In the first step,
the input strokes are grouped into subsets that have high probability
of forming symbols and the relations between them are also identified.
Both symbols and relations are stored in a hypothesis graph. The second

2 Graph
. Parsing and
92 Tree ‘

Extraction

DO O & 6B)

step evaluates the most probable combinations of the symbols and rela-
tions and builds a parse forest that stores multiple interpretations of the
input. This step uses a graph grammar to validate the interpretations. In
the third step, the best interpretation is extracted considering a scoring
function that considers the whole structure of the expressions

@ Springer

148

F.Julca-Aguilar et al.

e

(a) (b)

Fig. 4 Handwritten expressions representing), x,. Each expression
is composed of a set of strokes, where each stroke is a sequence of
bidimensional coordinates (dots in gray). In a, stroke 5 belongs to two
symbols. In b, each stroke belongs to only one symbol

3.2 Graph grammar model

A graph grammar [40] defines a language of graphs. We
denote a graph G as a pair (Vg, Eg), where Vi represents
the set of vertices of G and E¢ represents the set of edges
of G. A labeled graph is a graph with labels in its vertices
and edges. Hereafter, we assume labeled graphs, with labels
defined by a function / that assigns symbol labels (ina set SL)
to vertices and relation labels (ina set R L) to edges. We define
a family of graph grammars, called Graphic grammars, to
model graphics as labeled graphs.

Definition 1 A graphic grammarisatuple M=(N, T, I, R)
where:

— N is a set of non-terminal nodes (or non-terminals);

— T is a set of terminal nodes (or terminals), such that N N
T = ¢ (for convenience we denote elements in 7" using
the same names used for the labels in SL);

— [is a non-terminal, called initial node;

— R is a set of production (or rewriting) rules of the form
A := B where A is a non-terminal node and B =
(Vp, Ep) is a connected graph with label [(v) e NUT
for each v € Vp, and label [(¢) € RL foreach e € Ep.

Note that M is a context-free graph grammar [40]. The
language defined by a graphic grammar M is a (possibly infi-
nite) set of connected labeled graphs and is denoted L(M).
Similarly to string grammars, a labeled graph G belongs to
L(M) if G can be derived (or generated) from the initial non-
terminal node I by successively applying production rules in
R, until obtaining a graph with only terminal nodes.

Figure 5 shows a graphic grammar that models simple
arithmetic and logical expressions. Each production rule
defines the replacement of a non-terminal, a single-vertex
graph G at the left-hand side (LHS) of the rule, with a graph
G, at the right-hand side (RHS).

Figure 6 shows a graph generation process using the gram-
mar of Fig. 5. Rules are applied sequentially, starting with
non-terminal M E, until all elements in the generated graph

@ Springer

ME TRM | OP | TRM opP + <
1 Q —» 7.t O —p O | O
TRM >
r2 O I (@)
TRM TRM | CHAR
3 QO —p CHAR
TRM CHAR r11 .73 Q ——P

sp

TRM sb CHAR

Oo Q) Qm
O« O~ O~

CHAR

Fig. 5 Graph grammar that models basic mathematical
expressions. The grammar is defined by non-terminals N =
{ME, TRM, OP,CHAR)}, relation labels RL = ({sp,sb,h},
terminals 7 = {+,—,<,>,4a,...,2, A, ..., Z,0,..., 9}, rules
R={r—1,..., r — 73}, and M E at the left-hand side graph of rule
r — 1 is the initial node. Abbreviations: M E mathematical expression,
sp superscript, sb subscript, i horizontal, T RM term, O P operator,
C H AR character

are terminals. Dashed arrows correspond to edges that link
the replacing graphs with the host graph.

The definition of how a replacing graph should be linked
to a host graph G is called embedding [40], and it should
be specified for each production rule. Formally, given a pro-
duction rule G; := G, its application consists in replacing a
subgraph G, of G with G, and the embedding defines how G,
will be attached to G\ G;. The attachment may be defined by
a set of edges that link the replacing graph G, to G\ G;. For
instance, Fig. 7 shows two different embeddings for a same
production rule and the graphs generated for each embed-
ding.

The embedding specification depends on the desired lan-
guage. Itis possible to define a same embedding specification
for all rules, as we do for mathematical expressions. (See
Sect. 4). An embedding can also take spatial information into
consideration, for example by including edges only between
spatially close vertices. More detailed examples of embed-
dings are provided in Sect. 4, through applications to the
recognition of mathematical expressions and flowcharts. To
ensure that the generated graphs are connected, we assume
that every embedding is specified in such a way that its appli-
cation generates connected graphs.

3.3 Hypothesis graph generation

Given a set of strokes S, we define a hypothesis graph as
an attributed graph H = (Vy, Ey), where Vg is a set of
symbol hypothesis and Eg is a set of relation hypothesis
computed from S. Each symbol hypothesis v € Vg cor-
responds to a subset of S, denoted as stk(v), and has as
an attribute a list L(v) = {(/;, s;),i = 1,..., ky} of likely
interpretations. Each of these interpretations (/;, s;) consists
of a symbol label /; € SL and its respective likelihood score
s; € [0, 1]. Note that a stroke may be shared by multiple
symbol hypotheses. Relation hypotheses (edges in Ep) are
defined over pairs of disjoint symbol hypotheses (i.e., hypoth-

A general framework for the recognition of online handwritten graphics 149
ME
O
ME TRM h OoP h TRM
O = O0—0——0
Dy E
TRM ,, OP TRM o0—0
@ O O
TRM TRM gp CHAR
° - e(r) ={(V, D)|(V, A) € G}u e(r) ={(V, E)|(V, A) € G}u
{(D,V)I(A, V) € G} {(EV)I(A,V) € G}
CHAR
C C
. P A, A,
TRM- h oP h TRM NN Y. 2
---------- O——0 e N e
& CB5</ X \\:]t))- W)g CB5</ X \\-AtE)(w _8
TRM TRM sp CHAR
0 = 06—>0 Fig. 7 Graph transformation with two different embeddings. The top
graph is transformed through rule r. Each embedding defines edges
CHAR, CHAR between vertices that are linked to vertex A of the top graph with vertex
D (left-hand-side embedding) or E (right-hand-side embedding) of the
SD, replacing graph. Dashed arrows represent the edges defined by each
embedding
Hypotheses
CHAR graph
Sp
fA
B / 1A
! \ i} [H
. input/ %K:'D b ; L
b d o T
sp, sp Fig. 8 Hypothesis graph example. Vertices represent the symbol

a h + h C

Fig. 6 Generation of a graph that represents the expression a® + ¢¢.
At each rule application, the replacing graph nodes are depicted in dark
gray. Edges that link the replacing graph with the host graph are depicted
with dashed arrows. Rule applications after the fourth one are not shown

esis such that their stroke sets are disjoint) and also have as
an attribute a list of likely relation interpretations denoted
L(e).Relation labels arein R L. Figure 8 shows a handwritten
mathematical expression and a hypothesis graph calculated
from it.

