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Abstract
In the context of historical document analysis, image binarization is a first important step, which separates foreground
from background, despite common image degradations, such as faded ink, stains, or bleed-through. Fast binarization has
great significance when analyzing vast archives of document images, since even small inefficiencies can quickly accumulate
to years of wasted execution time. Therefore, efficient binarization is especially relevant to companies and government
institutions, who want to analyze their large collections of document images. The main challenge with this is to speed up the
execution performance without affecting the binarization performance. We modify a state-of-the-art binarization algorithm
and achieve on average a 3.5 times faster execution performance by correctly mapping this algorithm to a heterogeneous
platform, consisting of a CPU and a GPU. Our proposed parameter tuning algorithm additionally improves the execution time
for parameter tuning by a factor of 1.7, compared to previous parameter tuning algorithms.We see that for the chosen algorithm,
machine learning-based parameter tuning improves the execution performance more than heterogeneous computing, when
comparing absolute execution times.

Keywords Image binarization · Heterogeneous computing · Automatic parameter tuning · Historical documents

1 Introduction

Historical handwritten documents have been archived on
microfilm for several decades. More recently, the possibil-
ity to digitize such documents has made them available
to a broader audience via online services of companies
and government agencies. However, this increase in peo-
ple accessing historical document images also increases
the demand for simplified access to these images. Pattern
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matching and recognition algorithms can help with this by
making document images searchable [42,53] or by transcrib-
ing them [11,28]. Many of these algorithms require that the
written text is first separated from its background. This pro-
cedure is called image binarization. Since pattern matching
and recognition algorithms will only process image pixels,
which were classified as written text, this first step is vital for
further processing.

With this motivation, it is natural to choose the best
available binarization algorithm for this important first step.
However, while binarization performance is important to
extract as much information as possible, the execution
performance of the used binarization algorithm has also
great significance when dealing with large amounts of
document images. Therefore, efficient binarization is espe-
cially relevant for companies and government agencies,
whose document image collections are growing contin-
uously, easily surpassing 50 million images and more.
Provided that tuning the parameters of a binarization algo-
rithm and performing the binarization takes 15seconds per
image, it will take more than 23years to binarize those
50 million images. The main challenge in speeding up
the execution performance of a binarization algorithm is

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10032-017-0293-7&domain=pdf
http://orcid.org/0000-0002-2161-7371
http://orcid.org/0000-0001-9947-1088
http://orcid.org/0000-0002-0535-1761


42 F. Westphal et al.

to find ways which do not affect its binarization perfor-
mance.

This paper describes how to reduce the execution time of
Howe’s binarization algorithm (HBA) [18,19], a state-of-the-
art binarization algorithm, without reducing its binarization
performance, by:

– mapping it to a heterogeneous platform consisting of one
CPU and one GPU

– efficiently tuning its parameters usingmultivariate regres-
sion

We experimentally evaluate our proposed solutions using
seven standard benchmark datasets from the Document
Image Binarization Contest (DIBCO) and the Competi-
tion on Handwritten Document Image Binarization (H-
DIBCO). We show that HBA can be executed on average
3.5 times faster when running completely on the GPU of
a heterogeneous platform than when running only on the
CPU. Additionally, we show that a similar execution per-
formance can be achieved by executing one part of the
algorithm on the CPU and the remaining parts on the
GPU.

Furthermore, we analyze the correlation between bina-
rization quality and execution time with respect to different
binarization parameters and evaluate the performance of
our proposed parameter tuning algorithm for HBA. Our
analysis shows that there is a clear negative correlation
between execution time and binarization quality and that
our proposed parameter tuning algorithm chooses param-
eters on average 1.7 times faster than Howe’s param-
eter tuning algorithm [19] with comparable binarization
results.

We provide more information on HBA, heterogeneous
computing, and other topics relevant for this paper in Sect. 2.
Section 3 describes how we map HBA to a heteroge-
neous platform, and Sect. 4 illustrates our parameter tuning
algorithm. We describe the design of the different exper-
iments performed to evaluate our proposed solutions in
Sect. 5 and analyze the obtained results in Sect. 6. Sec-
tion 7 discusses related work, and Sect. 8 concludes this
paper.

