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Abstract
This work presents a two-stage text line detection method for historical documents. Each detected text line is represented by
its baseline. In a first stage, a deep neural network called ARU-Net labels pixels to belong to one of the three classes: baseline,
separator and other. The separator class marks beginning and end of each text line. The ARU-Net is trainable from scratch
with manageably few manually annotated example images (< 50). This is achieved by utilizing data augmentation strategies.
The network predictions are used as input for the second stage which performs a bottom-up clustering to build baselines. The
developed method is capable of handling complex layouts as well as curved and arbitrarily oriented text lines. It substantially
outperforms current state-of-the-art approaches. For example, for the complex track of the cBAD: ICDAR2017 Competition
on Baseline Detection the F value is increased from 0.859 to 0.922. The framework to train and run the ARU-Net is open
source.
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1 Introduction

Accessibility of the valuable cultural heritage of historical
documents is an important concern of archives, libraries as
well as certain companies, e.g., those specialized in geneal-
ogy.After years of digitization at an industrial scale to protect
and preserve these valuable goods, millions over millions
of scanned pages are stored at servers all over the world
[1]. The generic next step is to make the enormous amount
of content of these document images accessible and enable
humanists, historians, genealogists as well as ordinary peo-
ple to efficiently work with these documents. Besides the
cost- and time-consuming process of manually annotating
volumes [2], it is subject to current research and scientific
discussion how to automate this process [3].
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Since 2009, tremendous progress in thefield ofAutomated
Text Recognition1 (ATR) [4,5] as well as Keyword Spotting
(KWS) [6–8] was achieved. The performance of state-of-the-
art systems reaches character error rates below 10% for ATR
[9] and mean average precisions above 0.9 for KWS [10]
for complex handwritten documents. Although efforts are
made to develop systems working solely on the rough input
image without any a-priori segmentation [11–13], the best
performing recognition systems—with reference to recently
hosted competitions—rely on segmented words or text lines
as input. Entirely segmentation-free approaches suffer either
from an enormous training/inference time and/or, up to now,
did not demonstrate its applicability with competitive qual-
ity on challenging datasets [10]. Hence, a workflow which
involves a text line extraction followed by the transformation
of pixel information into textual information (ATR/KWS) is
thewidely used standard. Thiswork dealswith thefirst step of
the information retrieval pipeline, namely the text line extrac-
tion. This is a mandatory step since errors directly effect
the performance of the overall information retrieval process.
The text line extraction is still unsolved to a certain extent
for historical documents due to difficulties such as physi-
cal degradations (e.g., bleed-through, faded away characters,
heterogeneous stroke intensity), image capture conditions
(e.g., scan curve, illumination issues), complex layouts (e.g.,

1 Optical Character Recognition + Handwritten Text Recognition.
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structured documents, marginalia, multi-column layouts,
varying font sizes), arbitrary orientations and curved text
lines.

The results achieved by state-of-the-art approaches are not
satisfying [14], especially if dealingwith heterogeneous data.
Therefore, this work focuses on the extraction of text lines
in arbitrary historical documents. Since different ATR/KWS
systems necessitate different text line representations, e.g.,
bounding boxes [15], x-height areas [16] or more pre-
cise polygonal representations following all ascenders and
descenders [7], there is not the one correct text line repre-
sentation. Therefore, we limit ourselves toward the text line
detection task by representing each text line by its baseline.
The detected baselines allow for an extraction of the text lines
in an appropriate—with respect to the followingmethodway.
The problem of extracting a text line given its baseline has
to handle problems like touching or overlapping components
and can be tackled by applying, e.g., histogram approaches
to estimate the x-height [16] or by utilizing dynamic pro-
gramming to calculate separating seams [17] However, this
is not within the scope of this work.

Besides the classical image processing-based approaches,
deep learning-based methods became omnipresent in the
document analysis community within the last years. Such
techniques were recently used to solve several different prob-
lems such as binarization [18], page boundary extraction
[19], page segmentation [20] or text line detection [16]. The
presented work to our knowledge is the first which uses a
two-stage method, combining deep learning strategies and
state-of-the-art image processing-based techniques. We pro-
pose an extension of the U-Net [21], the so-called ARU-Net.
The fully convolutional U-Net is extended by incorporating
residual blocks [22] to increase its representative power. Fur-
thermore, a spatial attention mechanism is developed which
allows the ARU-Net to focus on image content at different
positions and scales. The network is designed to processes
the entire, arbitrarily-sized image at once to take account of
all spatial context. The ARU-Net is universal in a way that it
could be used to tackle any pixel labeling task. In this work,
it is trained in a fully supervised fashion to classify each pixel
to belong to one of the following classes: baseline, separator
and other. The separator class is introduced to explicitly pre-
dict beginning and end of each text line and not just rely on
the information implicitly given by the baseline class. This is
advantageous for text lines which are close together but have
to be separated, e.g., those belonging to different columns.
The network output serves as input for an image processing-
based bottom-up clustering approach. This approach utilizes
so-called states of superpixels [23], which encode local text
orientation and interline distances. This second stage allows
for an error correction of the network output by incorporat-
ing domain knowledge based on assumptions, which hold for
text lines in general, see Sect. 3.3.3. Additionally, it is eas-

ily possible to incorporate the separator information, which
allows for a handling of documents with complex layouts,
e.g., images containing tables or marginalia.

Each method relying on supervised deep learning and
therefore relying on training data can suffer from the need of
an enormous amount of labeled training data. We demon-
strate that the presented approach achieves high-quality
results on the Bozen dataset [24] with less than 50 full-
page training samples by using data augmentation strategies.
Along with an annotating effort of just a few minutes per
page, the adaptation of the proposed method is easy and
cheap. We demonstrate the applicability of the proposed
method for images with arbitrarily oriented as well as curved
text lines by achieving nearly as good results as for straight
0◦ oriented text lines. Finally, we show that the presented
approach outperforms state-of-the-art methods on three dif-
ferent datasets. A relative F value [25] error (the gap to 1.0)
reduction of at least 24% is achieved for the cBAD dataset
[26]. This dataset is composed of 2036 historical imageswith
annotated baselines of nine different archives and libraries
from all over Europe and is therefore—in the opinion of the
authors—the most representative and heterogeneous freely
available dataset. Especially, for the complex track, which
contains mostly documents with complex layouts, the aver-
age F value is increased from 0.859 to 0.922.

The main contributions of this work are:

– Introduction of a newly designed deep neural network
(ARU-Net) for pixel labeling along with a meaningful
parametrization—the ARU-Net and its training frame-
work are open source,2

– Introduction of the new concept of learned separators
to handle complex layouts instead of an a-priori page
segmentation or white-/blackrun calculation

– Introduction of a state-of-the-art two-stage workflow
which combines state-of-the-art deep learning and image
processing techniques—the entire workflow is freely
usable via the Transkribus platform.3

2 Related work

A comprehensive survey of approaches for text line extrac-
tion in historical documents is given in [27,28]. In this
section, we will focus on approaches relevant for this work.

In [17,29,30], the principle of dynamic programming is
utilized to calculate cost optimal paths passing the image
from left to right to separate different text lines from each
other. These methods basically differ in the way the images
are pre-processed and in the definition of the cost function.

