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Abstract
The anchor mechanism of Faster R-CNN and SSD framework is considered not effective enough to scene text detection,
which can be attributed to its Intersection-over-Union-based matching criterion between anchors and ground-truth boxes. In
order to better enclose scene text instances of various shapes, it requires to design anchors of various scales, aspect ratios
and even orientations manually, which makes anchor-based methods sophisticated and inefficient. In this paper, we propose
a novel anchor-free region proposal network (AF-RPN) to replace the original anchor-based RPN in the Faster R-CNN
framework to address the above problem. Compared with the anchor-based region proposal generation approaches (e.g.,
RPN, FPN–RPN, RRPN and FPN–RRPN), AF-RPN can get rid of complicated anchor design and achieves higher recall rate
on both horizontal and multi-oriented text detection benchmark tasks. Owing to the high-quality text proposals, our Faster
R-CNN-based two-stage text detection approach achieves the state-of-the-art results on ICDAR-2017 MLT, COCO-Text,
ICDAR-2015 and ICDAR-2013 text detection benchmark tasks by only using single-scale and single-model testing.

Keywords Scene text detection · Anchor · Anchor-free · Region proposal generation · Faster R-CNN

1 Introduction

Scene text detection has attracted considerable interests
from computer vision and document analysis communities
recently [1–4] owing to the increasing demands for many
content-based visual intelligent applications, e.g., image and
video retrieval, scene understanding and target geolocation.
However, because of diverse text variabilities in colors,
fonts, orientations, languages and scales, extremely complex
and text-like backgrounds, as well as some distortions and
artifacts caused by image capturing like non-uniform illu-
mination, low contrast, low resolution and occlusion, text
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detection in natural scene images is still an unsolved prob-
lem.

Nowadays, with the astonishing development of deep
learning, state-of-the-art convolutional neural network
(CNN)-based object detection frameworks, such as Faster
R-CNN [5] and SSD [6], have been widely used to address
the text detection problemandoutperform substantially tradi-
tionalMSER- [7] or SWT-[8] based bottom-up text detection
methods. However, Faster R-CNN and SSD are found to be
not flexible enough for text detection because of their anchor
(called default box in SSD)mechanism [9]. Anchors are used
as reference boxes in both Faster R-CNN and SSD to pre-
dict the corresponding region proposals or target objects, and
the label of each anchor is determined by its Intersection-
over-Union (IoU) overlap with ground-truth bounding boxes
[5]. If we want an object to be detected, there should be
at least one anchor which has a high enough IoU overlap
with this object. So, to achieve high recall, anchors with
various scales and shapes should be designed to cover the
scale and shape variabilities of objects in images. As scene
text instances have wider variability in scales, aspect ratios
and especially orientations than general objects, it requires
much more complicated anchor design, i.e., more scales,
aspect ratios and orientations [10–13], which makes anchor-
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based methods sophisticated and inefficient. Recently, the
idea of DenseBox [14] is borrowed to overcome this prob-
lem in some text detection methods [9,15], which use a fully
convolutional neural network (FCN) [16] to directly output
the pixel-wise textness scores and bounding boxes of the
concerned text instances through all locations and scales of
an image. Although more flexible, the capabilities of these
approaches are limited. For example, they cannot detect long
or large text instances robustly, which occur very often in
“Multilingual scene text detection” scenarios [4], as themax-
imal size of text instances that can be handled by the detector
is limited by the receptive field (RF) size of the used convo-
lutional feature maps.

To overcome the above problems, we propose incorpo-
rating the “anchor-free” idea of DenseBox into the Faster
R-CNN framework. Specifically, we propose a novel anchor-
free region proposal network (AF-RPN) to replace the
original anchor-based RPN so that our Faster R-CNN-based
text detector can possess high flexibility and high capabil-
ity at the same time. As illustrated in Fig. 1, each pixel in a
specific convolutional feature map can be mapped to a point
(called a sliding point hereinafter) in the raw image. For each
sliding point that locates in a text core region (points within
the solid line oriented rectangle in Fig. 1b), AF-RPN directly
predicts the offsets from it to the bounding box vertices of
the concerned text instance (Fig. 1c). In this way, AF-RPN
can generate high-quality inclined text proposals directly in
an anchor-free manner, which can get rid of complicated
hand-crafted anchor design. Moreover, the label definitions
for sliding points in AF-RPN aremuch easier than IoU-based
label definitions for anchors in the original RPN, where we
only need to determine whether a sliding point is inside any
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Fig. 1 a A detection module of AF-RPN, which can be considered
as a sliding window detector like the vanilla RPN [5]; b mapping each
pixel in the convolutional featuremap to the corresponding sliding point
in the raw image; examples of text (red), ignored (blue) and non-text
(outside the text region) sliding points; c direct regression [9] from a
given text sliding point to the four vertices of the concern ground-truth
box

ground-truth bounding box’s core region. Compared with
DenseBox-based text detectors, Faster R-CNN-based text
detectors candealwith longor large text instancesmuchmore
effectively. This is because the ROI pooling algorithm in the
second-stage Fast R-CNN can enlarge the RF size of pooled
features for each proposal significantly, which can improve
not only the bounding box regression precision of long or
large text instances, but also the text/non-text classification
accuracy. Furthermore, unlike DenseBox, we let AF-RPN
extract text proposals from multi-scale feature maps of fea-
ture pyramid network (FPN) [17] in a scale-friendly manner
so that AF-RPN can be more robust to large text scale vari-
ance. Thanks to this, our text detector can achieve superior
text detection performance with only single-scale testing.