To build a hypothesis graph, machine learning methods are
effective in identifying groups of strokes that may form sym-
bols and, similarly, relations among them. (See application
example in Sect. 4). Since many stroke groups do not cor-
respond to an actual symbol and many pairs of symbols are
not directly related to each other within a graphic, rather than
training classifiers to identify only true hypothesis, those that
do notrepresent any symbol or relation can be included as ele-

hypothesis and edges represent the relations between symbols. The
labels associated with symbols and relations indicate their most likely
interpretations

ments of an additional class, called junk. Training data can be
extracted from within the graphic, together with surrounding
context, in order to improve rejection of false hypothesis. As
will become clear later, hypothesis graphs play an important
role to constrain the search space during the parsing process.
A high precision and recall in the identification of true sym-
bols and relations are thus desirable to efficiently constrain
the search space, without losing components that are part of
the correct interpretation.

3.3.1 Label list pruning

To define the labels and respective likelihood scores of sym-
bol and relation hypothesis, we could use the confidence
scores returned by the respective classifiers. However, to
manage complexity, only class labels that present high con-
fidence scores should be kept. Selecting the labels to be kept

@ Springer

150

F.Julca-Aguilar et al.

based on a fixed global confidence threshold value is not ade-
quate since label distributions vary greatly among symbols
and relations. An effective method to select the most likely
labels for each hypothesis / is described next.

Let {(/;,s;),i = 1,...,n;} be the pairs of labels and
respective scores initially attributed to &, sorted in descend-
ing order according to the likelihood scores s;. Then, given
a distribution threshold 77 (between O an 1), we define the
minimum number of k£ top ranked labels whose confidences
sum up to at least ¢r:

X
k= argn}inZsi > tr (N

i=1

Hypothesis £ is rejected if it presents the highest score for
the junk class label with score above the threshold ¢r. Other-
wise, weset L(h) = {(l;,s;) :i =1, ..., k}. We define label
pruning thresholds #gymp for symbols and f for relations.

3.4 Graph parsing

The goal of the parsing process is to build a parsing tree
that explains the set of input strokes Sinpy, according to a
grammar. Since there might be more than one interpretation,
multiple trees might be generated, possibly sharing subtrees
with each other. Thus, they will be stored in a parse forest.

Figure 9 shows a parse forest calculated from the hypothe-
sis graph of Fig. 8, using the graph grammar of Fig. 5. As can
be seen, the root node (top of the figure) corresponds to the
starting non-terminal M E. Two branches are generated from
rules associated with M E. The left branch is generated by
applying rule 2, and the right branch by applying rule 1. Note
that, for each rule, any of the resulting partition of the strokes
induces a graph that is isomorphic to the RHS graph of the
respective rule. The same principle holds for the remaining
of the nodes.

The parsing process follows a top-down approach. To
understand the parsing process, a key step is to understand
how a stroke set is partitioned when a rule is applied. More
specifically, given a set of strokes S and a non-terminal A,
for each rule A := B associated with A, we must find every
partition of S that is a valid matching to B. A partition of
S is a matching to B if its number of parts is equal to the
number of vertices of B, so that each part can be assigned
to one vertex in B. A matching is valid if the following two
conditions hold: (1) the partition of S induces a graph that is
isomorphic to B, and (2) each subset of strokes assigned to
a vertex of B is parsable according to the grammar.

Supposing the number of vertices in B is k and the number
of strokes in S is n, without any constraint, the total number
of possible stroke partitions to be examined to generate the

@ Springer

r-1
Instantiated opP TRM
graph h h
r-8 r-6
y
< ||cHAR
e r-64
TRM hCHAR| |TRM CHAR| | 4 1
b /0] o
r-12
6 r-6 r-12

r-52 \ r-26
@@
Fig.9 A parse forest representing multiple interpretations of a mathe-
matical expression. Labels on arrows refer to grammar rules of Fig. 5.

Red arrows represent a parse tree that corresponds to the interpretation
uPb4n

valid matchings would be O (k™). Exhaustively examining
each of these partitions is not computationally practical.

A main strategy of our method is to constrain the number
of partitions to be examined with the aid of the hypothesis
graph, denoted below as H. We assume that all meaningful
interpretations are present in the hypothesis graph as a sub-
graph. Thus, before starting the parsing process, we build the
set of all stroke groups, denoted hereafter as S7 K, that under-
lie any valid connected subgraph of H. Note that these stroke
groups must not contain repeated strokes. Furthermore, not
all stroke groups will be necessarily parsable. We also record
in ST K the relation between two stroke groups as being the
same between the corresponding subgraphs. Hence, during
parsing, the search space of valid matchings will be restricted
to those present in S7 K . Once a valid matching is found, an
instance of B, which we call instantiated graph, will be recur-
sively parsed and will become a parsed graph when each of
its vertices is successfully parsed.

The complete algorithm is described next. For the sake
of simplification, we will assume that the input grammar
contains only two types of rules: terminal and non-terminal.
Terminal rules are productions of the form A := b, where

A general framework for the recognition of online handwritten graphics

151

the RHS graph b is a single-vertex graph, with labels in the
terminal set, such as rules from r-7 to r-73 of the grammar
of Fig. 5. Non-terminal rules are productions of the form
A := B, where B is a graph containing one or more vertices,
each of them with non-terminal labels, such as rules r-1 to
r-6 of the grammar of Fig. 5. Thus, Algorithm 1 considers
only these two types of rules. Its extension to treat rules that
contain both terminals and non-terminals in its right-hand
side is a straightforward combination of the previous two
cases.

Algorithm 1 : parseGraphic(S,NT)
Parses a set of strokes S from a non-terminal NT'
Input: (S,NT)
Output: parsedG = {(G1,71),...,(Gq,7¢)}
1: parsedG <+ ()
2: if parsed[(S, NT')| then
3: parsedG < TBL[(S,NT)]

4: else

5. for all rule in rulesWithLHS(NT) do

6: if rule is A — b then

7 if 1(b) € L(S) then

8 G buildGraph(S,1(b))

9: parsedG < parsedG U {(G,rule)}

10: end if

11: else

12: for all G in validMatchingInstances(S, B = RHS(rule)) do
13: if V v € Vi, parseGraphic(stk(v), l(v)) # 0 then
14: parsedG < parsedG U {(G,rule)}

15: end if

16: end for

17: end if

18: end for

19: TBL[(S,NT)] < parsedG
20: parsed[(S,NT)] < True
21: end if

22: return parsedG

Algorithm 1 receives as inputs a stroke set § = {stky, ...,
stk,} and a non-terminal N 7. Initially, the set of strokes is
the whole input set Sinput and the non-terminal is the starting
node /. Then, it applies each of the production rules that
have NT as the LHS graph and returns a set (parsedG)
containing all parsed graphs, together with the respective
rules that “generated” them.

To avoid recomputation, a global table 7 BL indexed by
pairs (S = {stky, ..., stk,}, NT) is used. An entry in TBL
is of the form:

TBL[(S,NT)] = {(G1,11),...,(Gq, 1y},

where G is a parsed graph and r; is the rule that “generated”
G;. At the end of the algorithm, if the pair (S, NT) is not
parsable, the corresponding entry in 7 B L is empty.