2 https://github.com/TobiasGruening/ARU-Net.
3 https://transkribus.eu.
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Garz et al. [31] propose a method based on clustering of
interest points (this is just another name for what we call
superpixel). Using a standard clustering technique, interest
points in an area which exceeds a certain density are clus-
tered to form word clusters. Word clusters are separated to
sub-word segments, and these are finally grouped to build text
lines. Ryu et al. [23] propose an algorithmwhich uses certain
characteristics (so-called states) of extracted connected com-
ponents to assign costs to certain clustering results. These
states encode local text orientation and interline distances
and are introduced in Definition 3.13. Subsequently, using
four different operations (merge, split, merge–split, merge–
merge–split) on an initial coarse clustering, the costs are
minimized to obtain an optimal clustering, which leads to
the final text line segmentation. Ahn et al. [32] improve this
approach by the introduction of a newly developed binariza-
tion method and an improved clustering process. Grüning et
al. [33] extended the approach of Ryu et al. so that it is appli-
cable for more general superpixels with a newly introduced
clustering procedure which does not rely on a coarse ini-
tial clustering. Besides these “classical” approaches, which
are based on image processing techniques, methods based
on machine learning gained importance within the last two
years. Moysset et al. [34] propose a method based on a
recurrent neural network. The network is trained given only
the number of lines in the image utilizing connectionist
temporal classification which was introduced to train net-
works for handwriting text recognition and allows for ground
truth data without any alignment. The trained neural net-
work predicts confidences for the vertical coordinates of
the image to belong either to the classes line or interline.
Further post-processing of the neural network output is per-
formed to detect the text lines. In follow-up works, they
formulated the problem as a regression problem [35]. The
recurrent neural network directly predicts bounding boxes as
well as the start of each text line, respectively. Besides this
regression-based approach, classification-based approaches
were proposed most recently. In contrast to the approach of
Moysset et al., these methods perform a pixel labeling to
classify each image pixel (instead of classifying rows of pix-
els, only). For instance, Renton et al. [16] propose a fully
convolutional network (FCN) based on dilated (or atrous)
convolutions to classify pixels as text line main body or not.
The classification results are utilized to extract the text line
information. These techniques are currently very popular,
e.g., four of the five participants of the cBAD: ICDAR2017
Competition on Baseline Detection [36] use methods relying
on FCNs. For example, the methods presented in [16,52–54]
tackle the problem of baseline detection with fully convolu-
tional neural networks. However, these methods either rely
on a patch-wise processing of the input image (which results
in a cumbersome reconstruction of the baseline hypothesis
for the entire image), on massive pre-trained encoder struc-

tures (which significantly increases the number of model
parameter and slows down the system) or on elementary
post-processing steps (which deteriorates the system’s per-
formance). The presented method overcomes this limitations
and shows its superiority on the challenging cBAD dataset.

3 Methodology

In this section, we introduce the two-stage method for
baseline detection, see Fig. 1. The first stage relies on a
deep neural network—the ARU-Net—and performs a pixel
labeling. The pixel labeling can be seen as some kind of
goal-oriented binarization. Instead of detecting all fore-
ground elements, it restricts itself to those elements which
are of interest for the specific task. The second stage per-
forms a superpixel (SP) extraction on the first stage’s output.
These SPs are further clustered to build baselines. In the
following, the problem of baseline detection is formulated.
Afterward, a detailed description of the proposed ARU-Net
is given. Finally, the SP extraction and clustering approach
are described.

3.1 Problem statement

We will introduce the problem of baseline detection in a
formal way by defining all necessary termini and notation.
Within this work, we follow the definition of a baseline given
in [26]:

Definition 3.1 (Baseline) A baseline is defined in the typo-
graphical sense as the virtual line where most characters rest
upon and descenders extend below.

Hence, each baseline can be represented by a polygonal
chain. The infinite set P of all possible polygonal chains
is called polygonal chain space. Within this work, we limit
ourselves toward gray-scale images. The set of all possible
(gray-scale) images I = ⋃

h,w∈N [0, 1]h×w is called image
space. If the colored image is available, we usually use this
one for visualization even though it is converted to its gray-
scale version for calculations. For visualization purposes, a
pixel intensity value of 1 means white and 0 means black. Ih
denotes the height of image I , Iw denotes the width, analo-
gously.

Definition 3.2 (Baseline detector, baseline hypothesis) We
call a function b : I → P(P) which maps each image
to a subset of P a baseline detector. The set of all baseline
detectors is denoted byB. The output of b for a certain image
I is called baseline hypothesis.

Definition 3.3 (Baseline ground truth) The set GI ⊂ P of
polygonal chains representing the baselines of an image I
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Fig. 1 Two-stage workflow to detect baselines—the first stage utilizes
a deep hierarchical neural network to perform a pixel labeling. The
result of Stage I is the input for an image processing-based method in

Stage II. This method clusters superpixel to build baselines. The image
is sampled from the cBad complex test set [25]

(possibly annotated by a human operator) is called baseline
ground truth (for image I ).

Definition 3.1 allows for some baseline variety. Hence,
there is not the one unique and correct ground truth for an
image. Therefore, ground truth information is always biased
by its creator. This has to be taken into account for the eval-
uation process as well as for the baseline detector design.

Definition 3.4 (Similarity score) A function 〈·, ·〉μ : P ×
P → [0, 1] assigning a scalar value to each pair of baseline
ground truth and baseline hypothesis polygonal chain sets is
called similarity score.

A value of 1.0 indicates that two polygonal chains are
regarded as equal. Within this work, we follow the similarity
score introduced in [25]: We measure the accuracy of a base-
line detector in terms of the F value, see [25] for a detailed
introduction.

The problem tackled in thiswork can nowbe formulated as
follows: Suppose there are two sets of images alongwith their
baseline ground truth information Ttrain = {(I ,GI )i | i =
1, . . . , n} and Ttest = {(I ,GI )i | i = 1, . . . ,m}. We aim for
a design of a baseline detector b∗ given Ttrain which solves

b∗ = argmax
b∈B

∑

(I ,GI )∈Ttest
〈GI , b(I )〉μ.

In the design phase of b∗, the set Ttest is unknown and one is
allowed to use solely Ttrain. Hence, one has to ensure that b∗
generalizes well from Ttrain to Ttest.

Since the proposed design consists of two stages and the
first stage relies on deep learning techniques, an adaptation
to a differently biased ground truth (produced by a different
annotator) can be done easily by retraining the first stage
without any fine tuning done by experts.

3.2 Stage I: ARU-Net

Typically, layout analysis algorithms directly work on the
input image I or on a binarized version of it [17,23,29–31,
33]. Instead, we employ a more goal-oriented transforma-
tion of the input image utilizing a neural network, which
is trained in a supervised manner to assign a certain class
to each pixel like in [21,37,38]. This is often referred to as
pixel labeling or semantic segmentation. We will introduce
the problemof pixel labeling utilizing hierarchical neural net-
works, followed by a description of the proposed ARU-Net
architecture.

3.2.1 Pixel labeling: problem formulation

Definition 3.5 (Neural pixel labeler) A neural pixel labeler
(NPL) for the classes C = {c1, . . . , cn} is a hierarchical neu-
ral network Φ( · ;w) : I → I |C|. The NPL is parametrized
by w ∈ R

N . For I ∈ I, it performs a prediction over all pix-
els and all possible classes Φ(I ;w) = C ∈ [0, 1]Ih×Iw×|C|,
where C sums to one over all classes and for all coordinates.

C(:, :, c) = C:,:,c ∈ I denotes the image which encodes
the pixel-wise prediction (confidence) for the cth class.
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Definition 3.6 (Pixel ground truth) A Cartesian product
GI ∈ I |C| is called pixel ground truth (for image I ) if it
assigns exactly one class (one-hot-encoding) to each pixel.

Following the problem formulation of Sect. 3.1, we aim
for an NPL, which was tuned on a training set and opti-
mally performs on a test set. Assume there are training and
test sets as stated above, but with pixel ground truth infor-
mation instead of baseline ground truth information, which
are denoted by T̃train and T̃test. The performance of an NPL
is evaluated in terms of the cross-entropy between the pre-
dicted and the ground truth distributions. The cross-entropy
can also be motivated by a maximum likelihood estimation.
This results in the cross-entropy loss function.

Definition 3.7 (Loss function) Let T̃ be a set of images along
with their pixel ground truth and Φ( · ;w) is an NPL. The
performance of Φ on T̃ is evaluated in terms of the (cross-
entropy) loss function

−
∑

(I ,GI )∈T̃

Ih∑

y=1

Iw∑

x=1

|C|∑

c=1

GI (y, x, c) lnΦ(I ;w)y,x,c.