2 Background

In this section, we introduce a few basic concepts, which are
used throughout the paper. Those concepts are image bina-
rization, heterogeneous computing, and multivariate regres-
sion. We describe image binarization in Sect. 2.1 together
with Howe’s binarization algorithm (HBA) [18,19] and two
graph cut algorithms. A general introduction to heteroge-
neous computing and its challenges is given in Sect. 2.2.

Fig. 1 Image from the H-DIBCO 2012 dataset illustrating common
image degradations, such as faded ink and stains covering the written
text

Section 2.3 describes how random forests [4] can predict
two continuous values.

2.1 Image binarization

Image binarization is the process of classifying image pixels
as foreground or background pixels. For images of handwrit-
ten documents, this means to separate the written text from
its background. This is especially challenging when dealing
with images of historical documents, which can have vari-
ous degradations. Figure 1 illustrates common degradations,
such as faded ink and stains covering the written text. Ink
bleeding through from the other side of the page, as shown
in Fig. 6b, is another common problem. A binarization algo-
rithm for historical documents has to be able to cope with
these degradations, which increase the risk that foreground
pixels are accidentally classified as background pixels or vice
versa.

Binarization algorithms by Otsu [31], Niblack [29], and
Sauvola et al. [43] are well known. These algorithms
are commonly used as baseline for comparison with new
algorithms, for example, in competitions, such as the Doc-
ument Image Binarization Contest (DIBCO) held at the
International Conference on Document Analysis and Recog-
nition (ICDAR) [12,37,39] or the Competition on Handwrit-
ten Document Image Binarization (H-DIBCO) held at the
InternationalConferenceonFrontiers inHandwritingRecog-
nition (ICFHR) [30,36,38,40]. In the last two binarization
competitions, in 2014 and 2016, the binarization algorithm
by Howe [19] and derivations thereof using different prepro-
cessing steps havewon these contests. Therefore, we decided
to work with Howe’s binarization algorithm.

2.1.1 Howe’s binarization algorithm (HBA)

HBA labels image pixels as foreground or background pix-
els by minimizing a global energy function. This function
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Fig. 2 Example graph constructed for a 3 × 1 intensity image with an
image edge between v1,0 and v2,0

penalizes labelings that do not conform with the image’s
Laplacian, that is, it penalizes pixels in intensity valleys (ink),
which are classified as background and pixels in intensity
plateau or peak areas (background), which are classified as
foreground. Additionally, to this simple separation based on
the divergence of the gradient, the energy function penalizes
labeling discontinuities, unless they take place at an edge,
as detected by the Canny edge detection algorithm [5]. This
addition improves the stability of the binarization algorithm
and encourages the continuity of foreground and background
areas.

In order to minimize the energy function, HBA finds the
minimal cut to separate foreground and background pixels
with help of a graph cut algorithm. Therefore, HBA needs
to build a directed graph G = (V , E) based on the image’s
Laplacian and edge image on which the graph cut algorithm
can operate. For anm×n intensity image of pixel values ix,y
with 0 ≤ x < m and 0 ≤ y < n, the graph is built by
adding a vertex vx,y for each image pixel ix,y . Furthermore,
a vertex for the source s and the sink t of the graph are added.
Every vertex vx,y is connected with s and t using directed
edges from s to vx,y and from vx,y to t . Figure 2 illustrates this
construction for a 3×1 intensity image. The capacities of the
directed edges from s to vx,y are denoted as ox,y to indicate
the flow origin, while the capacities of the edges from vx,y to
t are denoted as dx,y to indicate the flow destination. These
capacities are computed for each image pixel ix,y based on
its Laplacian value �2ix,y as follows:

ox,y = L − �2ix,ydx,y = L + �2ix,y . (1)

It is to note that L represents an adjusting constant to
avoid negative edge capacities and the mentioned Laplacian
values are biased by assigning a high value to bright out-
lier, i.e., background pixels. Additionally, each vertex vx,y
is connected with its four neighbors (top, bottom, left and
right) using edges in both directions. The capacities of those
edges are set to zero if an edge was detected between the

neighboring pixels. Otherwise, the capacities are set to a pre-
defined penalty value c. This is illustrated in the example
graph shown in Fig. 2, which assumes that an image edge
was detected between v1,0 and v2,0. Due to this construc-
tion, the applied graph cut algorithm will assign foreground
and background labels by trading off the similarity between
assigned label and the image’s Laplacian with labeling con-
tinuity.