Lines 2-3 verify if the pair (S, NT) has already been
processed. If so, results are retrieved from 7 B L and returned.
Otherwise, lines 5—18 iterate over the rules that have NT in
its LHS graph. If the rule is of terminal type (lines 6-10), it
suffices to check if the RHS vertex label, [(b), is contained
in the set of labels L(S) attributed to the underlying stroke
set. This verification is done by checking if the stroke set S

corresponds to a vertex in the hypothesis graph and if the
label set of the corresponding vertex includes [(b). Then,
a single-vertex graph is built and stored together with the
rule in parsedG. If the rule is of non-terminal type (lines
11-17), for each valid matching between S and B (line 12),
we verify if the instantiated graph is parsable. The parsing
result, either a list of parsed graphs, or an empty list (in case
of parsing failure), is added to 7 BL. As already mentioned,
table T BL is used to avoid parsing recomputation of pairs
(S, NT). At the end of the parsing process, the parse forest
can be extracted from 7 BL by traversing it starting from
index (Sinput, 1).

3.4.1 Pruning strategies

Besides constraining the partitions to be examined to only
those formed by stroke groups that underlie a subgraph of
H, there are other strategies that can be used to speed up
computation. For example, determining the maximum size
and minimum size of non-terminal nodes are a strategy that
has been previously used in text parsing [41]. The sizes, in
terms of graphic symbols or strokes, can be computed directly
from the grammar. Based on these numbers, during parsing
any stroke subsets that are out of the min—-max ranges do
not need to be evaluated. This information can be calculated
when building ST K. Moreover, to find valid matching parti-
tions, the minimum and maximum sizes of the stroke subsets
already matched to some vertices can be used to determine
the minimum and maximum size of the stroke groups that
still can be matched to the rest of the nodes.

Another useful strategy is to explore the information
regarding terminals that can be generated by a non-terminal.
For instance, in the grammar of Fig. 5, non-terminal O P can
generate only symbols +, —, <, or >. Thus, stroke subsets
that do not contain any hypothesis with one of these labels as
terminals do not need to be evaluated during the parsing pro-
cess. Analogously, stroke groups that correspond to symbol
and relation hypothesis with mean junk score (computed over
all labels assigned to any of its subgroups) above a certain
threshold #jnk can be disregarded. This pruning is mainly
useful when the symbol and relation hypothesis have a large
number of labels. High mean junk score indicates that it is
unlikely that the underlying group of strokes is parsable.

3.5 Optimal parse tree extraction

Once a parse forest is built, the final step consists in traversing
itto extract the best tree (interpretation). To characterize what
is an optimal tree (best interpretation), we first define a cost
function for trees. Roughly stating, an interpretation will be
considered of low cost if its corresponding parse tree includes
substructures with high confidence scores.

@ Springer

152

F.Julca-Aguilar et al.

We introduce a few notations that will be helpful. Let
x denote a node in the parse forest. Let Gy = (Vi, Ey)
be the graph instantiated at node x. Each vertex v € V;
has an underlying set of strokes, stk(v). For each terminal
vertex v € V,, there will be a pair (label(v), score(v)) €
SL x [0, 1], and for each edge e € E, there will be a pair
(label(e), score(e)) € RL x [0, 1].

The cost of a tree can be computed bottom-up. We first
define individual costs relative to symbols and relations and
then define how to combine the two to determine the cost
of a tree. Let ¢ be a parse tree and let x be a node in 7. Let
child(x) denote the child nodes of x. The subtree in ¢ with
root at x is denoted 7. We first assign to a node x a symbol
cost Jy(x):

—log score(v), if x is terminal,
with V, = {v},

Ji(x) = 2
s(x) Z Js(y) if x is non-terminal, &
yechild(x)

and a relation cost J,(x):

Jr@) =) —logscore(@)+ Iy 3)
ecE, yechild(x)

Then, the cost of ¢, is defined as

o 1l—«a

J(ty) = —Js(x) + Jr (%), “4)
ng r

where ng and n, are, respectively, the number of symbols and
relations under ¢,. Parameter o weights both types of costs
and could be adjusted to give more relevance to one or to the
other.

An example of a tree is shown in Fig. 10. Its root node
is x1, and thus the tree is denoted #y,. The cost of tree ty, is
given in Eq. 5:

o

J(t) =5 (s (08) + Js(v9) + Iy w10) + Ji(v12))

1 —
+ <T"‘> (e + Ie +dp(en). ()

In order to extract the best tree, the cost of each tree in the
parse forest must be computed. Since the trees in the parse
forest share subtrees, this fact can be explored to avoid com-
puting the cost of a shared subtree repeatedly. In addition,
from an application point of view, being able to efficiently
retrieve a number of best parse trees rather than just the best
one is often desirable. We borrow ideas from the tree extrac-
tion technique, in the context of string grammars, proposed
by Boullier et al. [42]. Given a parse forest, they proposed
a method that builds a new parse forest with a fixed number

@ Springer

R

V2 V3 V4

A X

Us Ve V10 11

“@mraw |6 @

U7 Vg V12

X X X
@ "\ @ @

Ug
” @

Fig.10 Parse tree of expression P? < 1, extracted from the parse forest

of Fig. 9. Nodes are indexed as x;, i = 1, ..., 9. Similarly, vertices and
edges of the instantiated graphs are, respectively, indexed as v;, for
j=1,...,12,and ¢, fork = 1, ..., 3. Nodes with terminal symbols

are depicted with double line borders

of n-best trees, using a bottom-up approach. The resulting
parse forest can be further processed to improve the recog-
nition result, for example, by doing a re-ranking of the trees,
a processing that could be too expensive to be done in the
original parse forest.

Note that there might be multiple subtrees with root at a
node x in the parse forest. For instance, in the parse forest of
Fig. 9, the vertex in the bottom left non-terminal node graph
has two possible derivations (“P” or “p”). Whenever there are
multiple derivations from a non-terminal vertex, only one of
them will be present in a parse tree. Thus, given a node x
in the parse forest, let us denote by t)gl), i € I, the spanned
trees from x. The number of possible trees in the forest is
combinatorial with respect to the multiple subtrees spanned
from the nodes in a path from the root node to a leaf node.

We use a bottom-up approach to compute, for each node
x in the forest, a list of subtrees spanned from it. This infor-
mation is kept as a table in the node, and each row of the
table stores information to recover one of the spanned trees.
(Specifically, it stores the partition of the stroke set resulting
from the corresponding derivation). After the bottom-up pro-
cess finishes, individual trees can be extracted by performing
a top-down traversal, starting from each row of the table at
the root node of the forest. The best tree, according to the
specified cost, is the one recovered by starting the traversal
from the first row of the table.