To improve the performance of the NPL on the train-
ing set, one can calculate the loss function’s gradient with
respect to the model parameters using the well-known tech-
nique of backpropagation [39]. The gradient is used to update
the model parameters by gradient descent: w ← w − τ ·
∂L
∂w

(Φ, T̃train) with a learning rate τ . This is repeated to suc-
cessively adapt the NPL. The process of adapting the model
by minimizing its loss is called training. Since one does not
aim for a minimization of the loss on the training set, the sys-
tem has to generalize to achieve high-quality results on the
test set as well. To stabilize training, avoid over-fitting, and
improve generalization, etc., dozens of techniques to improve
the simple update rule which is stated above were introduced
within the last years. Since the introduction of these is beyond
the scope of this work, we refer to [40]. Details on techniques
used within this work are given in Sect. 4.

3.2.2 ARU-Net: architecture

The ARU-Net is a special form of an NPL and is described in
this section.We omit a formal introduction of the used neural
network components and concepts and refer to the above-
mentioned literature. Within the last few years, different
architectures were proposed for the pixel labeling task. Most
of them are based on convolutional neural networks (CNNs)
[41]. A direct application of CNNs for semantic segmenta-
tion is presented in [37]. The presented fully convolutional
network (FCN) combines local features to produce more
meaningful high level features using pooling layers. Pool-
ing reduces the spatial dimension. Thus, the result suffers
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Fig. 2 U-Net—the input is an image of arbitrary spatial dimension.
“Act” is the activation function thus the rectangles represent sets of
activation maps. Each rectangle represents a 3-dim array (∈ R

h×w×z).
Within each scale space (roman numbers), the feature map widths and
heights are constant (encoded by the height of the rectangles). The
number of feature maps Z is pictured by the width of the rectangles.
Between adjacent scale spaces the spatial dimension decreases by a
certain factor (2 in the figure) and the representative depth (number of
feature maps) increases by the same factor

from a coarse resolution. Noh et al. [38] tackle this problem
by applying a deconvolutional network on the subsampled
output of the FCN. The U-Net proposed in [21] further-
more introduces shortcuts between layers of the same spatial
dimension. This allows for an easier combination of local low
level features and global higher-level features. Additionally,
error propagation for deep structures is facilitated, and the
so-called vanishing gradient problems [42] are reduced. The
U-Net is the basis for the proposed ARU-Net. We extend the
U-Net by two more key concepts—spatial attention (A) and
depth (residual structure (R)) to be described below. Remark-
ably, in contrast to the U-Net proposed in [21], we perform
border padding. Hence, the spatial dimensions in each scale
space of the U-Net are all the same, see Fig. 2 for a schematic
representation of an U-Net. The output of the U-Net thus
is a feature map (Z features in Fig. 2) of the same spatial
dimension as the input. Hence, the U-Net becomes an NPL
as defined in Definition 3.5 by adding a convolutional (to
get pixel-wise predictions) softmax classifier on top which
distinguishes between the different classes of C.

Remark 3.1 If the presented architectures are used for the
pixel labeling task, it is implicitly assumed that such a clas-
sifier is always added to generate per class confidences at
pixel level.

He et al. [22] introduce very deep neural networks which
are still trainable and yield state-of-the-art results. This is
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Fig. 3 Residual Block—the input is convolved and the resulting 3-dim
array (themaps before passed through an activation function are referred
to as logits) is used twice. At the first branch, it is passed through the
activation function and further processed by several convolution layers.
At the second branch, it is directly fed into a summation node. After a
point-wise summation of the two logit maps, an activation function is
applied. The shortcut enables for an easy identity propagation and error
backpropagation. Arbitrarily many inner layers are possible

achieved using so-called residual blocks. Residual blocks
introduce shortcuts, which enable the error backpropaga-
tion and identity propagation even for very deep structures.
Hence, the vanishing gradient problems are reduced [22].
There are various different forms of residual blocks. The one
used within this work is depicted in Fig. 3.

Definition 3.8 (RU-Net) An RU-Net is an U-Net with resid-
ual blocks.

That means, each of the 2 layer CNN blocks in Fig. 2 is
replaced by a residual block as in Fig. 3.

To explicitly incorporate the potential to handle various
font sizes, especially mixed font sizes on a single page, we
introduce a pixel-wise (spatial) attentionmechanism. For this
purpose, we introduce an attention network (A-Net). The A-
Net is a multilayer CNN which generates a single output
feature map. The A-Net will be applied along with the RU-
Net at different scales, and the samenetworkweights are used
on all scales (weight sharing). Specially, a scale pyramid is
built by downscaling the input image I = I1 several times.
The resulting (scaled) images I1, I2, I4, I8, . . . , Is (sub-
scripts denote the scaling factors) are fed into the RU-Net and
the A-Net. Trainable deconvolutional layers (of correspond-
ing scales) are applied on the outputs of the RU- and the
A-Net to obtain feature maps of spatial dimensions equal to
the inputs. A1, . . . , As denote the up-sampled feature maps
of the A-Net, RU1, . . . ,RUs of the RU-Net, respectively.
After applying a pixel-wise softmax normalization for the
attention maps

Âi (y, x) = exp(Ai (y, x))
∑

j∈{1,2,...,s} exp(A j (y, x))

the normalized attention maps Âi sum to one (pixel-wise).
The feature maps RUi are combined following

ARU =
∑

i∈{1,2,...,s}
RUi 
 Âi ,

where 
 is the Hadamard product. ARU is the input for the
classifier to build a NPL, see Remark 3.1.

Definition 3.9 (ARU-Net)AnRU-Net incorporating thedesc-
ribed spatial attention mechanism is called ARU-Net, see
Fig. 4.

The point-wise multiplication combined with the pixel-
wise attention maps allow the ARU-Net to pay attention in
different scales at different positions of the image. In Fig. 4,
one can see that this behavior was indeed learned by the net-
work. It seems like the RU-Net is specialized on a certain font
size and the A-Net distinguishes between areas of different
font sizes (bright and dark areas).

The ARU-Net as introduced can be used for any pixel
labeling task, e.g., binarization, page detection and page seg-
mentation. The purpose of the ARU-Net is defined and fixed
by the number of classes and the ground truth data provided
for training. In this work, we limit ourselves to the baseline
detection problem introduced in Sect. 3.1. For this purpose,
we introduce three different classes: baseline (bl), separa-
tor (sep) and other (∅). The separators mark beginning and
end of each text line. Although the separator information
is implicitly encoded by the baselines, it is advantageous
to explicitly introduce it as possible classification result.
Especially, for baselines which are close together, e.g., such
belonging to two adjacent columns, this approach helps to
avoid segmentation errors. Pixel ground truth for the classes
C = {bl, sep, ∅} could be automatically generated by Algo-
rithm S.1 (supplements) given the baseline ground truth.

A sample image with baseline ground truth along with
its generated pixel ground truth is depicted in Fig. 5. The
prediction of a trained ARU-Net for this sample image is
shown in Fig. 6a.

3.3 Stage II: baseline estimation

This subsection describes the second stage of the proposed
approach. Baselines are estimated given the output of the
ARU-Net. This task consists of three steps: superpixel cal-
culation, state estimation and superpixel clustering, which
are described in the following.

The trained ARU-Net generates an output
C∈ [0, 1]Ih×Iw×3 for each image I ∈ I. In the following,
B = C:,:,1 denotes the image encoding the confidence of
each pixel belonging to a baseline and S = C:,:,2 is the sep-
arator image, see Fig. 6a
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Fig. 4 ARU-Net—the input image and its downscaled versions are fed
into the A-Net and R-U-Net (weight sharing across different scales).
The results for the lower resolutions are deconvolved. The attention
maps are passed through a softmax normalization. The brighter the

map at a certain position, the more attention is paid to that position at
the corresponding scale. The attention maps are point-wise multiplied
with the feature maps of the RU-Net. The results are summed, and a
classification is performed

(a) Baseline ground truth – The baselines are defined by
the red dots. Dots of the same baseline are connected.

(b) Pixel ground truth – Green encodes the separator class,
red the baseline class and black the ”other” class. See supple-
ments for an algorithm to automatically generate such GT.

Fig. 5 Baseline and pixel ground truth—these are shown for the top
snippet of the image of Fig. 1 (color figure online)

3.3.1 Superpixel calculation

The number of all pixels in an image often exceeds several
millions. To reduce the dimensionality of the problem (the
number of pixels to be regarded for the baseline estimation),
we limit ourselves to a subset of all pixels.