Extensive experiments demonstrate that, as a new region
proposal generation approach, AF-RPN can achieve higher
recall rate than the vanilla RPN [5] and FPN–RPN [17] on
the large-scale COCO-Text [18] dataset and also outper-
forms the rotation region proposal network (RRPN) [12] and
FPN–RRPN remarkably on the multi-oriented ICDAR-2015
dataset [3]. Owing to the high-quality text proposals, our
Faster R-CNN-based two-stage text detection approach, i.e.,
AF-RPN + Fast R-CNN, achieves the state-of-the-art results
on the ICDAR-2017 MLT [4], COCO-Text [18], ICDAR-
2015 [3] and ICDAR-2013 [2] text detectionbenchmark tasks
by only using single-scale and single-model (VGG16) test-
ing.

The remainder of this paper is organized as follows: Pre-
vious related approaches are summarized in Sect. 2. The
proposed text detection approach and the training strategy are
described in detail in Sects. 3, 4 and 5, respectively. Section 6
presents our experimental results anddiscussions. Finally, the
conclusion and future work are given in Sect. 7.

2 Related work

2.1 Scene text detection

Existing text detection methods can be roughly divided into
two categories: bottom-up [8,19–28] and top-down methods
[9–13,15,29–37].

Bottom-up methods. Bottom-up methods are generally
composed of three major steps [38], i.e., candidate text con-
nected component (CC) extraction (e.g., based on MSER [7]
or SWT [8]), text/non-text classification and text line group-
ing. Bottom-upmethods, especiallyMSER-based ones, were
once the mainstream methods before the deep learning era
and won the first places in both the ICDAR-2011 [1] and
ICDAR-2013 [2] robust reading competitions. However,
these methods have some notable limitations. For example,
some text in natural scene images cannot be extracted by
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current candidate text CC extraction methods like MSER or
SWT, which affects the recall rate severely [23]. Moreover,
these methods usually generate a large number of non-text
CCs, posing a big challenge to the succeeding text/non-text
classification and text line grouping problems, which makes
the corresponding solutions generally very complicated and
less robust [35]. These methods have fallen behind CNN-
based top-down approaches in terms of both accuracy and
adaptability, especially when dealing with the more chal-
lenging “Incidental Scene Text” [3] and “Multilingual scene
text detection” [4] scenarios.

Top-down methods. CNN-based top-down text detection
approaches have become the mainstream recently. Based
on the basic detection target, these methods can be further
divided into three categories: pixel based, word/line based
and segment based.

1. Pixel based. Pixel-based methods [31,32,39] borrow the
idea of semantic segmentation and employ an FCN to make
a pixel-level text/non-text prediction, which produces a text
saliency map for text detection. However, only coarse text
blocks can be detected from this saliency map [31], so com-
plex post-processing steps are needed to extract accurate
bounding boxes of text lines.

2. Word/line based. Word/line-based methods treat text as
a specific object and leverage state-of-the-art object detec-
tion frameworks to detect words or text lines from images
directly. Jaderberg et al. [33] adapted R-CNN [40] for text
detection, while its performance was limited by the tradi-
tional region proposal generation methods. Gupta et al. [34]
resembled the YOLO framework [41] and employed a fully
convolutional regression network to perform text detection
and bounding box regression at all locations and multiple
scales of an image. Zhong et al. [10] and Liao et al. [11]
employed the anchor-based Faster R-CNN [5] and SSD [6]
frameworks to solve word-level horizontal text detection
problem, respectively. In order to extend Faster R-CNN and
SSD to multi-oriented text detection, Ma et al. [12] and Liu
et al. [13] proposed quadrilateral anchors to hunt for inclined
text proposals which could better fit the multi-oriented text
instances. However, as mentioned above, these anchor-based
methods are not effective and flexible enough for text detec-
tion, which lead to inferior performance. To overcome the
inefficiency of anchor mechanism, Zhou et al. [15] and He
et al. [9] borrowed the idea of DenseBox [14] and used a
one-stage FCN to output pixel-wise textness scores as well
as the quadrilateral bounding boxes through all locations and
scales of an image. Although more flexible, they cannot han-
dle long or large text instances effectively [15]. In this paper,
to address the limitations of anchor mechanism and improve
the capabilities of DenseBox-based approaches, we propose
incorporating the “anchor-free” idea of DenseBox into the
Faster R-CNN framework. Concretely, we propose a novel

AF-RPN to replace the original anchor-basedRPNso that our
adapted Faster R-CNN-based text detector can be robust to
not only multi-oriented text instances, but also long or large
text instances. This is the main contribution of this paper.

3. Segment based. Instead of detecting whole words or text
lines directly, segment-based methods use anchor-based or
DenseBox-based object detection methods to detect text seg-
ments firstly, each of which contains a character (e.g., [37])
or part of a word/text line (e.g., [35,36]). Extracted text seg-
ments are then grouped into text lines with conventional
heuristic text line grouping algorithms [35,37] or the learned
linkage information [36,42]. Our proposed AF-RPN can be
seamlessly leveraged by these methods.

2.2 Anchor mechanism in object detection

Anchor mechanism plays an important role in current state-
of-the-art object detection and instance segmentation meth-
ods, e.g., Faster R-CNN [5], SSD [6], RetinaNet [43] and
Mask R-CNN [44]. Formally, these anchor-based methods
pre-define a set of anchors of different scales and shapes
and use them as reference boxes to predict the correspond-
ing region proposals or the target objects. Therefore, careful
hand-crafted anchor design is critical to the performance
of these anchor-based methods. However, for the domain-
specific scene text detection task, since scene text instances
have wider variability in scales, aspect ratios and especially
orientations than general objects, it requiresmuchmore com-
plicated anchor design, which makes these anchor-based
methods sophisticated and inefficient. To overcome this pain
point, we propose the AF-RPN, which can generate high-
quality text proposals in an anchor-free manner by directly
predicting the offsets from a given sliding point to the bound-
ing box vertices of the concerned text instance.