A general framework for the recognition of online handwritten graphics

153

However, since there might be a large number of parse
trees in the forest, a naive application of the method described
above may be computationally prohibitive. To overcome
this problem, a pruning strategy can be applied during the
bottom-up step to keep table sizes manageable: For each
table, spanned trees that have a cost much higher than the
best tree are discarded. To compute relative differences of
cost, let minJ (x) be the minimum cost tree spanned from x.
Then, given 7y € [0, 1], a spanned tree t)g') is kept if

|t — mind (x)| < tpe % minJ (x) . (6)

This strategy resembles the one proposed in [42], but it differs
in the sense that while they keep a fixed number of best trees,
we keep only the relatively likely ones. The more ambiguous
the input, the more the parse trees are kept. The pruning
threshold 7, can be empirically estimated.

4 Applications

The application of the framework requires the definition of
some key elements. First, a graph grammar that models the
family of graphics to be recognized must be defined. A set
of labels for the relations (RL) and for the symbols (SL),
including junk, must be defined. Second, a hypothesis graph
generated from the set of input strokes, with symbol labels
in SL and relation labels in R L, must be provided. Terminal
nodes of the grammar are named using the labels in S L, while
edges in the graphs of the grammar are labeled using labels
in RL. For parsing, an embedding method must be defined
for each grammar rule. In this section, we detail how these
elements as well as important parameter values have been
defined for the recognition of mathematical expressions and
flowcharts. Results and discussions are presented in the next
section. The grammars in xm1 format are available at www.
vision.ime.usp.br/~frank.aguilar/grammars/.

Before applying the recognition method itself, we applied
to the set of strokes the smoothing and resampling meth-
ods described in [43]. Smoothing removes abrupt trajectory
changes in the strokes and resampling makes point distri-
bution uniform—equally spaced—along the strokes. In the
evaluating datasets, each stroke belongs to only one symbol;
thus, no additional preprocessing was needed.

4.1 Recognition of mathematical expressions

4.1.1 Dataset and grammar

We use the CROHME-2016 dataset [44]. It consists of hand-
written expressions divided into training, validation, and test

sets, with 8836, 986, and 1147 expressions, respectively.
From here onwards, we refer to the training plus the vali-

dation sets as the training set. The expressions include 101
symbol classes, and six relation classes (horizontal as in

X
“ab”, above as in “Y_”, below as in)", superscript as in
X

“ab”, subscript as in “ap,”, and inside as in “\/x”"). To define
the (infinite) set of acceptable expressions, the CROHME-
2016 competition provides a grammar using the latex string
representations. Based on that string grammar, we defined
a graph grammar with 205 production rules, including the
rules to generate the 101 symbol labels (terminals).

To define the embeddings, we use the concept of baseline.
A baseline in a graph is defined as a maximal path whose
connecting edges have only the horizontal (h) label. (This
definition can be seen as a graph version of the baseline def-
inition of [20]). A baseline is considered nested to a vertex v
if it is connected to v by an edge (v, v’), where v’ is the first
vertex of the baseline. A baseline that is nested to no vertex
is called dominant baseline. Note that a baseline may consist
of a single vertex.

Then, the embedding is defined as follows. Letr : G;:=
G, be arule and let v’ be the leftmost and v” be the rightmost
vertices of the dominant baseline of G, . Let also G be a graph
with an occurrence of Gy, identified as a vertex u € V. The
embedding associated with the application of rule » on G
replaces u with G, generating an updated graph G’, such
that Vor = Vo\{u} U Vg, and Egr = [Ec\({(w', u) : u’ €
VoYU {(u,u') : u' € Vg})]U ET where

ET={W,v): W, u)e EGYU{Q", u): (u,u') € Eg).
@)

In other words, all edges that were incident on u will be made
incident to v’ and all edges that were originated from u will
be made originating from v”.

4.1.2 Hypothesis graph building

To generate the hypothesis graph, we used ideas similar to
the ones used in the symbol segmentation and classifica-
tion methods described in [45,46] and the spatial relation
classification methods described in [47]. These methods
use multilayer neural networks with softmax output, having
images of the symbols and surrounding region rather than
stroke-related features as inputs. Here, we just replace stan-
dard multilayer neural networks with simple LeNet-5 [48]
like convolutional neural networks (CNN). The network out-
puts are converted to a cost measure (applying the negative
logarithm to the output) in order to be used in the cost func-
tion defined in Eq. 4.

An important parameter to build the hypothesis graph is
the symbol and relation label pruning thresholds, #symp and
trel- (See Eq. 1). These threshold values determine how many

@ Springer

www.vision.ime.usp.br/~frank.aguilar/grammars/
www.vision.ime.usp.br/~frank.aguilar/grammars/

F.Julca-Aguilar et al.

Pl

Labels/symbol or relation

. |

60
10.5 0.55| 0.6 0.65| 0.7 ‘DJS 0.8 [0.85] 0.9 ‘0.95 0.5 0.55 0.6 ‘0.65 0.7 [0.75] 0.8 ‘0.85 0.9 [0.95

Recall (%)
M
3
ok N W s U o N o®

‘ 09 095
Symbol (below) and relation (above) classifier thresholds

==Symbol ==Relation Expression ==Labels/symbol Labels/relation

Fig. 11 Symbol, relation, and expression level recall (left axis) and the
number of labels of the graph relative to the number of actual symbols
and relations (right axis) generated during the hypothesis graph genera-
tion step. The relation classification threshold #¢ is varied in the range
[0.5-1.0], for each symbol classification threshold zsymp € {0.9, 0.95}

and which labels will be attached to each vertex and edge.
Since during the parsing process the partitions of the stroke
set and labels are constrained by the hypothesis graph, the
achievable maximum recognition rates are bounded by pos-
sibilities encoded in the hypothesis graph.

From the training set, we randomly selected 10% to serve
as a validation set and used the rest for training. Using
the trained symbol and relation classifiers, we evaluated the
effect of varying values of fymb and] on the validation
set. Two types of measures have been computed for each
threshold value. First, we computed the symbol, relation, and
complete expression recalls, which indicate how many of the
components of the expressions are in fact represented in the
hypothesis graph. Second, we computed the ratio between
the number of symbol hypothesis labels and actual number
of symbols as well as between the relation hypothesis labels
and the number of actual relations per expression. If this ratio
is one (the ideal case), it means that there are only one label
attached for each symbol.

The evaluation results are shown in Fig. 11, for fyymp €
{0.9, 0.95} and t,¢] in the range [0.5 — 1]. The left-hand axis
shows the recall, and the right-hand axis shows the ratios.
Note that this evaluation is concerned with verifying how
many of the elements of interest are, in fact, present in the
hypothesis graph; it is not related to parsing.

As can be seen, with respect to symbols and relations, even
for the lowest threshold values (fsymp = 0.9 and #e] = 0.5)
the recall is above 95%. However, for complete expressions
(meaning all symbols and relations of the expressions are in
the hypothesis graph), the recall for the lowest threshold val-
ues is 72%. Additionally, while there is no large improvement
in symbol and relation recalls as we increase these thresholds,
expression recall presents large improvements. The ratios, on
the other hand, indicate high precision of symbol and rela-
tion classification (given that the potential number of symbol
and relation hypothesis is exponential to the number of input
strokes).