(a)ARU-Net output – The estimated baselines B (blue)
and separators S (cyan) are shown.

(b) Superpixel and neighborhood system – The calcu-
lated SPs (blue) are shown along with the resulting Delaunay
neighborhood system N (yellow).

Fig. 6 Baseline detection process—two intermediate steps are shown
for the top snippet of the image of Fig. 1 (color figure online)

Definition 3.10 (Superpixel) Let S = { p1, . . . , pN } be a
subset of the image pixels of I (typically, N � Ih · Iw holds).
An element of S is called superpixel (SP).

Basically, the definition of a superpixel does not intro-
duce any new concept. A SP is just a normal pixel which is
somehow regarded to be of certain importance. Since it is a
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frequently used term, we decided to introduce it via a def-
inition. It is easy to see that the choice of the set of SPs is
crucial for the overall performance. If there are no SPs for
a baseline at all, this baseline will be missed. To calculate a
suitable set of SPs, we utilize the baseline map B generated
by the ARU-Net.

In a first step, B is binarized Bb = B > b by an element-
wise comparison of B with a confidence threshold b. The
morphological skeleton Bs = SKE(Bb) is calculated for Bb

following Lantuéjoul’s formula [43]. All foreground pixels
(pixels with an intensity of 1) of Bs build an initial set of
pixels { p1, . . . , pM }. Its elements are sorted in descending
order w.r.t. their baseline confidences. Finally, S is set up by
iteratively adding pixels of this sorted list(beginning with the
first pixel). To keep the number of SPs small, a new pixel p
is added to S only if its distance to all other SPs exceeds a
certain threshold ‖ p − q‖2 > d ∀q ∈ S, otherwise it is
skipped. In Fig. 6b, the set of resulting SPs is shown. These
SPs build the basis for the further clustering.

Remark 3.2 For all experiments, we have chosen fixed values
of b = 0.2 (binarization threshold) and d = 10 (distance
threshold). These demonstrated to be well suited for a wide
range of different scenarios. Hence, they are not regarded
as free parameters of the system which have to be further
tuned. This also holds for the parameters which are fixed in
Remarks 3.5 and 3.9.

3.3.2 Superpixel state estimation

Assumewe can assign each SP to a certain text line. The state
of an SP should encode meaningful characteristics of its text
line. These characteristics will be defined and combined to
build the state. Thiswork is basedon thepreviousworkof [23,
33], but adapted to the characteristics of SPs extracted given
the ARU-Net output, e.g., easier calculation of the local text
orientation as well as a different smoothing cost formulation.

Definition 3.11 (Local text orientation) The local text orien-
tation θ of an SP p is the slope of its text line’s baseline at
the coordinates closest (w.r.t. the Euclidean distance) to p.

Definition 3.12 (Interline distance) The interline distance s
of an SP p is the distance of its text line’s baseline to the
nearest other baseline. Distance means the distance which is
orthogonal to the local text direction of p.

Definition 3.13 (State) The state of an SP is the pair (θ, s)
of its local text orientation and its interline distance.

In the following, wewill describe amethod to estimate the
states of all SPs. The local text orientation will be calculated
in a straightforward way utilizing solely the baseline image
B and local information. On the other hand, the estimation
of the interline distances combines local information of the

text line’s periodicity with the more global assumption that
nearby SPs tend to have similar interline distances. For these
approaches, the concepts of neighborhood and connectivity
are mandatory and will be introduced.

Definition 3.14 (Neighborhood system, edge, adjacent) We
call a subset N ⊂ S × S neighborhood system. An element
of N is called edge and denoted by e p,q . N is not directed
(e p,q = eq, p). Two SPs p, q are adjacent if e p,q ∈ N .
e p,q\ p ∈ S denotes the SP q.

Remark 3.3 In the following, the neighborhood systemN for
a set of SPs is always calculated by Delaunay’s triangulation
[44].

Definition 3.15 (Connectivity function) The line segment
g( · ; e p,q) : [0, 1] → R

2 defined by g(τ ; e p,q) :=
p+ τ (q − p) connects the two pixels p, q of the edge e p,q .
The function Γ : N × I → [0, 1] defined by

Γ (e p,q, I ) =
∫ 1
0 I (g(τ ; e p,q))dτ

‖ p − q‖2
is called connectivity function. I (g(τ ; e p,q)) denotes the
intensity of the pixel in I closest (w.r.t the Euclidean dis-
tance) to the real-valued coordinates g(τ ; e p,q).

The connectivity function calculates the average intensity
for a given image along the shortest path connecting two
pixels. The local text orientation of each SP is estimated by
θ p = LTO( p;N , B) utilizing N and the baseline image B,
see Algorithm 1. The LTO algorithm picks the two neigh-
bors of an SP p with the largest baseline connectivity to p
and determines the slope of the line passing through these
neighbors.

Algorithm 1: Local Text Orientation of p

input : SP p, neighborhood system N , baseline image B
output: local text orientation θ of p

1 M ← {
eq,r ∈ N | q = p ∨ r = p

}

2 L ← sorted list of M � sorted by Γ (eq,r , B)

3 if |L| == 1 then
4 eq,r ← L1 � Lk is the k-th element
5 else
6 eq,r ← (L1 \ p, L2 \ p)

return : θ ← arctan
(
r y−q y
rx−qx

)

The periodicity of text lines in document images is uti-
lized to calculate the interline distances. We determine the
interline distance of an SP p by evaluating the regional text
line periodicity around p as follows. For an SP p, a circu-
lar region of diameter d ∈ N around p, and a projection
direction determined by the local text orientation θ p, let
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Fig. 7 Interline distance estimation—illustration of several projection
profiles for a certain SP (red point). The profiles for different diameters
d ∈ {64, 128, 256, 512} and an orientation of 0◦ are shown in green.

The winning period (interline distance) is drawn as yellow curve. In
blue a histogram for a wrong orientation (45◦) is shown (color figure
online)

hp,d = (h p,d
1 , . . . , h p,d

d ) ∈ N
d be the projection profile with

respect to S, see Fig. 7. For the calculation of hp,d , only SPs
with a distance to p of less than d

2 are taken into account.

Remark 3.4 The projection profile hp,d can be calculated
very efficiently by utilizing the cross-product of the orien-
tation vector o = (cos(θ p), sin(θ p))

T and the vectors #  »pq for
q ∈ S with ‖ p − q‖2 ≤ d

2 .

To extract the regional periodicity inherent in the projec-
tion profile hp,d , a Discrete Fourier Transformation (DFT)
is applied to hp,d with resulting coefficients H p,d =
(H p,d

1 , . . . , H p,d
d ) ∈ C

d .A coefficientH p,d
k , k ∈ {1, . . . , d}

corresponds to the portion of the signal with a period of d
k

to the entire signal hp,d . In the simplest case, the index k′
of the dominant coefficient of H p,d determines the interline
distance s of p as s = d

k′ . However, we may be forced to
assign a different value to s due to additional constraints to
be discussed in a moment. Therefore, we introduce a data
energy value for each possible value d

k of the interline dis-
tance s of p. From energy, we then derive a data cost to be
used within a cost minimization framework for finding the
optimal interline distance.

Definition 3.16 (Data energy, data cost) The data energy of

SP p and interline distance d
k is given by E p

( d
k

) =
∣
∣
∣H

p,d
k

∣
∣
∣
2

∥
∥H p,d

∥
∥2
2

.

The data cost is calculated by D p
( d
k

) = − log
(
E p

( d
k

))
.

Remarkably, the data energy is normalized such that it
sums (over k) up to 1.0 for arbitraryd ∈ N. To cover a suitable
range of different interline distances as well as to be robust
against disturbances due to close-by text regions of a different
style, the projection profiles and DFTs are calculated for dif-
ferent diameters d ∈ {64, 128, 256, 512} and k ∈ {3, 4, 5}.