Howe identified two HBA parameters with the highest
impact on the binarization result: the high threshold thi for the
Canny edge detection algorithm and the penalty value c for
penalizing labeling discontinuities. Due to their high impact
on the binarization result, Howe developed an algorithm to
tune these parameters automatically [19]. The general idea
for tuning the penalty value c is to minimize the energy func-
tion for a series of different c values and then to compare
every two consecutive images based on an instability mea-
sure. This measure is the normalized difference between two
images. Then, the image with the smallest instability value
is chosen as final result. Along with the parameter c, thi is
tuned. Howe argues that it is sufficient to pick between two
high threshold values τ1, τ2 to speed up the parameter tuning
process. However, tuning thi requires to tune the parameter
c as described above for τ1, τ2 and their mean value τ0. This
results in three binarized images B0, B1 and B2. The previ-
ously described instability measure is used on B0, B1 and B0,
B2 to compare each of the high threshold candidate values
with their mean. The high threshold with the lowest instabil-
ity value is chosen as value for thi.While this tuning algorithm
produces sufficient binarization results, it is computationally
expensive, since tuning the parameter c requires 33 trial bina-
rizations. Therefore, the complete algorithm requires 99 trial
binarizations, since c is tuned for each of the three thi values.
This is only feasible, because the graph for the energy min-
imization can be reused for all trial binarizations performed
for one thi value

2.1.2 Graph cut algorithms

As mentioned before, energy minimization with help of a
graph cut algorithm is at the core of HBA. This class of
algorithms, also known asmin-cut/max-flow algorithms,was
originally developed to analyze the maximum flow through
a given transportation or communication network [10]. Nev-
ertheless, those algorithms have also been widely applied
in computer vision for image restoration [15], stereo analy-
sis [41], and segmentation [20].

The key idea behind the graph cut algorithms is that some
resource is flowing from the source vertex s of the graph to
the sink vertex t . The directed edges between s, t and their
intermediate vertices model connections through which flow
can travel from source to sink. The capacity of each edge
indicates how much flow can travel through this particular
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connection. The question is then how much flow can max-
imally be pushed from source to sink, given the particular
graph with its directed edges and edge capacities.

To solve this problem, two different strategies can be
applied. One of these strategies is the Ford–Fulkerson
method [10], and the other is the push–relabel approach by
Goldberg and Tarjan [14]. In the following, wewill introduce
both strategies shortly.

Ford–Fulkerson Algorithms following this method find the
maximum flow in a given graph by iteratively picking paths
from the source s to the sink t and augmenting the flow
along those paths. For each path, the maximum flow along
this path is added to the overall flow through the graph and
the capacities of each edge on this path are reduced by this
maximum flow. The maximum flow along one path is equal
to the smallest residual capacity of the edges constituting this
path. Therefore, paths are invalid if the residual capacity of
one of their edges is zero, simply because nothing can flow
from source to sink along this path. For example in Fig. 2,
the path (s, v0,0, v1,0, t) is valid for c > 0, while the path
(s, v2,0, v1,0, t) is invalid. The algorithm terminates when
no valid path between source and sink can be found.

There are several variations of this method, which dif-
fer mostly in how paths are picked for augmentation. A
few examples for algorithms following this strategy are the
original Ford–Fulkerson algorithm [10], the Edmonds–Karp
algorithm [9], and the algorithm proposed by Boykov and
Kolmogorov [3].

Push–Relabel Algorithms following the push–relabel
approach use a different intuition than Ford–Fulkerson style
algorithms. While Ford–Fulkerson views vertices as pipe
junctions, push–relabel views themas reservoirs. Thekeydif-
ference in these views is that Ford–Fulkerson’s view requires
the flow into a vertex to be as high as the flow out of this ver-
tex. Push–relabel, on the other hand, allows that a vertex
receives more flow than what can flow out of this vertex.
This additional flow is called excess flow and is recorded
for every vertex. The ultimate goal of the algorithm is to
distribute this excess flow between the reservoirs, so that a
maximum amount of flow reaches the sink. Another vertex
property not found in Ford–Fulkerson is the notion of height.
The idea is that each reservoir is located at a certain height
level and that flow can only be pushed from one reservoir
vx,y to another reservoir vx+1,y if vx,y is located higher than
vx+1,y .