3 Anchor-free region proposal network

Our proposed AF-RPN is composed of a backbone network
and three scale-specific detection modules. The backbone
network is responsible for computing a multi-scale convo-
lutional feature pyramid over the full input image. Three
detection modules are attached to different pyramid lev-
els and designed to detect small, medium and large text
instances, respectively. Each detection module contains a
small network with two sibling output layers for text/non-
text classification and quadrilateral bounding box regression,
respectively. A schematic view of our AF-RPN architecture
is depicted in Fig. 2, and details are described in the following
subsections.
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Fig. 2 Architecture of the proposed AF-RPN, which consists of an
FPN backbone network [17] and three scale-specific detection modules
(Fig. 1a) for small, medium and large text detection, respectively. Visu-

alization of text proposals after score thresholding and non-maximum
suppression (NMS)

3.1 Network architecture of AF-RPN

We adopt FPN [17] as the backbone network for AF-RPN. In
brief, FPN enhances a standard convolutional network with
a top-down pathway and lateral connections to construct a
rich andmulti-scale feature pyramid from a single-resolution
input image. Each level of the pyramid can be effectively
used for detecting objects of scales within a specific range.
Webuild FPNon top of the conventionalVGG16 architecture
[45] instead of ResNets [46] for fairer comparison with other
methods.Here,we construct a feature pyramidwith three lev-
els, i.e., P3, P4 and P5,whose strides are 4, 8, 16, respectively.
All feature pyramid levels have C = 256 channels. We refer
readers to [17] for further implementation details.

Three scale-specific detection modules are attached to P3,
P4 and P5, respectively. Similar to RPN [5], each detec-
tion module can be considered as a sliding window detector,
which uses a small network to perform text/non-text clas-
sification and quadrilateral bounding box regression in each
3×3 slidingwindowon a single-scale pyramid level (Fig. 1a).
As depicted in the right part of Fig. 2, the small network
is implemented as a 3 × 3 convolutional layer followed
by two sibling 1 × 1 convolutional layers, which are used
for predicting textness score and bounding box coordinates,
respectively. We propose a scale-friendly learning method
to learn three detection modules that are designed to detect
small,mediumand large text instances, respectively. This can
effectively relieve the learning difficulties in the text/non-text
classification and bounding box regression of each detection
module, thus making AF-RPN be able to deal with large text

scale variance more robustly. The details of scale division
are described in Sect. 3.2, and the ground-truth definition of
AF-RPN is elaborated in Sect. 3.3.

3.2 Scale-friendly learning

In the training stage, we assign text instances to the three
detection modules of AF-RPN based on the spatial sizes of
their features on the corresponding pyramid levels.Wedesign
a series of controlled experiments on the large-scale COCO-
Text dataset and observe that, when the scales (i.e., shorter
sides) of the features for text instances on a pyramid level are
less than 3 pixels (px), the performance of the correspond-
ing detection module degrades dramatically. Experiments
are described as follows: First, we train a detection mod-
ule attached to P4 (DM-P4) to specially detect text instances
whose scales are less than 48px in the resized images. To
achieve this, only ground-truth bounding boxes on the train-
ing set of COCO-Text within this scale range are selected
for training, and others are ignored. Then we select the top-
300 scoring detection results to compute the recall rate at an
IoU threshold of 0.5 on the validation set of COCO-Text.
The results are listed in the first part of Table 1. It can be
seen that DM-P4 achieves a high recall rate of 93.05% and
97.37% in the text scale range of [24px, 36px] and [36px,
48px], while the recall rate in the text scale range of [1px,
12px] and [12px, 24px] is degraded to 30.34% and 76.00%,
respectively. It should be noted that there are lots of small text
instances whose scales are less than 24px in the training set.
So this degraded performance must be caused by their insuf-
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Table 1 Recall rate in each text
scale range on COCO-Text for
two scale-specific detection
modules (DM-P4 and DM-P3)
of AF-RPN

Detection module Text scale range (px)

[1, 12] (%) [12, 24] (%) [24, 36] (%) [36, 48] (%)

DM-P4 30.34 76.00 93.05 97.37

DM-P3 47.75 91.36 – –

Testing images are resized such that their short sides have 800px

ficient features on P4, whose scales have less than 3px. To
further confirm this assumption, we train another detection
module attached to P3 (DM-P3) to detect small text instances
whose scales are less than 24px with the similar training
strategy. As shown in the second part of Table 1, DM-P3 sig-
nificantly improves the recall rate in the text scale range of
[12px, 24px] from 76.00 to 91.36%. However, DM-P3 still
struggles with extreme text instances whose scales are less
than 12px because the scales of their features on P3 are still
less than 3px.

Therefore, based on these observations, when assigning
a text instance to a pyramid level, we ensure that the scale
of its features on this pyramid level has no less than 3px.
As the strides of P3, P4 and P5 are 4, 8, 16px, the scales
of text instances assigned to them should have no less than
12, 24 and 48px, respectively. Consequently, we classify text
instances into three groups according to their scales (shorter
side lengths), i.e., small text (<24px), medium text (24px-
48px) and large text (> 48 px).

3.3 Label generation

Text instances in text detection tasks are usually labeled
in word level with quadrilateral or axis-aligned bounding
boxes. To ease implementation, for quadrilateral bounding
boxes, we use their minimum enclosing boxes (oriented rect-
angles) as new ground-truth bounding boxes (dashed lines in
Fig. 1b). It is inevitable that some surrounding backgrounds
can be included in the ground-truth bounding boxes when
they are not tight enough. To reduce the influence of back-
groundnoise on text/non-text classification, following [9,15],
we shrink the short and long sides of each ground-truth rect-
angle by the scaling factors of 0.5 and 0.8, respectively,
to create the corresponding core text region (solid lines in
Fig. 1a), and only sliding points within core regions are taken
as positive. Sliding points outside core regions but inside
ground-truth rectangles are assigned a “DON’TCARE” label
and are ignored during training (Fig. 1b). Sliding points
outside all ground-truth rectangles are taken as negative.
For each positive sliding point, we predict the coordinates
of its bounding box directly. Let pt = (xt , yt ) denote a
positive sliding point, which is located in a ground-truth
rectangle G. Let {pi = (xi , yi )|i ∈ {1, 2, 3, 4}} denote the
vertices ofG. Then the coordinate offsets from pt tpG’s ver-
tices can be denoted as {�i = (�xi ,�yi )|i ∈ {1, 2, 3, 4}},

where �xi = (xi − xt ) and �yi = (yi − yt ) (Fig. 1c).
Considering the fact that the numerical ranges of �xi and
�yi could be very large, we normalize them as follows:
�xi = (xi − xt )/norm, �yi = (yi − yt )/norm, where
norm represents the normalization term. If pt is on P3
or P4, norm is set as the upper bound of the correspond-
ing scale range, i.e., norm = 24 or norm = 48. If pt
is on P5, norm is set as a proportion of the RF of P5
(related to 3 × 3 units), i.e., norm = αRFP5 , where α =
0.5.