The choice of the values for d and k is application driven and
results in reasonable interline distances (sorted list) of S :=
(170.7, 128.0, 102.4, 85.3, 64.0, 51.2, 42.7, 32.0, 25.6,
21.3, 16.0, 12.8).

In the following, we write s p for the assigned interline
distance s = d

k ∈ S of SP p and say p is labeled with s p. A
labeling

{
s p

}
p∈S of S assigns an interline distance to each

SP of S. Following a greedy labeling strategy by assigning
the interline distance with the highest data energy to each
SP leads to a noisy result, see Fig. 8a. To reduce the noise
effects, the influence of close-by SPs is taken into account.
It is reasonable to expect that neighboring SPs tend to have
similar interline distances. This expectation is encoded via a
smoothing cost defined for adjacent SPs.

Definition 3.17 (Smoothing cost) For each e p,q ∈ N (and
assigned interline distances s p, sq) the smoothing cost is
defined by

Vp,q(s p, sq) =
{

σ, 〈s p, sq〉s ≥ 4,

〈s p, sq〉s, else.

〈s p, sq〉s is the index difference of s p and sq in the sorted
list S of possible interline distances, e.g., 〈16.0, 42.7〉s =
4. Thus, the smoothing cost Vp,q(s p, sq) becomes large if
interline distances of different sizes are assigned to adjacent
SPs. Amaximum cost value of σ is used for huge differences
in the interline distances. Setting σ to a large value prevents
neighboring SPs to differ to much in their interline distances.

Definition 3.18 (Labeling cost) The labeling cost is given by

C
({

s p
}
p∈S

)
= α

∑

p∈S
D p

(
s p

) + β
∑

e p,q∈N
Vp,q(s p, sq).
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(a) Greedy states – The SP states for a greedy labeling using
the highest data energy are shown.

(b) Smoothed states – The SP states for a cost optimal
labeling are shown.

Fig. 8 SPs with their assigned states—the local text orientation of each
SP is visualizedby the orientation of the green lines (rotated by90◦). The
length of the lines encodes the interline distance of the corresponding
SP (color figure online)

The data cost and the smoothing costs are weighted by α

and β, respectively, to form the labeling cost. The graph cut
algorithm [45] is utilized to minimize the labeling cost. The
final labeling is shown in Fig. 8b.

Remark 3.5 For all experiments, we have chosen fixed values
of σ = 25, α = 1 and β = 1.

3.3.3 Superpixel clustering

In the previous subsections, the calculation of SPs and their
enrichment with state information was described. In a final
step, this state information is utilized to cluster the SPs
to build baselines. There will be a one-to-one assignment
between clusters and baselines. In the following, we call a
set of SPs cluster.

In this subsection, we formulate the clustering problem
and introduce a greedy clustering procedure to solve the prob-
lem. Two assumptions which hold for baselines in general
constitute the conditions for the clustering problem:

(I) Baselines should not exceed a certain curvilinearity
value.

(II) Within the interline distance of a baseline, there are no
other baselines.

Basically, assumption (I) claims that a baseline can be
approximated by a polynomial function of a certain degree,
see [23]. Assumption (II) is self-explanatory.

Remark 3.6 In the following, θ({ p1, . . . , pn}) denotes the
average orientation and s({ p1, . . . , pn}) the average interline
distance of all SPs in { p1, . . . , pn}.
Definition 3.19 (Curvilinearity value) Let deg ∈ N and S
be a set of SPs. Assume pS,deg(t) ∈ P [t] is the polynomial

which solves the linear regression problem in the monomi-
als t0, t1, . . . , tdeg for S ′ which results from S by rotating
all pixels by −θ(S). The root-mean-square regression error
normalized by s(S) is called curvilinearity value of S and is
denoted by cur(S, deg).

Remark 3.7 We fix deg = 3 and omit it in the following.

Definition 3.19 allows for an easy evaluation of (I). To
test for (II) we will introduce the distance of two clusters.
Remarkably, only distances orthogonal to the text orientation
should be taken into account. First, the orthogonal component
of the distance between two SPs is introduced. Afterward,
this is generalized for two clusters of SPs.

Definition 3.20 (Off-text distance) Given two SPs p, q and
an orientation θ , the off-text distance of p and q is the length
of the component of p− q ∈ R

2 which is orthogonal to θ . It
is denoted by ‖ p − q‖θ .

Remark 3.8 The off-text distance can be efficiently calcu-
lated by ‖ p − q‖θ = ∣

∣
(
px−qx

)
sin(θ) − (

py − q y

)
cos(θ)

∣
∣.

Calculating the minimal pairwise off-text distance of all
SPs of two clusters could result in a cluster distance dis-
torted by SP outliers. Therefore, SPs in each cluster will be
projected onto the corresponding regression curve obtained
by the regression problem in Definition 3.19, before taking
pairwise distances.

Definition 3.21 (Regression curve) Let S, S ′ and pS(t) be
ofDefinition 3.19. The spatial t-range ofS ′ is given by tmin =
min{ px | p ∈ S ′} and tmax = max{ px | p ∈ S ′}. A curve
cS : [0, 1] → R

2 which results from rotating the graph of
pS(t) for t ∈ [tmin, tmax] by θ(S) is called regression curve
of S.

The SPs inS are projected onto cS (in direction θ(S)+ π
2 ).

The resulting projected SPs are denoted by Sc. To achieve
robust distance estimates even for curved and differently
slanted text lines, we focus on SPs of the different clusters
which are quite close to each other and furthermore take into
account the slope of the regression curve at the specific SP
positions instead of averaging over the entire text line.

Definition 3.22 (Cluster distance) Assume two clusters S1,
S2 with regression curves cS1(t), cS2(t) and projected SPs
Sc
1 , Sc

2 . The cluster distance is defined as

d(S1,S2) = min
p∈Sc

1 ,q∈Sc
2 :‖ p−q‖2<4·s(S1∪S2)

‖ p − q‖θc( p,q) ,

where θc( p, q) is the average slope of the corresponding
regression curves at p and q, respectively.
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Since, it is now possible to evaluate conditions (I) & (II),
we will use this to introduce feasible sets of clusters. For
this purpose, we will limit ourselves to partitions (a special
kind of cluster sets) and require the baseline clusters to be
N -linked. The set of all partitions of a set M is denoted by
par(M).

Definition 3.23 (N -linked) Let S be a cluster and N be a
neighborhood system. S isN -linked iff ∀ p, q ∈ S ∃ p0, . . . ,
pN ∈ S : p0 = p∧ pN = q∧e pi , pi+1

∈ N (0 ≤ i ≤ N−1)
holds.

That means, for all pairs of SPs there are edges in S which
connect these respective SPs.

Definition 3.24 (Feasible) For γ, δ ∈ R+, L ∈ N, a set of
SPs S and a neighborhood systemN , we call a set of clusters
P = {S0, . . . ,SL} feasible iff

1. P ∈ par(S)

2. ∀i > 0 : Si is N -linked
3. Conditions (I) and (II) hold:

– cur(Si ) < γ ∀i > 0
– d(Si ,S j ) > δ·max{s(Si ), s(S j )} ∀i, j > 0, i �= j .

The set of feasible sets of clusters is denoted by f easN (S).

The clusters Si , i > 0 identify the baselines, S0 consti-
tutes the clutter cluster containing SPs not belonging to any
baseline. We identify the baseline corresponding to Si with
the polygonal chain of the projected SPs Sc

i which follow
the regression curve cSi (t), see Fig. 9. The number L ∈ N

of baselines is (a priori) unknown. In the following, we will
incorporate domain knowledge to promote SPs belonging to
different baselines not to be N -linked. Hence, clusterings
with erroneously connected baselines are not feasible any-
more. This is done by a modification of the neighborhood
system N .

Since baselines of different text orientations should not
contribute to the same cluster, we adjust the initial neighbor-
hood systemN by removing edges e p,q of SPs with substan-
tially different local orientations:

∣
∣θ p − θq

∣
∣ mod π > π

4 . In
addition, it is an ease to incorporate layout information by
further adjusting N . The layout information encoded by the
separator image S (Fig. 6a) can be incorporated by taking into
account the connectivity of SPs in S. All edges e p,q ∈ N
for which a separator is crossed, i.e., Γ (e p,q, S) > η or
maxτ S(g(τ ; e p,q)) > 2 · η (g of Definition 3.15) holds, are
removed, see Fig. 9b.