At the beginning of the algorithm execution, all vertices
between source and sink have a height of zero and no excess
flow. The height of the source is fixed to the number of
vertices in the graph and the sink’s height is set to zero.
The algorithm begins then to push as much flow from the
source to its connected vertices as allowed by the respective

edge capacityox,y . After this initialization step, the algorithm
picks vertices and applies one of two possible operations on
them. Those operations are called push and relabel.

The push operation distributes excess flow from the cho-
sen vertex to one of its neighbors. This operation is only
applicable, if the chosen vertex actually has excess flow and
if the directed edge throughwhich the flow is to be pushed has
a residual capacity greater than zero. As mentioned before,
pushing flow is also only possible if the chosen vertex is
higher than the vertex towhich flow should be pushed. There-
fore, after initialization, the push operation can only be used
to push flow from the vertices vx,y to the sink, since all ver-
tices vx,y have initially the same height.

The relabel operation adjusts the height of a vertex to
enable the distribution of excess flow between the vertices
vx,y . It is only applicable to vertices, which have an excess
flow and whose height is lower than or equal to the heights
of all neighboring vertices. This only considers connected
neighbors, i.e., neighbors which are connected to the chosen
vertex by a directed edge outgoing from the chosen vertex,
if the residual capacity of this edge is greater than zero. The
height of the chosen vertex is then set to the height of its
lowest connected neighbor plus one. So, if vx,y is the chosen
vertex and vx+1,y and vx,y+1 are its connected neighbors
with the respective heights h[vx,y] = 0, h[vx+1,y] = 4 and
h[vx,y+1] = 2, the height of vx,y is set to 3.

By iteratively applying both operations, as much flow as
possible reaches the sink, limited by the graph’s edge capaci-
ties. The remaining excess flow is pushed back to the source,
since the source’s height is fixed while the height of the ver-
tices vx,y only grows. The push–relabel algorithm terminates
if there is no vertex left to which either push or relabel can
be applied.

In contrast to Ford–Fulkerson which needs to look at
the whole graph to pick paths from source to sink, push–
relabel operates locally only on the chosen vertex and its
connected neighbors. Therefore, push–relabel is very well
suitable for parallel execution. This property of the push–
relabel approach was used by Vineet et al. [52] and Peng et
al. [34] to implement graph cuts on the GPU.

2.2 Heterogeneous computing

A heterogeneous system combines different processor types
[32]. In a typical computer, these types are multicore CPUs
and GPUs. Heterogeneous computing uses those different
processors simultaneously to improve the execution speed of
an algorithm. One simple way to achieve this is to distribute
different parts of the algorithm to different processors. This
allows two levels of parallelism, namely the parallel execu-
tion of those different parts on different processors and on
the other hand the parallel execution of each of these parts
on its respective processor.
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Fig. 3 Illustration of a heterogeneous platform consisting of CPU and
GPU

Despite this potential for increasing the execution speed,
mapping an algorithm onto a heterogeneous platform entails
many challenges. One of these challenges is memory man-
agement. As shown in Fig. 3, the CPU uses the computer’s
main memory, while the GPU possesses its own, smaller
memory space.Moving data between those differentmemory
spaces inflicts high performance penalties. If not considered
carefully, this performance loss can outweigh the speedup
gained by parallel execution.

Another challenge is the diversity of execution models of
the different processor types. This diversity makes it neces-
sary to carefully select and optimize algorithms depending
on which processor is executing them. For instance, GPUs
are optimized for data parallel execution by larger amounts
of arithmetic logic units (ALU), but smaller control units and
caches, as shown in Fig. 3. This means that GPUs perform
well if the same sequence of operations has to be performed
on different portions of the data, while they perform poorly
if this is not the case.

Apart from these challenges, the code execution on differ-
ent processor types has to be coordinated. One way to do this
is to use the OpenCL standard [49]. This standard defines
a unified programming interface, which allows to program
and coordinate the execution of programs on many different
processor types.