4 Faster R-CNNwith AF-RPN

Given an input image, we first use AF-RPN to perform
the first-stage text detection, after which the top-N1 scor-
ing detection results of each detection module of AF-RPN
are selected to construct a proposal set {P}. Then, we use the
standard non-maximum suppression (NMS) algorithm with
an IoU threshold of 0.7 to remove redundant proposals in {P}
and select the top-N2 scoring proposals. Both N1 and N2 are
set to 2000 in the training stage, and 300 in the testing stage.
Next, we adopt the same scale division criterion illustrated
in Sect. 3.2 to classify text proposals into small, medium and
large text proposal groups, which are assigned to pyramid
levels P3, P4 and P5, respectively.

In the second stage, similar to AF-RPN, three individual
Fast R-CNN detectors, which do not share parameters, are
attached to pyramid levels P3, P4 and P5, respectively. For
each proposal, we adopt RoI Align algorithm [44] to extract
7×7 features from its assigned pyramid level and attach two
2048-d fully connected (fc) layers (each followed by ReLU)
before the final text/non-text classification and bounding box
regression layers. A schematic view of the Fast R-CNNmod-
ule is depicted in Fig. 3.

5 Training

5.1 Loss function

Multi-task loss for AF-RPN. There are two sibling out-
put layers for each scale-specific detection module, i.e., a
text/non-text classification layer and a quadrilateral bound-
ing box regression layer. The multi-task loss function for
each detection module is denoted as follows:
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Fig. 3 A schematic view of the Fast R-CNN module based on an FPN
backbone network [17]. Text proposals generated by AF-RPN are clas-
sified into small, medium and large text proposal groups according to
the scale division criterion illustrated in Sect. 3.2. Three individual Fast
R-CNN detectors are attached to P3, P4 and P5 and designed to deal
with small, medium and large text proposals, respectively. The design
of each Fast R-CNN detector’s head is very simple, which just includes
two 2048-d fc layers before the final predictions

L(c, c∗, t, t∗) = λclsLcls(c, c
∗) + λlocL loc(t, t

∗), (1)

where c and c∗ are predicted and ground-truth labels for
each sliding point, respectively, Lcls(c, c∗) is a softmax loss
for classification tasks, t and t∗ represent the predicted and
ground-truth 8-dimensional normalized coordinate offsets
from pt to G, L loc(t, t∗) is a smooth-L1 loss [47] for regres-
sion tasks, λcls and λloc are two loss-balancing parameters,
and we set λcls = 1 and λloc = 3.

The total loss of AF-RPN is the sum of the losses of three
scale-specific detection modules.

Multi-task loss for Fast R-CNN. The loss function for each
individual Fast R-CNN detector is the same as Eq. (1). Only
the parameters λcls and λloc are set differently. Here, we set
λcls = 1 and λloc = 1. Moreover, compared with AF-RPN,
there are some differences in coordinate offsets normaliza-
tion for the quadrilateral bounding box regression task. Let
P be an input proposal and (Px , Py, Pw, Ph) be the center
coordinates, height and width of its axis-aligned bounding
box, respectively. We directly use Pw and Ph to normalize
the coordinate offsets from (Px , Py) to G’s vertices as fol-
lows: �xi = (xi − Px )/Pw, �yi = (yi − Py)/Ph , where
i ∈ {1, 2, 3, 4}. The total loss of Fast R-CNN is the sum of
losses of three individual Fast R-CNN detectors.

5.2 Training details

In each training iteration of AF-RPN, we sample a mini-
batch of 128 positive and 128 negative sliding points for each
detection module. Similarly, for Fast R-CNN, we sample a
mini-batch of 64 positive and 64 negative text proposals for
each individual Fast R-CNN detector. A proposal is assigned

a positive label if it has an IoU over 0.5 with any ground-truth
bounding box, and a negative label if its IoU overlap is less
than 0.3 for all ground-truth bounding boxes. For efficiency,
the IoU overlaps between proposals and ground-truth boxes
are calculated using their axis-aligned rectangular bounding
boxes. Note that each ground-truth bounding box is assigned
to only one detection module of AF-RPN or one Fast R-
CNN detector according to the text scale division criterion
illustrated in Sect. 3.2 and ignored by other two in the training
stage.

6 Experiments

6.1 Datasets and evaluation protocols

To evaluate the performance of the proposed approach, we
conduct experiments on four standard text detection bench-
mark tasks, including ICDAR-2017 MLT [4], COCO-Text
[18], ICDAR-2015 [3] and ICDAR-2013 [2]. Text instances
are labeled in word level with quadrilateral bounding boxes
in the former two datasets and axis-aligned rectangular
bounding boxes in the ICDAR-2013 dataset. Two kinds of
bounding boxes are labeled in COCO-Text. ICDAR-2017
MLT is built for the Multilingual scene text detection and
script identification challenge in the ICDAR-2017 Robust
Reading Competition, which includes 9 languages: Chinese,
Japanese, Korean, English, French, Arabic, Italian, German
and Indian. It contains 7200, 1800 and 9000 images for train-
ing, validation and testing, respectively. COCO-Text is a
large-scale dataset with 43,686 training, 10,000 validation
and 10,000 testing images, which is another text detection
challenge in the ICDAR-2017 Robust Reading Competition
[48]. ICDAR-2015 is built for the Incidental Scene Text
challenge in the ICDAR-2015 Robust Reading Competition,
which contains 1000 and 500 images for training and testing.
ICDAR-2013 is a horizontal text detection dataset, with 229
images for training and 233 for testing.