Finally, a common scenario is the baseline detection with
given text regions. We assume that the text regions are
represented by closed polygonal chains R1, . . . , RN . This
additional layout information (if available) is easy to inte-
grate. All edges for which �Ri : Ri contains p, q holds

(a) Without separator information – The entire neighbor-
hood system (yellow) is shown.

(b) With separator information – The neighborhood sys-
tem was reduced by removing edges (cyan) with high sepa-
rator connectivity. The corresponding separator information
is illustrated in Fig. 6a.

Fig. 9 Influence of the separator information—the resulting baselines
(blue lines) with and without taking into account the separator informa-
tion are shown (color figure online)

are removed. Roughly speaking, a closed polygonal chain
contains an SP if for all “ways” from the SP to the image
border one have to cross the polygonal chain. Hence, SPs
which are part of different non-overlapping text regions are
not N -linked any more. Thus, each baseline Si , i > 0 is
entirely contained in one text region for all feasible sets. The
resulting neighborhood system is still denoted by N .

Remark 3.9 For all experiments, we have chosen fixed values
of γ = 0.3, δ = 0.5 (Definition 3.24) and η = 0.125.

After reducing the neighborhood system, we now intro-
duce the total baseline energy. We will assign an energy to
all feasible sets and aim for an optimal one. This allows for
the formulation of the clustering problem to be solved.

Definition 3.25 (Total baseline energy) Let B be a baseline
image, N a neighborhood system and P = {S0, . . . ,SL} a
set of clusters over S. With N (Si ) = {e p,q ∈ N | p, q ∈
Si } ⊂ N the total baseline energy is defined by

b(P) =
L∑

i=1

∑

e p,q∈N (Si )

Γ (e p,q, B).

Finally, the clustering problem can be formulated as

P∗ = argmax
P∈ f easN (S)

b(P).

Because there could be a huge number of feasible sets of
clusters for large S, we introduce a greedy clustering algo-
rithm. The proposed algorithm clusters edges of N instead
of clustering SPs. If an edge is assigned to a cluster (set) of
edges, we assign both corresponding SPs to the correspond-
ing cluster of SPs. In a first step, the set of edges in N is
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sorted in decreasing order w.r.t.

(

1 − ‖ p − q‖θ({ p,q})
‖ p − q‖2

)

· Γ (e p,q, B).

Hence, the sorting takes into account the B-connectivity
value of an edge and discounts it if e p,q is rather orthogonal
to θ({ p, q}). Discounted edges are less likely part of a base-
line and are therefore sorted to the end of the list. The sorted
list is denoted by N . This avoids that these edges are falsely
assigned to baseline clusterswhich are composedof just a few
correct edges (statistics of the cluster are not reliable, yet).
Given S and N , the proposed clustering algorithm assigns all
edges to the clutter cluster (S0). It iteratively moves edges to
baseline clusters such that the resulting set of clusters remains
feasible and the total baseline energy increases. The algo-
rithm is shown in detail in the supplements (Algorithm S.2).

4 Experiments

The experiment section is divided into 4 subsections. First,
we investigate the influence of the training set size as well as
the influence of different data augmentation strategies. This
is followed by an investigation of the performance of the
proposed method if it is applied to images with curved or
arbitrarily oriented text lines. The third subsection presents
and compares results of different versions of our proposed
NPLarchitectures on the very heterogeneous and challenging
cBADdataset [25,26].Weperformstatistical tests to show the
statistical significance of the stated conclusion—the superi-
ority of the proposed ARU-Net in a two-stage workflow over
other architectures and a single-stage workflow. Finally, we
compare the proposed method against other state-of-the-art
methods on the datasets of 3 recently hosted competitions.
As mentioned in Sect. 3, we will follow the similarity score
of [25] (F value) to measure the quality of the baseline
detection. The configuration for all experiments including the
hyperparameters of the network architecture as well as the
training is summarized in Table 1. This configuration is the
result of an extensive search in the hyperparameter space and
results in impressive results for various scenarios/datasets.

Since no early stopping based on the loss for any validation
set is used, we train on the entire training set. The ARU-Net
workflow for training and inference (Tensorflow code) as
well as a trained network are freely available.4 The ARU-Net
training takes 3–24 h from scratch (dependent on the number
of epochs and samples per epoch) on a Titan X GPU. The
inference time per image ranges from 2 to 12 s per image on
a dual-core laptop (Intel Core i7-6600U with 16GiB RAM),

4 https://github.com/TobiasGruening/ARU-Net.

this reduces to 0.5 to 2 s running the ARU-Net on the Titan
X.

4.1 Influence of training sample number and data
augmentation

A major drawback of state-of-the-art approaches (Sect. 2) is
the need for an extensive expert tuning if confronted with
scenarios which are not already covered. But the eligibility
for an usage at industrial scale depends on the possibility to
easily adapt at reasonable cost. For approaches relying on
machine learning, this reduces to two questions:

– What about the amount of ground truth needed?
– What about the effort of ground truth production?

Concerning the second question, we refer to the automatic
generation of pixel ground truth given the baseline ground
truth. The annotation of (polygonal) baselines for a document
image is quite easy and does not need remarkable expert
knowledge compared to, e.g., ground truth production for
ATR systems for historical handwritings or even the text
line annotation at surrounding polygon level. The effort is
reduced to several minutes per page by using platforms such
as Transkribus.5 In the following, we want to examine the
first question.

The influence of training dataset size along with differ-
ent data augmentation strategies is investigated for the freely
available Bozen dataset6 [24], see Fig. S.1 (supplements).
This dataset is a subset of documents from the Ratspro-
tokolle collection of Bozen composed of minutes of the
council meetings held from 1470 to 1805 and consists of
400 pages. It is written in Early Modern German. Baseline
ground truth information is available in formofPAGE7 XML.
The dataset is quite challenging concerning layout analysis
issues. Most of the pages consist of a single main text region
with many difficulties for line detection and extraction, e.g.,
bleed-through, touching text lines and marginalia. For the
following experiments, we have randomly divided the Bozen
set in a set of training samples T of size 350 and a test set of
size 50. In a first step, we randomly set up a chain of subsets
of T

T1 ⊂ T3 ⊂ T5 ⊂ T10 ⊂ T30 ⊂ T50 ⊂ T100 ⊂ T200 ⊂ T350,

where Ti contains i training samples (pages and pixel ground
truth). Since we expect an influence of the choice of training
samples (= sorting of T ), we repeat the mentioned proce-
dure 4 times. Notably, the test set remains untouched. Finally,

5 https://transkribus.eu.
6 https://zenodo.org/record/218236.
7 http://www.primaresearch.org/tools.
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Table 1 Hyperparameters: the
architecture and training
configuration which were used
in this work are described

Image pre-processing: input image I is downscaled by a factor of 2 for
max{Ih , Iw} < 2000, 3 for 2000 ≤ max{Ih, Iw} < 4800 or 4 followed by a
normalization to mean 0 and variance 1 (on pixel intensity level)

RU-Net architecture, see Figs. 2 and 3: number of scale spaces: 6, initial feature depth:
8, residual depth (activated layers in a residual block): 3, feature increasing and spatial
decreasing factor: 2, activation function: ReLu, kernel size: 3 × 3, stride: 1

A-Net architecture: 4 layer CNN, activation function: ReLu, kernel size: 4 × 4, stride: 1,
maxpooling of size 2 × 2 after each convolution, feature number: 12, 16, 32, 1

ARU-Net architecture, see Fig. 4: number of image scales: 5, classifier: 4 × 4
convolution layer with softmax activation