@ Springer

Recall (%)

0.65 ‘ 0.7 075 0.8 0.85
0.95
Symbol (below) and relation (above) classifier thresholds

==Graph Parsing ==Hypotheses graph Symbol =—Relation

Fig. 12 Symbol, relation, and expression recalls obtained from graph
parsing and hypothesis recall potential expressed in the hypothesis
graph, for symbol threshold fgymp = 0.95 and different relation thresh-
olds tel

4.1.3 Graph parsing and tree extraction

We also analyzed the effect of different values of #5ymp and
trel on the recall after parsing. We set the maximum value
for fsymp to 0.95 and for # to 0.85, as they provide a good
trade-off between recognition accuracy and time. % In this
evaluation, for optimal tree extraction we set « = 0.5 (same
weight for the symbol and relation costs; see Eq. 4) and
for = 0.1 (tree pruning threshold; see Eq. 6). Figure 12
shows the symbol, relation, and expression recall obtained
by the parsing method. It also shows (in red) the expression
recall potential (maximum achievable recall) expressed in
the hypothesis graph. The parsing recall is almost constant,
regardless of the value of #,], while the gap between the
potential recall and the parsing recall increases up to about
32%. Based on this evaluation, we chose fsymp = 0.95 and
tel = 0.85, as these values allow to keep more hypothe-
sis and can be useful during parsing of unseen expressions
(better generalization).

Using tsymp = 0.95 and f; = 0.85, we have also evalu-
ated on the validation set the effect of different values of 7,
(tree pruning threshold) and « (weighting in the cost func-
tion) in the tree extraction step. Through this evaluation, we
set fpy = 0.1 and o = 0.4. (This choice was based on the
best expression recall).

4.2 Recognition of flowcharts
4.2.1 Dataset and grammar

We use the flowchart dataset described in [49]. The dataset
includes seven symbol classes (arrow, connection, data,
decision, process, terminator, and text) and three relation
classes (Src, Targ, and AssTxt). An example is presented in
Sect. 2 (Fig. 2), with strokes colored according to the symbol

2 Processing the whole validation set in up to 3 h (mean recognition
time of 10 s).

A general framework for the recognition of online handwritten graphics

155

type they belong to. In this dataset, relations in each flowchart
are established between “adjacent” symbols. For instance, in
the flowchart of Fig. 2, Src and Targ relations are defined
between the top arrow and a terminal and data, respectively.
In the same way, an AssTxt relation is defined between the
top terminal and the text inside it. The flowcharts have been
written by 36 people, and the dataset is divided into a train set
with 248 and a test set with 171 flowcharts. The total number
of symbols is about 9000.

As described in Sect. 2, text symbols have different char-
acteristics than other flowchart symbols, and they are usually
recognized through specific methods. Since flowchart recog-
nition is addressed in this work with the aim of illustrating the
application of the proposed framework, we are not specially
concerned with text recognition performance. Thus, we have
opted on removing strokes corresponding to text symbols, as
well as the respective relations (AssTxt) from the flowcharts.
Symbol class text and relation class AssTxt were not con-
sidered. We note, however, that it would be equally possible
to parse the integral flowchart without any changes in the
parsing and tree extraction steps once adequate symbol and
relation classifiers are developed for texts.

In contrast to the CROHME-2016 dataset, we found no
grammar defined for the flowchart dataset. Thus, we defined
a grammar with 16 production rules, where six of them gen-
erate the terminal symbols. The embedding is defined in a
similar way to the one defined for mathematical expressions,
except for the set of edges to be added. Let u denote the
vertex to be replaced in G and v; € Vg, the vertices in the
replacing graph. The edges to be added are defined by:

EY ={W',v)| (', u) € Egandv = argmin,, cost, (u’, v;)} U

{(v,u")| (u,u’) € Egandv = argmin, cost, (v;, u')},

where cost, (1, v) is the minimum relation cost among rela-
tions between a symbol hypothesis under u# and a symbol
hypothesis under v.

4.2.2 Parameter adjustment

For symbol segmentation and classification, we used the
same method used for mathematical expressions. Symbol
and relation classifier thresholds, fsymp and t|, were set both
to 0.95, following the same scheme as done with mathemat-
ical expressions.

An important performance difference between the two
applications is the relative low accuracy of the flowchart
relation classifier compared to the mathematical expression
relation classifier. This difference is due to the fact that arrows
in flowcharts present a high shape variance and the classi-
fiers we used, which are mainly based on shape histograms
of the symbols [47], do not generalize well. We alleviate this

Table 1 Structure recognition rates over the test set of CROHME-2016
competition

System Structure Structure + labels
<0 <1 <2

MyScript 88.14 67.65 75.59 79.86
Wiris 74.28 49.61 60.42 64.69
Tokyo 61.55 43.94 50.91 53.70
Sdo Paulo 57.02 33.39 43.50 49.17
Nantes 21.45 13.34 21.02 28.33
Ours 64.78 40.80 52.39 58.15

deficiency by setting o) = 0.95 (in mathematical expres-
sions, we set feg] = 0.85), in order to keep more labels. We
also applied the pruning method based on the mean junk
score of groups with five or more symbols hypothesis, with
funk = 0.25 (see Sect. 3.4.1) to cope with the large number
valid partitions. For tree extraction, best validation results
were achieved with o = 0.8, placing more weight to sym-
bol classifier scores than to relation classifier scores, and tree
pruning threshold #,; = 0.1 (same value as in the case of
mathematical expressions).

5 Results and discussion

Using the datasets, grammars, and parameters as described
in the previous section, we applied the recognizers on the
test set of the respective applications. Here, we present and
discuss the results.

5.1 Recognition of mathematical expressions

Table 1 shows structure recognition rates including those
reported in the CROHME-2016 competition [44]. The com-
peting systems are identified as reported in the competition
results. Note that the system identified as “Sdo Paulo” is
also ours, however, using standard multilayer networks as
classifiers. The error columns indicate recognition rates con-
sidering recognition with up to 0, 1, and 2 incorrect labels
for stroke and directed stroke edges.

The two best systems, MyScript and Wiris, include statisti-
cal models built using 592, 000 expressions from Wikipedia
[44]. In particular, MyScript is a commercial system? that has
been optimized over hundreds of thousands of handwritten
equations that are not publicly available. The statistical infor-
mation used by both systems could explain, at some extent,
their better performance.

Our method recognized 40.80% of the expressions com-
pletely (correct identification of labels and structures). We

3 http://www.myscript.com/.

@ Springer

http://www.myscript.com/

156

F.Julca-Aguilar et al.

RPN

@ > de —» > dw

— + _ T
O 4oty (5 o bt (5 9)

(C)R(t) - _79 4—cos®t

— 2
W%R(zﬁ):_n 4—cos? ¢

(8+4cos? t)2

Fig.13 Expressionsrecognized with one or two errors. For each expres-
sion, its ground truth and the system’s output are shown as: ground truth
— system’s output

have noticed, however, that the complete expressions were
present in 79.69% of the hypothesis graphs. Thus, we con-
clude that the tree extraction process is failing in retrieving
the correct interpretation. This observation is also consis-
tent with the evaluation performed on the validation set and
described in the previous section.