The standard performance metrics for text detection are
precision, recall and F-measure rates. To make our results
comparable to others, we use the online official evaluation
tools to evaluate the performance of our approach on the
ICDAR-2017MLT, COCO-Text, ICDAR-2015 and ICDAR-
2013 testing sets. We use recall rate as an evaluation metric
to compare the performance of different region proposal gen-
eration approaches on the COCO-Text validation set and
ICDAR-2015 testing set.

6.2 Implementation details

The weights of VGG16 related layers in the FPN backbone
network are initialized by using a pre-trained VGG16 model
for the ImageNet classification task [45]. The weights of the

123



An anchor-free region proposal network for Faster R-CNN-based text detection approaches 321

new layers for FPN, AF-RPN and Fast R-CNN are initialized
by using random weights with a Gaussian distribution of
mean 0 and standard deviation 0.01. The training process
can be separated into two stages: In the first stage, we train
the AF-RPN model until convergence. Then in the second
stage, we use this well-trained AF-RPN model to initialize
the Faster R-CNN model, which is then jointly fine-tuned in
an end-to-end manner. All the models are optimized by the
standard SGD algorithmwith amomentum of 0.9 andweight
decay of 0.0005.

The number of training iterations and adjustment strat-
egy of learning rate depend on the size of different datasets.
Specifically, for ICDAR-2017 MLT, we use the training and
validation data, i.e., a total of 9000 images for training. Both
AF-RPN and Faster R-CNN models are trained for 400K
iterations with an initial learning rate of 0.001, which is then
divided by 10 at 180K and 360K iterations. As the train-
ing sets of ICDAR-2015 and ICDAR-2013 are too small,
some previous methods usually use some larger datasets
like VGG SynthText [34] to pre-train their models. To make
our experimental results reproducible, we follow [49] to use
the model trained on ICDAR-2017 MLT as our pre-trained
model, which is then fine-tuned on the training set of ICDAR-
2015 and ICDAR-2013, respectively. All models for these
two datasets are trained for 50K iterations with an initial
learning rate of 0.0005, which is divided by 5 at 20K and
40K iterations. For COCO-Text, we trainmodels on its train-
ing set and report region proposal generation results and text
detection results on its validation set and testing set, respec-
tively. All models are trained for 500K iterations with an
initial learning rate of 0.001, which is then divided by 10 at
200K and 400K iterations.

We implement our approach based on Detectron [50], and
experiments are conducted on a workstation with 4 Nvidia
P100 GPUs. We adopt a multi-scale training strategy. The
scale S is defined as the length of the shorter side of an
image. In each training iteration, a selected training image is
individually rescaled by randomly sampling a scale S from
the set {448, 608, 768, 928, 1088}.

6.3 Region proposal quality evaluation

6.3.1 Comparison with prior arts

We compare our proposed AF-RPN to RPN and FPN–RPN
for the rectangular proposal generation task on COCO-Text
firstly and then compare AF-RPN to RRPN and FPN–RRPN
for the quadrilateral proposal generation task on ICDAR-
2015. We evaluate the recall rates R0.5

# and R0.75
# at a single

IoU threshold of 0.5 and 0.75, respectively, while we also
evaluate the average recall rate AR0.5:0.05:0.95

# at multiple IoU
thresholds between 0.50 and 0.95 with an interval of 0.05,
when using a given fixed number (#) of text proposals. We

report results for 50, 100 and 300 proposals per image (300
proposals are used for Fast R-CNN in testing stage). The
scale S for all testing images is set as 800 for all experiments
in this section.

Rectangular proposal. For fair comparison, we design a
complicated set of anchors forRPNandFPN–RPN following
[10]. Specifically, for RPN, we use 3 scales {32, 64, 128} and
6 aspect ratios {0.2, 0.5, 0.8, 1.0, 1.2, 1.5}, i.e., 18 anchors, at
each sliding position on C5. For FPN–RPN, we use 6 aspect
ratios and a single scale in {32, 64, 128}, i.e., 6 anchors, at
each position on each pyramid level in {P3, P4, P5}. In the
training stage of RPN and FPN–RPN, an anchor is assigned
a positive label if it has the highest IoU for a given ground-
truth box or an IoU over 0.5 with any ground-truth box, and
a negative label if it has an IoU less than 0.1 for all ground-
truth boxes as in [10]. The training strategies are kept the
same as AF-RPN.

The results are listed in Table 2a–c. It can be seen that our
proposed AF-RPN outperforms RPN and FPN–RPN sub-
stantially in all evaluation metrics on COCO-Text, which
demonstrates the effectiveness of our proposed AF-RPN.
When the evaluated number of proposals drops from 300
to 50, the improvements are much more significant.

Quadrilateral proposal. In order to hunt for inclined text
proposals, following [12], we design a set of rotated anchors
to achieve RRPN and FPN–RRPN. For RRPN, we use the
above 3 scales, 6 aspect ratios and the additional 6 ori-
entations {−π/6, 0, π/6, π/3, π/2, 2π/3}, i.e., 108 rotated
anchors, at each sliding position on C5. Similarly, for FPN–
RRPN, we apply 6 aspect ratios, 6 orientations and a single
scale, i.e., 36 anchors, at each position on each pyramid level.
During training, we assign a positive label to a rotated anchor
if it has the highest Skewed IoU [12] for a given ground-truth
box or a Skewed IoU over 0.5 with any ground-truth box,
while the intersection orientation with the matched ground-
truth is less thanπ/12.A rotated anchor is assigned a negative
label if it has a Skewed IoU less than 0.1 for all ground-truth
boxes.