Training: weight initialization: Xavier, optimizer: RMSprop, learning rate: 0.001,
learning rate decay per epoch: 0.985, weight decay on the L2 norm: 0.0005,
exponential moving average on the model weights: 0.9995, mini batch size: 1 (due to
memory limitations of the GPU), early stopping: none (trained for a fixed number of
epochs)
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Fig. 10 Influenceof the number of training samples andof different data
augmentation strategies—the bar height represents the mean F value.
The error bars encode min–max values of the 5 experiments (not the
standard deviation). The dashed green line marks the maximum mean

value of 0.975 achieved for 350 trainings samples. For a description of
the different augmentation strategies: B, S, S + A and S + A + E , see
main text (color figure online)

we got 45 training sets—five of each quantity. For each set,
we trained the RU-Net for 100 epochs with 256 images per
epoch. Therefore, we randomly choose samples of the train-
ing set and remove them from the set. If each element of the
training set was used for training once, we start again with
the initial training set. Hence, it does not matter whether the
number of training samples per epoch exceeds the size of
the training set or not. This procedure guarantees the same
amount of training samples shown to the networks in training
independent of the size of the training set. The RU-Net was
chosen instead of the ARU-Net, because of the homogene-
ity of the Bozen dataset concerning font size and resolution.
We trained the RU-Net from scratch on all 45 sets in 4 differ-
ent scenarios. For training purposes the image pre-processing
mentioned inTable 1 is disabled. Instead, the training samples
(I ,GI )i are pre-processed following one of the four strate-
gies:

1. Subsampled by a constant factor of 3 (no further data
augmentation—one training sample per element of the
training set)—B

2. Randomly subsampled by a factor s ∈ [2, 5]—S
3. S+ random affine transformation (three corner points of

the image are randomly shiftedwithin a circle of diameter
0.025 · max(Ih, Iw) around there original position)—
S + A

4. S + A+elastic transformation [46]—S + A + E .

For the test set, the images were subsampled by the constant
factor of 3 in all scenarios. The results of these 180 exper-
iments are shown in Fig. 10. One can see that all 3 data
augmentation strategies significantly improve the perfor-
mance compared to the base (B) strategy. Notably, for small
numbers of training samples themin–max difference ismuch
larger than for higher number of training samples. Hence, if
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just a few training samples are available, the choice of these
is of importance. The best mean F value (0.975) is achieved
for all 350 training samples with the S+A+E strategy. Nev-
ertheless, there only is a negligible loss in performance for
200 or 100 training samples. Even for 30 training samples, a
F value of 0.963 is achieved for the S+ A strategy, which is
sufficient for most applications, see Fig. S.1 (supplements).
This results in a quite acceptable effort for ground truth pro-
duction making the presented approach interesting even for
industrial production. The S+ A data augmentation strategy
will be the default for the rest of this work.

Of course, the presented numbers are not directly transfer-
able to collections with pages of entirely different scenarios,
e.g., census tablesmixedwith postal cardsmixedwith…One
would expect that more than 30 training samples are neces-
sary for this kind of scenario. Nevertheless, the presented
experiment reflects a common situation: One has a robust
baseline detector which was trained on very heterogeneous
data (see Sect. 4.4.3), but this detector does not work satis-
fyingly well for a certain (in most cases quite homogeneous)
collection. The numbers presented here give a hint concern-
ing the effort of ground truth production necessary in this
scenario.

4.2 Curved and oriented text lines

In this subsection, we demonstrate the ability of the intro-
duced approach to handle curved or arbitrarily oriented text
lines. In a first experiment, the test set of the Bozen dataset
was deformed to contain arbitrarily curved text lines. For
this purpose, we utilized trigonometric functions with ran-
dom period to simulate curved text lines in the test phase.
The RU-Net was trained (5 times) for 100 epochs with
256 samples per epoch on the Bozen training set using the
S+A+E augmentation strategywith strong elastic deforma-
tions. We choose elastic transformations in training, because
they simulate curves of different amplitudes and frequencies
in the same image. Furthermore, we increased the polyno-
mial degree (Definition 3.19) to 5 to enable the system to
handle the curvatures present in the test set.

Remark 4.1 Different methods were used to deform the
images during training and test phases. Hence, the system
had to learn the concept of curved text lines instead of an
inversion of the image degradation method used in the train-
ing phase.

In a second experiment, we have trained an RU-Net (5
times) on arbitrarily oriented samples of the Bozen training
set and evaluated the resulting networks on oriented pages
of the test set. The results are shown in Table 2, and a few
sample images are shown in Fig. S.2 (supplements). For the
curved scenario, the results are as good as for the base sce-
nario. In case of the oriented scenario, the results are slightly

Table 2 Results for the Bozen test set: the results in the base (B),
curved (C) and oriented (O) scenarios are depicted. Finally, the F-
val for a single system trained with all degradations is shown for the
different test lists (A)

∅ P-val ∅ R-val ∅ F-val [min, max]

B 0.977 0.973 0.975 [0.969, 0.977]

C 0.980 0.969 0.975 [0.973, 0.976]

O 0.963 0.966 0.964 [0.958, 0.967]

F-val (B) F-val (C) F-val (O)

A 0.953 0.957 0.968

The P-, R- and F values are strongly related to thewell-knownprecision
and recall measures, see [25]
Bold values indicate that the number is the mean for several experimen-
tal runs instead of a single run result

worse, but still excellent. This demonstrates the applicability
for images with curved or oriented text lines without remark-
able adaptation of the workflow. Finally, we have trained five
models with all degradations (affine, elastic, rotation) and
evaluated this model on the three different scenarios. The
corresponding F values are depicted in Table 2. The system
is worse than the experts for the base and curved scenarios,
but for the oriented scenario it even benefits from the addi-
tional elastic transformations.

4.3 U-Net versus ARU-Net versus single-stage
workflow

In Sect. 3, we have introduced theARU-Net in a two-stage
workflow. In this section, we will investigate its superiority
over the classicalU-Net aswell as over a ”single-stage”work-
flow. For this purpose, we have trained the U-, RU-, ARU-
and LARU-Net (each 5 times—random weight initialization
and random training sample order) on the recently intro-
duced cBAD dataset8 [26]. The LARU-Net is an ARU-Net
with a separable MDLSTM9 layer at the lowest resolution to
incorporate full spatial context. The details of the dataset are
described in [25]. In our opinion, this is the most challeng-
ing freely available dataset at the moment. We have trained
each network for 250 epochs, 1024 training samples each
epoch using the S+ A data augmentation strategy. To assure
the statistical significance of the posed superiority of the
newly introduced architecture, we follow [47] and provide
the results of a statistical analysis. The choice of appropri-
ate statistical tests is quite limited since we cannot make
any assumptions regarding the underlying distribution. We
utilize 95% confidence intervals (CI) provided by nonpara-

8 https://zenodo.org/record/257972.
9 A separable MDLSTM layer is a concatenation of two (x- and y-
direction) BLSTM layers.

123

https://zenodo.org/record/257972


A two-stage method for text line detection in historical documents 299

Table 3 Results for the cBAD
test set: the results for different
neural network architectures and
the workflow without Stage II
(for the ARU-Net) are shown

∅ F-val [95% CI] CI T–D
Simple track Complex track

ARU Ia 0.9627 [0.9615, 0.9636] 0.9081 [0.9071, 0.9095]

U 0.9714 [0.9701, 0.9721] 0.9114 [0.9107, 0.9122] ✓ ✓

RU 0.9756 [0.9744, 0.9766] 0.9182 [0.9165, 0.9203] ✓ ✓

ARU 0.9781 [0.9772, 0.9789] 0.9223 [0.9214, 0.9230] ✓ ✓

LARU 0.9772 [0.9765, 0.9780] 0.9233 [0.9217, 0.9249] ✗ ✗

Each architecture is trained 5 times on the cBAD train set. The results are sorted with respect to computational
effort. The last two columns indicate whether an architecture is superior to all before mentioned ones in terms
of disjunct confidence intervals and the Tukey–Duckworth test
Bold values indicate that the number is the mean for several experimental runs instead of a single run result
aSingle-stage workflow—baseline estimation by basic image processing methods (binarization of B followed
by a CC analysis, no usage of S)

metric bootstrapping [48] as well as the Tukey–Duckworth
test (level of significance: 5%) [49]. The results obtained
are summarized in Table 3. The ARU-Net performs signif-
icantly (last two columns) better than all architectures with
less computational effort. The LARU-Net could not prove
its superiority and is therefore dismissed. Furthermore, the
results show that the introduction of the second stage is ben-
eficial for the overall performance. It has to be mentioned
that the above comparison is not fair concerning the num-
ber of trainable parameters—U-2.16, RU-4.13, ARU-4.14,
LARU-6.25 (in millions)—nor concerning the training or
even inference time. The comparison is about different archi-
tectures which, theoretically, have different capabilities, and
whether they make good use of them or not. For instance,
the LARU-Net should be capable of incorporating a more
detailed spatial context, but in fact it does not benefit (in our
settings) from this capability.