We also note that the difference between the percentage
of correctly recognized expressions and those that were not
correctly recognized due to up to 2 errors is 17.35%. This dif-
ference is the highest among all the systems, which indicates
that our system has the largest margin for improvement by
correcting those errors. Figure 13 shows some of the expres-
sions that fall in this case.

Our method is able to correctly recognize several ambigu-
ous symbols as well as relations. Figure 14 shows examples
of those challenging cases correctly recognized by our sys-
tem.

Table 2 shows the comparison of the recall and precision
rates of the symbol segmentation, classification, and spatial
relations of our system and systems of the CROHME-2016
competition. We can see that while our system obtains high
recall and precision at symbol level, it obtains low rates at
relations level. Furthermore, classification recall is close to
the one obtained on the validation set (91%). Thus, this is
an indication that significative improvement is possible by
improving the relation classifier.

Figure 15 shows the mean recognition time of our imple-
mentation over expressions grouped by their number of

@ Springer

Y =)oy
(d)

Fig. 14 Examples of expressions correctly recognized by our system

N (x —baf

strokes. We can see that our system can recognize expres-
sions with up to thirty strokes within a few seconds. Above
that number of strokes, our system shows a high increase
in terms of recognition time. However, we can also adjust
the system to have a faster recognition response by lowering
the symbol and relation classifier thresholds. For instance,
by setting the symbol and relation classification thresholds
0 tyymp = 0.9 and t,,; = 0.7, we only obtain a expression
recognition rate 3% lower than our best system, but with a
much faster response, as illustrated in Fig. 15.

5.2 Recognition of flowcharts

Table 3 shows the parsing results regarding stroke and symbol
labeling accuracy w.r.t. the flowchart test set. It should be
noted, however, that we as well as Bresler et al. [50] did not
consider text symbols.

Concerning flowcharts as a whole, our method fully rec-
ognized 34% of the flowcharts in the test set. Three examples
are shown in Fig. 16. They include linear as well as (nested)
loop structures. It is interesting to note that varying shapes
of arrows such as the one that extends over a large part of the
flowchart in the right side of Fig. 16a, or very short ones, or
yet curvy ones, are correctly identified.

When a true symbol or a true relation is not in the hypoth-
esis graph, the parsing process will fail to recognize the
graphic. Figure 17 shows an example of spatial relation and
another of a symbol that were not recognized during the
hypothesis graph generation.

However, since 67% of the flowcharts were fully rep-
resented in the hypothesis graphs, there is a gap of 33%
between the achieved rate and the potentially achievable one.
Our explanation for this gap is the fact that although a rel-
atively large number of symbols are correctly recognized
(Table 3), many of the true labels in the hypothesis graph
presented lower likelihood scores than the false ones, lead-

A general framework for the recognition of online handwritten graphics 157
Tablg 2 Symbpl and sp at} al System Segmentation Classification Relations
relation detection comparison of
our method with systems of the Recall Precision Recall Precision Recall Precision
CROHME-2016 competition
MyScript 98.89 98.95 95.47 95.53 95.11 95.11
Wiris 96.49 97.09 90.75 91.31 90.17 90.79
Tokyo 91.62 93.25 86.05 87.58 82.11 83.64
Sao Paulo 92.91 95.01 86.31 86.26 81.48 84.16
Nantes 94.45 89.29 87.19 82.42 73.20 68.72
Ours 95.32 96.84 89.39 90.81 78.68 79.93
250 3
g 200 o, Las
2 150
) 15
£ 100
s 1
§ 50 05
0 T y g T T T T 0
<=5 6-10 11-15 16-20 21-25 26-30 31-35 36-40 41-45 46-50 51-55 >55
Num. strokes
=== Best accuracy configuration === Faster configuration (a)

Fig. 15 Mean recognition time of our system with two configurations:
the configuration used for obtaining our best results in terms of expres-
sion recognition rate (left axis) and an alternative faster configuration
with #5ymp = 0.9 and 7, = 0.7 (right axis)

Table 3 Flowchart recognition: comparison of our method and four
state-of-the-art methods, w.r.t. stroke (str. lab.) and symbol labeling
(sym. lab.) accuracy (%)

System Str. lab. Sym. lab.
Include text recognition

Lemaitre et al. [51] 91.1 72.4
Carton et al. [16] 92.4 75.0
Bresler et al. [17] 95.2 82.8
Wang et al. [52] 95.8 84.3
Without text recognition

Bresler et al. [50] - 74.3
Ours 91.1 85.5

ing to a wrong choice of a tree. Regarding this issue, it is
worth to mention that most of the compared methods used
specific techniques to identify flowchart symbols, while we
used a generic method.

The results indicate, nonetheless, that our method can be
applied to flowchart recognition as well. To improve recog-
nition performance, the current bottleneck seems to be in the
hypothesis graph generation step. By improving symbol and
relation classifiers, a considerable improvement should be
possible.

e
0 |

S5 1]
L/j O
(b) (c)

Fig. 16 Examples of flowcharts that have been correctly recognized by

gff%
-

(a) (b)
Fig. 17 Parts of flowcharts with missing components in the hypothesis

graph. a Relation between the top arrow and data symbols has not been
identified; b the top-center arrow has not been identified

6 Conclusions
We have proposed a general framework for the recognition of

online handwritten graphics that is flexible with respect to the
family of graphics, offers possibilities to control processing

@ Springer

158

F.Julca-Aguilar et al.

time, and integrates symbol- and structural-level information
in the parsing process. We model graphics as labeled graphs
and the recognition problem as a graph parsing problem
guided by a graph grammar. The first step of the framework
builds a hypothesis graph that encodes symbol and relation
hypothesis computed from the input strokes. The second step
parses the set of strokes according to a graph grammar. Rule
application is modeled as graph matching between graphs in
the rule and graphs induced by partitions of the stroke set. The
parsing step typically generates multiple interpretations, and
thus the third step is for selecting an optimal interpretation.
The recognition process is modeled as a bottom-up/top-down
approach, where the hypothesis graph relates to the bottom-
up part that deals with symbol-level information and the
graph grammar relates to the top-down part that deals with
structural information.

Flexibility with respect to application domains is achieved
by encoding all domain-specific information in the hypothe-
sis graph and in the grammar, making the parsing method be
independent of a particular application. We presented appli-
cations of the framework to the recognition of mathematical
expressions and flowcharts. Recognition performance is on
a par with several state-of-the-art methods. Moreover, our
evaluations show that there is room for significative improve-
ment. Specifically, in mathematical expression recognition
we verified that although 79% of the test expressions were
fully represented in their corresponding hypothesis graph,
only 40% of the expressions were fully recognized, corre-
sponding to a gap of almost 39%. Since the parsing algorithm
generates all interpretations that are consistent with the
grammar, we conclude that the tree extraction step is fail-
ing in choosing the correct interpretation. With respect to
flowcharts, in many cases the true symbol and relation labels
presented very low likelihood or were not even included in
the hypothesis graph. (It should be noted that no special-
ized symbol or relation classifier was developed for this
application). These evaluations suggest that an immediate
improvement would be possible by just improving sym-
bol and relation classifiers. With respect to optimal tree
selection, improvement in symbol and hypothesis likelihood
scores will naturally lead to better cost estimation. A second
improvement could be possible by incorporating in the cost
computation a term that captures statistical information with
respect to structure occurrences.