As shown in Table 2g–i, AF-RPN achieves 86.5%, 90.4%
and 94.1% in R0.5

50 , R0.75
100 and AR0.5:0.05:0.95

300 on ICDAR-
2015, respectively, outperforming RRPN and FPN–RRPN
by a large margin.

6.3.2 Ablation study on using different pyramid levels

We conduct a series of ablation experiments by using differ-
ent pyramid levels to evaluate rectangular proposal quality
on COCO-Text. As shown in Table 2c–f, the performance
of the AF-RPN model that uses all pyramid levels (P3, P4
and P5) is much better than that uses only one (P3) or two
(P3 and P4 or P4 and P5) pyramid levels. Furthermore, we
also calculate the recall rate R0.5

300 of the AF-RPN model that
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Table 2 Region proposal quality evaluation on COCO-Text and ICDAR-2015 (%)

Method Feature #Anchor / #sp (k) R0.5
50 R0.75

50 AR0.5:0.05:0.95
50 R0.5

100 R0.75
100 AR0.5:0.05:0.95

100 R0.5
300 R0.75

300 AR0.5:0.05:0.95
300

Rectangular proposal quality evaluation on COCO-text

(a) RPN C5 45 70.5 27.3 33.6 80.1 32.8 39.2 88.3 38.5 44.5

(b) FPN–RPN {Pk} 315 69.5 30.3 34.9 79.6 38.8 41.8 90.0 50.2 50.0

(c) AF-RPN {Pk} 52.5 78.0 37.5 40.7 86.1 43.8 46.2 92.3 51.3 51.5

(d) AF-RPN P3 40 76.0 33.8 38.4 85.3 39.9 44.2 89.1 44.7 47.5

(e) AF-RPN {P3, P4} 50 77.1 35.0 39.2 85.3 40.9 44.5 91.3 46.9 49.0

(f) AF-RPN {P4, P5} 12.5 76.3 33.6 38.3 82.9 37.8 42.3 86.9 41.3 45.2

Quadrilateral proposal quality evaluation on ICDAR-2015

(g) RRPN C5 270 76.8 27.5 36.2 82.2 31.5 39.8 88.8 35.5 43.5

(h) FPN–RRPN {Pk} 1890 81.9 42.7 44.0 86.7 47.7 47.6 90.3 52.5 50.7

(i) AF-RPN {Pk} 52.5 86.5 48.3 47.8 90.4 52.1 50.6 94.1 55.1 53.1

The column “feature” denotes the feature maps on which the prediction layers are attached. The column “#anchor / #sp” represents the number of
anchors or sliding points used during inference for anchor-based region proposal networks and our proposed AF-RPN, respectively

Fig. 4 Recall rate (R0.5
300) of the AF-RPN model that uses all pyramid

levels in each text scale range on COCO-Text

uses all pyramid levels in each text scale range. As shown in
Fig. 4, the proposed AF-RPN can deal with large text scale
variance robustly, while it cannot perform equally well for
those extremely small text instances (< 12 px) because of
their low-resolution features (< 3 px) on P3 as analyzed in
Sect. 3.2.

6.4 Text detection performance evaluation

In this section, we evaluate our proposed Faster R-CNN-
based text detection approach on ICDAR-2017MLT,COCO-
Text, ICDAR-2015 and ICDAR-2013. We use the top-300
scoring text proposals generated by AF-RPN for the suc-
ceeding Fast R-CNN. Detection results from different Fast
R-CNNdetectors are aggregatedwith SkewedNMS [12]. All

Table 3 Comparison with prior arts on ICDAR-2017 MLT (%)

Method Recall Precision F-measure

linkage-ER-Flow† [4] 25.59 44.48 32.49

TH-DL† [4] 34.78 67.75 45.97

SARI_FDU_RRPN_v2† [4] 55.37 67.07 60.66

SARI_FDU_RRPN_v1† [4] 55.50 71.17 62.37

Sensetime OCR† [4] 69.43 56.93 62.56

SCUT_DLVClab1† [4] 54.54 80.28 64.96

He et al. [9] + MS 57.94 76.69 66.01

Liu et al. [49] 57.45 79.48 66.69

Lyu et al. [51] 55.60 83.80 66.80

Lyu et al. [51] + MS 70.60 74.30 72.40

Proposed 66.67 79.49 72.52

†Indicates the ICDAR-2017 MLT competition results. MS stands for
using multi-scale testing

the experiments are based on single-model and single-scale
testing. The scale of testing image S is set as 1440, 800, 800
and 512 for ICDAR-2017 MLT, COCO-Text, ICDAR-2015
and ICDAR-2013, respectively. We compare the perfor-
mance of our approachwith othermost competitive results on
these four benchmark tasks. For fair comparisons, we report
all results without using recognition information.

ICDAR-2017 MLT. We collect competition results as well
as recent results reported in the published literatures on
this benchmark for comprehensive comparisons. As shown
in Table 3, our approach outperforms the top-1 competi-
tion result remarkably by improving F-measure from 64.96
to 72.52%. Furthermore, our approach improves the most
competing method [51] by 5.72% in F-measure when the
single-scale testing is used in both methods. Although [51]
has applied a multi-scale testing strategy for extremely push-
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Fig. 5 Detection results of our approach: first–second col: ICDAR-2017 MLT; third–fourth col: ICDAR-2015; fifth col: COCO-Text; sixth col:
ICDAR-2013

ing performance from 66.80 to 72.40%, their result is still
inferior to our single-scale testing one. Considering that
ICDAR-2017 MLT is a large-scale, extremely challenging,
and the first Multilingual text detection dataset, the superior
performance achieved by our proposed approach can demon-
strate the advantage of our approach.

COCO-Text. As shown in Table 4, our approach outper-
forms the closest method [51] substantially by improving
F-measure from 62.60 to 65.07% when the IoU threshold
is set as 0.5. Furthermore, when the evaluation criterion
becomes stricter, i.e., IoU threshold is set as 0.75, our
approach still achieves the best result of 36.45% in F-
measure.