4.4 Comparison against the State of the Art

In this subsection, we compare the proposed framework
against the state of the art. We have chosen the 3 most recent
competitions on text line detection for historical documents,
namely ICDAR 2015 competition on text line detection in
historical documents [14], ICDAR2017Competition onLay-
out Analysis for Challenging Medieval Manuscripts (Task
2) [50] and cBAD: ICDAR2017 Competition on Baseline
Detection [36]. We will not further introduce the datasets or
metrics used and refer to the competition papers.

4.4.1 ICDAR 2015 competition on text line detection in
historical documents (ANDAR-TL)

The ARU-Net was trained on the cBAD training set.10 This
competition aims at the origin point (OP) detection. AnOP is
roughly spoken the lower left “corner” of a text line. Hence,

10 The competition training data were not available to the authors.

Table 4 Origin point (OP) detection results for the ANDAR-TL test
set: results for the dataset of [14] are shown

#COR #DF #DM #FP cost

UNIFR 2578 3022 6456 267 19.00

IA-2 5655 407 6032 102 14.51

A2iA-3a 6523 2490 2263 181 13.20

SNU [32] 7741 948 2700 25 9.77

[33] 8015 517 2860 21 8.19

Ours 9610 358 1942 83 5.39

Underlined value indicates the best result
aAccording to [28] this is an extension of [34]
#COR means the number of correctly detected OPs, #DF means the
number of detection failures (no OP detected by the system), #DM
means the number of detection misses (detected OP far away from the
ground truth OP) and #FP means the number of false positives

we calculate the left most point of each detected baseline.
This is the output of our system for this competition. The
achieved results are shown in Table 4. Since the ARU-Net
was not trained on the original training data, it is hard to
compare its results to the other ones. Nevertheless, we would
like to stress the fact that trained systems usually perform
better if training set and test set are sampled from the same
distribution. For example, the ARU-Net trained on the cBAD
training set achieves an average F value of 0.9605 for the
Bozen test set, which is worse than the F value of 0.9750
of the system trained solely on the Bozen training set, see
Table 2. This indicates (but does not prove) the superiority
of the presented method over the other methods in Table 4.

4.4.2 ICDAR2017 competition on layout analysis for
challengingmedieval manuscripts (Task 2)

The DIVA-HisDB dataset consists of 150 annotated pages
of three different medieval manuscripts with challenging
layouts, see Fig. 11. The ARU-Net was trained for 250
epochs 1024 samples per epoch on the competition training
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Fig. 11 Results for an image of the CSG18 subset of the test set—the original image (only the main text lines were ground-truthed), the baseline
image generated by the trained ARU-Net and the baselines detected by the proposed method are shown (from left to right)

Table 5 Results for the ICDAR2017 competition on layout analysis
for challenging medieval manuscripts: the F values for Task 2 of all
participants and the proposedmethod are shown for the different subsets
of the test set

CB55 CSG18 CSG863 Overall

CVML 0.9534 0.8734 0.9751 0.9340

BYU 0.9597 0.9879 0.9830 0.9768

CITlab 0.9896 0.9853 0.9716 0.9822

Ours 0.9980 0.9828 0.9889 0.9899

Underlined value indicates the best result

data11 provided by the competition organizers. This allows
an entirely fair comparison to the participant’s results, see
Table 5. The proposed method substantially outperforms the
winning one and reduces the error (the gap to 1.0) by 43.26%
(relatively). The specialty of this competition was that the
methods should focus on a special kind of text, e.g., com-
ments were not annotated as text. Hence, the ARU-Net had
to learn to distinguish between different types of text. The
output of the ARU-Net and the detected baselines for a sam-
ple image of the CSG18 subset of the test set are shown in
Fig. 11. One can see that the ARU-Net entirely ignores all
text entities not regarded (in this competition) as main text.
Remarkably, no further information besides the input image
is provided to the ARU-Net.

11 http://diuf.unifr.ch/main/hisdoc/diva-hisdb.

Table 6 Results for the cBAD test set: the P-, R- and F values of all
participants and of the proposed method for the simple and complex
track of the cBAD: ICDAR2017 Competition on Baseline Detection
are shown

Simple track Complex track
P/R-val F-val P/R-val F-val

LITIS 0.78/0.84 0.807 –/– –

[51] 0.75/0.93 0.827 –/– –

UPVL 0.94/0.86 0.894 0.83/0.61 0.702

[16] 0.88/0.88 0.880 0.69/0.77 0.730

BYU 0.88/0.91 0.892 0.77/0.82 0.796

[52] –/– – 0.85/0.85 0.851

[53] 0.97/0.97 0.971 0.85/0.86 0.859

[54] 0.88/0.97 0.920 0.79/0.95 0.860

Ours 0.98/0.98 0.978 0.93/0.92 0.922

Bold values indicate that the number is the mean for several experimen-
tal runs instead of a single run result
Underlined value indicates the best result

4.4.3 cBAD: ICDAR2017 Competition on Baseline Detection

Wecompare our average result for theARU-Net (see Table 3)
to the results presented in [36], see Table 6. Our method
performs considerably better in both tracks compared to all
submissions. Especially, the increase in performance for the
complex track is massive. Remarkably, the winning team
uses an U-Net-based system with task specific pre- and post-
processing. This indicates that the newly introduced concepts
and parametrization, which are presented in thiswork, signif-
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icantly improve the capability of the classical U-Net. Some
results on chosen images of the cBAD test set are shown in
Figs. S.3–S.5 (supplements). Notably, no further informa-
tion besides the input image (and the text region information
in the simple track) is provided to the ARU-Net nor to the
second stage of the workflow during inference.

5 Conclusion

In this work, we presented a machine learning-based method
for text line detection in historical documents. The text lines
are represented by their baselines. The problem and the pro-
posed method were introduced thoroughly. The proposed
ARU-Net, which is a universal pixel labeling approach, was
trained to predict the baseline position and the beginning
and end of each text line. This enables the system to handle
documents with complex layouts, e.g., tables, marginalia,
multi-column layouts. We have shown that the system can
be trained from scratch with manageably few training sam-
ples for a complex but homogeneous collection. Remarkably,
ground truth production is quite cheap. A ground truth sam-
ple is just a page with annotated baselines, which can be done
in a fewminutes per page. Notably, this annotation process is
possible without any expert knowledge. This is a big advan-
tage compared to classical image processing-based methods,
which typically demand for expert knowledge in the adap-
tation phase. Therefore, one can expect that an adaptation
on collections, which are not covered by the neural network,
is possible by a wide audience of users (not only computer
scientists) with reasonable ground-truthing effort. The appli-
cability of the proposed method was shown for straight,
curved and oriented text lines as well as for a combined
scenario. The superiority of the proposed ARU-Net in the
two-stage workflow over the classical U-Net and over a sim-
plifiedworkflowwas shown and statistically verified. Finally,
we showed that the proposed method substantially outper-
forms the previous state of the art. Nevertheless, as one can
see in Figs. S.3–S.5 (supplements) there are still errors made
by the system, e.g., missed baselines (see Fig. S.4—bottom
right), segmentation errors (see Fig. S.5—bottom left), false
positives (see Fig. S.3—top left) or problems with strongly
degraded documents (see Fig. S.4—top left). But these errors
do not seem to follow a certain deterministic principle, which
is not surprising for a method based on machine learning.
However, we plan to test newly introduced concepts like
capsules, memory augmentation and deeply supervised net-
works to further improve the system’s performance.
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