Another important feature of our framework is the possi-
bility of managing computational cost. Hypothesis graph is
the main tool to reduce the space of partitions to be exam-
ined when applying a rule. Only partitions that are present in
the hypothesis graph are considered. In addition, there is a
set of parameters to control the amount of possibilities to
be encoded in the hypothesis graph (symbol and relation
label pruning), as well as the number of tree (interpreta-

@ Springer

tion) costs to be evaluated (tree pruning). These parameters
can be adjusted according to each application particulari-
ties.

Although deep learning models have proven very powerful
to perform an end-to-end recognition process, understanding
how recognition happens is still a big challenge. An inter-
mediary approach would be to use deep neural networks in
specific parts of our method, such as in symbol and relation
classification or in data-driven generation of grammar rules.
We believe this has potential to improve the recognition rates,
without weakening understandability. We would like also to
extend the applications to other families of graphics or 2D
structures.

Acknowledgements This work has received support from CNPq,
Brazil (grant 484572/2013-0). F. Julca-Aguilar thanks FAPESP, Brazil,
for the financial support (2012/08389-1 and 2013/13535-0). N.S.T.
Hirata is partially supported by CNPq (grant 305055/2015-1).

References

1. Plamondon, R., Srihari, S.N.: On-line and off-line handwriting
recognition: a comprehensive survey. IEEE Trans. Pattern Anal.
Mach. Intell. 22, 63-84 (2000)

2. Marriott, K., Meyer, B., Wittenburg, K.B.: A Survey of Visual Lan-
guage Specification and Recognition, pp. 5-85. Springer, New York
(1998)

3. Lin, Z., He, J., Zhong, Z., Wang, R., Shum, H.Y.: Table detection
in online ink notes. IEEE Trans. Pattern Anal. Mach. Intell. 28(8),
1341-1346 (2006)

4. Chen, Q., Shi, D., Feng, G., Zhao, X., Luo, B.: On-line handwritten
flowchart recognition based on logical structure and graph gram-
mar. In: 5th International Conference on Information Science and
Technology (ICIST), pp. 424-429 (2015)

5. Alvaro, E, Sanchez, J.A., Benedi, J.M.: An integrated grammar-
based approach for mathematical expression recognition. Pattern
Recognit. 51, 135-147 (2016)

6. Awal, A.M., Mouchere, H., Viard-Gaudin, C.: Improving online
handwritten mathematical expressions recognition with contextual
modeling. In: Proceedings of the 12th International Conference on
Frontiers in Handwriting Recognition, pp. 427-432 (2010)

7. Alvaro, F., Sanchez, J.A., Benedi, J.M.: Recognition of printed
mathematical expressions using two-dimensional stochastic
context-free grammars. In: International Conference on Document
Analysis and Recognition (ICDAR), pp. 1225-1229 (2011)

8. MacLean, S., Labahn, G.: A new approach for recognizing hand-
written mathematics using relational grammars and fuzzy sets. Int.
J. Doc. Anal. Recognit. 16(2), 139-163 (2013)

9. Celik, M., Yanikoglu, B.: Probabilistic mathematical formula
recognition using a 2D context-free graph grammar. In: Inter-
national Conference on Document Analysis and Recognition
(ICDAR), pp. 161-166 (2011)

10. Rekers, J., Schiirr, A.: Defining and parsing visual languages with
layered graph grammars. J. Vis. Lang. Comput. 8(1), 27-55 (1997)

11. Han, F,, Zhu, S.C.: Bottom-up/top-down image parsing by attribute
graph grammar. IEEE Int. Conf. Comput. Vis. (ICCV) 2, 1778-
1785 (2005)

12. Blostein, D., Grbavec, A.: Recognition of mathematical notation.
In: Wang, P., Bunke, H. (eds.) Handbook of Character Recognition

A general framework for the recognition of online handwritten graphics

159

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

and Document Image Analysis, pp. 557-582. World Scientific, Sin-
gapore (1997)

. Chan, K.F, Yeung, D.Y.: Mathematical expression recognition: a

survey. Int. J. Doc. Anal. Recognit. 3, 3—15 (2000)
Zanibbi, R., Blostein, D.: Recognition and retrieval of mathemati-
cal expressions. Int. J. Doc. Anal. Recognit. 15(4), 331-357 (2012)

. Miyao, H., Maruyama, R.: On-line handwritten flowchart recog-

nition, beautification and editing system. In: International Confer-
ence on Frontiers in Handwriting Recognition, pp. 83-88 (2012)
Carton, C., Lemaitre, A., Coiiasnon, B.: Fusion of statistical and
structural information for flowchart recognition. In: 12th Interna-
tional Conference on Document Analysis and Recognition, pp.
1210-1214 (2013)

Bresler, M., Phan, T.V., Prusa, D., Nakagawa, M., Hlavac, V.:
Recognition system for on-line sketched diagrams. In: 14th Inter-
national Conference on Frontiers in Handwriting Recognition, pp.
563-568 (2014)

Matsakis, N.E.: Recognition of handwritten mathematical expres-
sions. Master’s thesis, Massachusetts Institute of Technology,
Cambridge (1999)

Tapia, E., Rojas, R.: Recognition of on-line handwritten mathe-
matical expressions using a minimum spanning tree construction
and symbol dominance. In: Lladés, J., Kwon, Y.B. (eds.) Graph-
ics Recognition. Recent Advances and Perspectives, vol 3088,
Springer, Berlin, pp. 329-340 (2004)

Zanibbi, R., Blostein, D., Cordy, J.R.: Recognizing mathematical
expressions using tree transformation. IEEE Trans. Pattern Anal.
Mach. Intell. 24, 1455-1467 (2002)

Alvaro. F., Zanibbi, R.: A shape-based layout descriptor for clas-
sifying spatial relationships in handwritten math. In: Proceedings
of the ACM Symposium on Document Engineering, pp. 123-126
(2013)

Awal, A.M., Mouchere, H., Viard-Gaudin, C.: Towards handwritten
mathematical expression recognition. In: Proceedings of the 10th
International Conference on Document Analysis and Recognition,
pp. 1046-1050 (2009)

Awal, A.M., Mouchere, H., Viard-Gaudin, C.: A global learning
approach for an online handwritten mathematical expression recog-
nition system. Pattern Recognit. Lett. 35, 68-77 (2012)
Yamamoto, R., Sako, S., Nishimoto, T., Sagayama, S.: On-line
recognition of handwritten mathematical expressions based on
stroke-based stochastic context-free grammar. In: International
‘Workshop on Frontiers in Handwriting Recognition (2006)
Simistira, F., Katsouros, V., Carayannis, G.: Recognition of online
handwritten mathematical formulas using probabilistic SVMs and
stochastic context free grammars. Pattern Recognit. Lett. 53, 85-92
(2015)