ICDAR-2015. On the challenging ICDAR-2015 task, as
shown in Table 5, our approach achieves the best result
of 82.96%, 90.02% and 86.34% in recall, precision and
F-measure, respectively, outperforming other recently pub-
lished CNN-based approaches substantially.

ICDAR-2013. We also evaluate our approach on ICDAR-
2013, which is a popular dataset for horizontal text detection.
As shown in Table 6, although ICDAR-2013 has been well
tuned bymany previous methods, our approach still achieves
the best result of 91.92% in F-measure.

Inference time. Based on our current implementation, our
text detector has an inference time of 0.40 s, 0.18 s, 0.20 s
and 0.16 s per image when using a single P100 GPU for S =
1440, S = 800, S = 800 and S = 512 on ICDAR-2017MLT,
COCO-Text, ICDAR-2015 and ICDAR-2013, respectively.

Table 4 Comparison with prior arts on COCO-Text (%)

Method Recall Precision F-measure

IoU = 0.5 criterion

HappyCCL [48] 64.82 44.88 53.04

UM [48] 65.47 47.58 55.11

Lyu et al. [51] 52.90 72.50 61.10

Liao et al. [52] + MS 57.00 64.00 61.00

Text_Detection_DL [48] 61.81 60.90 61.35

Lyu et al. [51] + MS 62.20 62.90 62.60

Proposed 58.34 73.56 65.07

IoU = 0.75 criterion

HappyCCL [48] 27.89 19.31 22.82

Text_Detection_DL [48] 25.54 25.16 25.35

UM [48] 31.21 22.68 26.27

Lyu et al. [51] 30.00 40.00 34.60

Lyu et al. [51] + MS 34.80 35.10 34.90

Liao et al. [52] + MS 34.00 38.00 36.00

Proposed 32.68 41.21 36.45

R, P and F stand for recall, precision and F-measure, respectively. MS
means using multi-scale testing

Qualitative results. The superior performance achieved
on the above four datasets demonstrates the effectiveness
and robustness of our Faster R-CNN-based text detection
approach. As shown in Fig. 5, our text detector can detect
scene text regions under various challenging conditions, such
as multiple languages, low resolution, non-uniform illumi-
nation, large aspect ratios as well as varying orientations.
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Table 5 Comparison with prior arts on ICDAR-2015 (%)

Method Recall Precision F-measure

1st ICDAR’ 2015 [3] 36.74 77.46 49.84

Liu et al. [13] 68.22 73.23 70.64

Shi et al. [36] 76.80 73.10 75.00

Ma et al. [12] 73.23 82.17 77.44

Han et al. [37] + MS 77.03 79.33 78.16

Zhou et al. [15] (VGG16) 72.75 80.46 76.41

Zhou et al. [15] (PVANET2x + MS) 78.33 83.27 80.72

He et al. [9] + MS 80.00 82.00 81.00

Deng et al. [42] 82.00 85.50 83.70

Lyu et al. [51] + MS 79.70 89.50 84.30

Liu et al. [49] 82.04 88.84 85.31

Proposed 82.96 90.02 86.34

MS stands for using multi-scale testing

6.4.1 Component evaluation

In this section, we conduct a series of ablation experiments to
evaluate the effectiveness of each component of our approach
on ICDAR-2017 MLT and ICDAR-2015. All models are

trained with the same hyper-parameters for fair comparison,
and all the results are based on single-scale and single-model
testing.

Effectiveness of multi-scale predictions with scale-
friendly learning. Other than being used as a region pro-
posal generator, our proposed AF-RPN itself can be used as
a one-stage text detector. Here, we evaluate the text detection
performance of AF-RPN as well as its variants. We first train
an AF-RPN model that uses only one pyramid level (P3),
which can be considered as a re-implementation of EAST
[15] with a VGG16-FPN backbone network. As shown in
the first part of Table 7, this model obtains an F-measure
of 54.48% and 81.27% on ICDAR-2017 MLT and ICDAR-
2015, respectively. Note that in the original implementation
of EAST, the shrinking ratios for the short and long sides
of each ground-truth bounding box are both set as 0.7. We
follow this setting and retrain the above AF-RPN model. As
shown in the second part of Table 7, the text detection results
are comparable on these two datasets, which demonstrates
that our AF-RPN model is insensitive to these two shrinking
ratios to some extent. Furthermore, we train anotherAF-RPN
model that uses all pyramid levels but does not apply the pro-
posed scale-friendly learning strategy. We can observe that,

Table 6 Comparison with prior
arts on ICDAR-2013 (%)

Method Recall Precision F-measure

1st ICDAR’ 2013 [2] 69.28 88.80 77.83

Gupta et al. [34] 75.50 92.00 83.00

Zhong et al. [10] 83.00 87.00 85.00

Liao et al. [11] + MS 83.00 89.00 85.89

Zhou et al. [15] 82.67 92.64 87.37

He et al. [9] + MS 86.16 89.26 87.68

Lyu et al. [51] + MS 84.40 92.20 88.00

Deng et al. [42] + MS 87.50 88.60 88.10

Han et al. [37] + MS 87.53 93.34 90.34

Proposed 90.06 93.84 91.92

MS stands for using multi-scale testing

Table 7 Component evaluation on ICDAR-2017 MLT and ICDAR-2015 (%)

Feature Shrinking ratio Scale-friendly learning? Fast R-CNN? ICDAR-2017 MLT ICDAR-2015