Bunke, H.: Attributed programmed graph grammars and their
application to schematic diagram interpretation. IEEE Trans. Pat-
tern Anal. Mach. Intell. PAMI 4(6), 574-582 (1982)

Fahmy, H., Blostein, D.: A survey of graph grammars: theory and
applications. In: 11th IAPR International Conference on Pattern
Recognition, pp. 294-298 (1992)

Baumann, S.: A simplified attributed graph grammar for high-level
music recognition. In: ICDAR (1995)

Fahmy, H., Blostein, D.: A graph grammar programming style for
recognition of music notation. Mach. Vis. Appl. 6(2), 83-99 (1993)
Lavirotte, S., Pottier, L.: Optical formula recognition. In: Proceed-
ings of the Fourth International Conference on Document Analysis
and Recognition, vol. 1, pp. 357-361 (1997)

Younger, D.H.: Recognition and parsing of context-free languages
in time n°. Inf. Control 10(2), 189-208 (1967)

Yuan, Z., Pan, H., Zhang, L.: A novel pen-based flowchart recog-
nition system for programming teaching. In: Wang, F.L., Miao, L.,
Zhao, J., He, J., Leung, E.W. (eds.) Advances in Blended Learning,
pp. 55-64. Springer, Berlin (2009)

33.

34.

35.

36.

37.

38.

30.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

Deng, Y., Kanervisto, A., Ling, J., Rush, A.M.: Image-to-markup
generation with coarse-to-fine attention. In: Proceedings of the 34th
International Conference on Machine Learning, ICML, pp. 980-
989 (2017)

Zhang, J., Du, J., Zhang, S., Liu, D., Hu, Y., Hu, J., Wei, S., Dai,
L.: Watch, attend and parse: an end-to-end neural network based
approach to handwritten mathematical expression recognition. Pat-
tern Recognit. 71, 196-206 (2017)

Le, A.D., Nakagawa, M.: Training an end-to-end system for hand-
written mathematical expression recognition by generated patterns.
In: 14th IAPR International Conference on Document Analysis and
Recognition (ICDAR), vol. 01, pp. 1056-1061 (2017)

Zhang, T., Mouchere, H., Viard-Gaudin, C.: A tree-BLSTM-
based recognition system for online handwritten mathematical
expressions. Neural Comput. Appl. (2018). https://doi.org/10.
1007/s00521-018-3817-2

Zhang, J., Du, J., Dai, L.: Multi-scale attention with dense encoder
for handwritten mathematical expression recognition. In: 24th
International Conference on Pattern Recognition, pp. 2245-2250
(2018)

Zhang, J., Du, J., Dai, L.: Track, attend, and parse (TAP): an end-
to-end framework for online handwritten mathematical expression
recognition. IEEE Trans. Multimed. 21(1), 221-233 (2019)
Keysers, D., Deselaers, T., Rowley, H.A., Wang, L., Carbune, V.:
Multi-language online handwriting recognition. IEEE Trans. Pat-
tern Anal. Mach. Intell. 39(6), 1180-1194 (2017)

Pflatz, J., Rosenfeld, A.: Web grammars. In: Proceedings of First
International Joint Conference on Artificial Intelligence, pp. 193—
220 (1969)

Grune, D., Jacobs, C.J.H.: Parsing Techniques: A Practical Guide,
2nd edn. Springer, Berlin (2008)

Boullier, P., Nasr, A., Sagot, B.: Constructing parse forests that
include exactly the N-best PCFG trees. In: Proceedings of the 11th
International Conference on Parsing Technologies, pp. 117-128
(2009)

Delaye, A., Anquetil, E.: Hbf49 feature set: a first unified baseline
for online symbol recognition. Pattern Recogninit. 46(1), 117-130
(2013)

Mouchere, H., Viard-Gaudin, C., Zanibbi, R., Garain, U.:
ICFHR2016 CROHME: Competition on recognition of online
handwritten mathematical expressions. In: 15th International Con-
ference on Frontiers in Handwriting Recognition (ICFHR), pp.
607-612 (2016)

Julca-Aguilar, F., Mouchere, H., Viard-Gaudin, C., Hirata, N.S.T.:
Progress in pattern recognition, image analysis, computer vision,
and applications. In: 20th Iberoamerican Congress, Springer Inter-
national Publishing, Cham, chap Top-Down Online Handwritten
Mathematical Expression Parsing with Graph Grammar, pp. 444—
451 (2015)

Julca-Aguilar, F., Viard-Gaudin, C., Mouchere, H., Medjkoune,
S., Hirata, N.: Mathematical symbol hypothesis recognition with
rejection option. In: 14th International Conference on Frontiers in
Handwriting Recognition (2014)

Julca-Aguilar, F., Hirata, N.S.T., Mouchere, H., Viard-Gaudin, C.:
Subexpression and dominant symbol histograms for spatial relation
classification in mathematical expressions. In: 23rd International
Conference on Pattern Recognition (ICPR), pp. 3446-3451 (2016)
Le Cun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient based
learning applied to document recognition. Proc. IEEE 86(11),
2278-2324 (1998)

Awal, A.M., Feng, G., Mouchere, H., Viard-Gaudin, C.: First exper-
iments on a new online handwritten flowchart database. Document
Recognition and Retrieval X VIII. San Fransisco, United States, pp.
7874-78740A (2011)

@ Springer

https://doi.org/10.1007/s00521-018-3817-2
https://doi.org/10.1007/s00521-018-3817-2

160 F.Julca-Aguilar et al.

50. Bresler, M., Prua, D., Hlavac, V.: Modeling flowchart structure 52. Wang, C., Mouchere, H., Viard-Gaudin, C., Jin, L.: Combined seg-

recognition as a max-sum problem. In: 12th International Con- mentation and recognition of online handwritten diagrams with

ference on Document Analysis and Recognition, pp. 1215-1219 high order Markov random field. In: 15th International Conference

(2013) on Frontiers in Handwriting Recognition (ICFHR), pp. 252-257
51. Lemaitre, A., Mouchere, H., Camillerapp, J., Cotiasnon, B.: Interest (2016)

of Syntactic Knowledge for On-Line Flowchart Recognition, pp.
89-98. Springer, Berlin (2013)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer

	A general framework for the recognition of online handwritten graphics
	Abstract
	1 Introduction
	2 Related works
	3 The proposed recognition framework
	3.1 Stroke set
	3.2 Graph grammar model
	3.3 Hypothesis graph generation
	3.3.1 Label list pruning

	3.4 Graph parsing
	3.4.1 Pruning strategies

	3.5 Optimal parse tree extraction

	4 Applications
	4.1 Recognition of mathematical expressions
	4.1.1 Dataset and grammar
	4.1.2 Hypothesis graph building
	4.1.3 Graph parsing and tree extraction

	4.2 Recognition of flowcharts
	4.2.1 Dataset and grammar
	4.2.2 Parameter adjustment

	5 Results and discussion
	5.1 Recognition of mathematical expressions
	5.2 Recognition of flowcharts

	6 Conclusions
	Acknowledgements
	References