R P F R P F

P3 0.8 × 0.5 − × 51.41 57.94 54.48 78.96 84.15 81.47

� 62.72 78.91 69.89 82.14 89.65 85.73

P3 0.7 × 0.7 − × 51.77 57.36 54.42 79.59 83.02 81.27

� 62.72 78.76 69.83 82.43 88.94 85.56

{Pk} 0.8 × 0.5 × × 52.53 57.13 54.74 79.73 83.55 81.59

� 63.60 78.26 70.17 82.43 89.35 85.75

{Pk} 0.8 × 0.5 � × 59.58 64.97 62.16 79.30 88.55 83.67

� 66.67 79.49 72.52 82.96 90.02 86.34

R, P and F stand for recall, precision and F-measure, respectively
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Fig. 6 Qualitative detection results of AF-RPN and our Faster R-CNN-
based text detector. Red ellipses represent wrongly detected text caused
by unsatisfactory localization accuracy of AF-RPN. It can be seen that
ourFasterR-CNN-based text detector can effectively improve text local-
ization accuracy (best viewed in color)

although using multi-scale predictions on all pyramid levels,
the results of this AF-RPNmodel on ICDAR-2017MLT and
ICDAR-2015 are just marginally better than that of AF-RPN
only attached on P3 (the third part of Table 7). This indicates
that directly extending single-scale prediction to multi-scale
predictions cannot achieve satisfactory enough performance.
To address this issue, we propose a scale-friendly learning
strategy to let each detection module handle text instances
of scales within an appropriate range. In this way, the learn-
ing difficulty of textness score prediction and bounding box
regression problems for each detection module can be effec-
tively relieved. Therefore, the whole AF-RPN model can
deal with large text scale variance more robustly, leading
to a 2.20% F-measure improvement on ICDAR-2015 and
more gain of 7.42% on ICDAR-2017 MLT (the fourth part
of Table 7).

Effectiveness of FastR-CNN. One of themain contributions
of our paper is that we propose to use AF-RPN as a new
region proposal network for the Faster R-CNN framework.
Here, we compare the text detection performance ofAF-RPN
(its variants) with the Faster R-CNN-based two-stage text
detector to figure out the influence of the second-stage Fast
R-CNN. As shown in Table 7, nomatter using single-scale or
multi-scale predictions, the Faster R-CNN-based two-stage
text detector outperforms the corresponding AF-RPN-based
one-stage text detector remarkably by improving F-measure
by more than 2.67% on ICDAR-2015 and more than 10.36%
on ICDAR-2017 MLT, respectively. Note that the gains on
ICDAR-2017 MLT are more significant because there are
many long text lines in Chinese, Japanese andKorean, whose
localization accuracy can be effectively improved by Fast R-
CNN. The large improvements in both precision and recall
rates demonstrate the effectiveness of the second-stage Fast

Fig. 7 Some failure examples. Blue dashed boxes: missed ground-truth
bounding boxes. Gray dashed boxes: ignored ground-truth bounding
boxes. Green solid boxes are correctly detected bounding boxes, while
green dashed ones are wrongly detected bounding boxes (best viewed
in color)

R-CNN detector. Some qualitative comparison results are
presented in Fig. 6.

6.5 Discussion

6.5.1 Comparisons with relevant methods

In this section, we compare our approachwith other most rel-
evant scene text detection methods for better understanding
the superiority of our approach.

Comparisonswith anchor-basedFasterR-CNNmethods.
Zhong et al. [10] employed Faster R-CNN with complicated
and text-specific anchor designs to perform horizontal text
detection. To extend Faster R-CNN to multi-oriented text
detection, Ma et al. [12] introduced a rotated anchor strategy.
However, owing to the inefficiency of anchor mechanism for
text detection, the performances of these anchor-based meth-
ods are obviously inferior to our anchor-free approach, i.e.,
85.00% [10] versus 91.92% in F-measure on ICDAR-2013,
and 77.44% [12] versus 86.34% in F-measure on ICDAR-
2015, respectively.

Comparisons with DenseBox-based methods. Although
DenseBox-based text detection methods [9,15] also make
use of the “anchor-free” concept, their capability is lim-
ited for large or long text, which could be a common issue
for one-stage text detectors. Our Faster R-CNN-based two-
stage approach, i.e., AF-RPN + Fast R-CNN, can overcome
this limitation effectively as demonstrated in Sect. 6.4.1.
Therefore, compared with [9], our approach improves the
F-measure by 5.34% on ICDAR-2015 and achieves more
gain of 6.51% on ICDAR-2017 MLT. More comprehensive
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comparisons with EAST [15] can be seen in the first part of
Sect. 6.4.1.

6.5.2 Limitations of our approach

Although our proposed approach shows superior capability
in most scenarios as demonstrated by the above experimental
results, it still has some limitations. First, our approach cannot
work equally well in certain cases, such as very low contrast,
serious blur and complex layouts like large character spacing
and ambiguous alignment. Some failure cases are depicted
in Fig. 7. Second, our approach still struggles with extremely
small text instances whose shorter sides are less than 12px in
resized images. A possible solution is to introduce the pyra-
mid level P2 with a stride of 2 for detecting these extremely
small text. But this would lead to high computation. So, more
researches are needed to address this challenging problem.
Moreover, our approach cannot robustly deal with curved
text instances. But the proposed AF-RPN can be seamlessly
incorporated into the recent Mask R-CNN framework [44]
that can effectively handle curved text instances from a per-
spective of instance segmentation, whichwould be our future
work.

7 Conclusion and future work

In this paper, we present AF-RPN as an anchor-free and
scale-friendly region proposal network for the Faster R-
CNN framework. Comprehensive comparisons with RPN,
FPN–RPN, RRPN and FPN–RRPN on COCO-Text and
ICDAR-2015 datasets demonstrate the superior performance
of our proposed AF-RPN used as a new region proposal net-
work. Owing to the high-quality text proposals, our Faster
R-CNN-based text detector, i.e., AF-RPN + Fast R-CNN,
achieves state-of-the-art results on the ICDAR-2017 MLT,
COCO-Text, ICDAR-2015 and ICDAR-2013 text detection
benchmark tasks by only using single-scale and single-model
testing. Future direction is to explore the effectiveness of the
proposed AF-RPN in other detection tasks, such as generic
object detection, face detection and pedestrian detection.
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