2.3 Multivariate regression

In machine learning, multivariate regression refers to the
task of estimating several real-valued target variables based
on a set of independent variables. The corresponding learn-
ing problem is to learn a mapping f̂ with f̂ : X → R

n

from training data. Here, X denotes the instance space and
n denotes the number of target variables. An instance x ∈ X
is a vector of independent variables, called features.

While there is a large variety of machine learning algo-
rithms which can be used to learn such a mapping f̂ , we
will focus only on one particular algorithm, namely random
forests [4]. The general idea behind random forests is to build
a predefined number of decision trees from random subsets

of the training data. Each tree is then built from a randomly
selected set of features from one of the random subsets. The
regression result y ∈ R

n is then computed by averaging over
the regression results of each of the decision trees.

3 Heterogeneous binarization

There are different paths to improve HBA’s execution perfor-
mance. In this section, we focus on implementation-based
speedup. Therefore, we describe how HBA can be imple-
mented on a heterogeneous platform to parallelize image
binarization. For this, we decompose HBA and map it onto
such a platform consisting of a CPU and a GPU, Sect. 3.1.
Additionally, we motivate why global relabel, a common
heuristic for the push–relabel algorithm, is crucialwhen bina-
rizing images of text documents, Sect. 3.2.

3.1 Algorithm decomposition andmapping

When mapping an algorithm to a heterogeneous platform, it
is important to identify parts of the algorithm which can run
independently. This refers to parts of the algorithm which do
not interact with each other to compute their result. In case of
HBA, one example for such independent parts are the Lapla-
cian computation and the Canny edge image computation.
These two parts can be computed without any interaction
between them. Therefore, they can be computed on differ-
ent processing units without the need for synchronization or
sharing of data, which would slow down the computation.

Another important consideration are the data dependen-
cies between those independent parts. The reason for this is
the limited bandwidth between the computer’s main memory
and GPU memory. Therefore, the amount of data exchanged
between different independent parts should be limited as
much as possible to avoid the slowdata transfer. One example
for this isHBA’sLaplacian computation and the biasingof the
Laplacian image for certain background pixels. The compu-
tation of the Laplacian image and the identification of bright
outlier pixels can be computed independent from each other.
However, separating them into two different steps introduces
an additional data exchange, which outweighs the benefit of
the possible execution on different processing units.

With those considerations in mind, we decompose HBA
into three different parts: (1) Laplacian image and back-
ground bias computation, (2) Canny edge image computa-
tion, and (3) energy minimization. Apart from these parts,
Fig. 4 shows the exchanged data, as well as the dependen-
cies between parts. Due to this decomposition, the only data
to be exchanged are the initial grayscale image, the Lapla-
cian image, the Canny edge image, and the binarized image.
Compared to the computation performed in each part, this
constitutes a reasonable tradeoff between computation and

123



46 F. Westphal et al.

Grayscale Image

1.) Laplacian Image and
Background Bias
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2.) Canny Edge Image
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Laplacian Image Canny Edge Image

3.) Energy Minimization

Binarized Image

Fig. 4 Decomposition of HBA into three independent parts

Table 1 Mapping of algorithm parts to CPU and GPU. GPU has been
typeset in bold font solely for the purpose of better readability

I II III IV V VI VII VIII

(1) CPU CPU GPU GPU CPU CPU GPU GPU

(2) CPU GPU CPU GPU CPU GPU CPU GPU

(3) CPU CPU CPU CPU GPU GPU GPU GPU

data transfer. Additionally, each of the three parts is indepen-
dent from the other two, so that no data is exchanged during
computation of any of those parts. However, while part (1)
and (2) canbe executeddirectly basedon thegrayscale image,
part (3) depends on the results of the previous two steps and
can therefore only start after those two steps completed.

Due to the chosen decomposition, it is possible to execute
the three different parts of HBAon different processing units.
In this paper, we focus only on CPU and GPU as processing
units. Therefore, we obtain eight different mappings of HBA
parts to a heterogeneous platform, as shown in Table 1.

After conceptually decomposing HBA and mapping it to
a heterogeneous platform, we choose an implementation for
each of the three parts. Here, it is important to keep in mind
that different processing units have different execution mod-
els. Therefore, we choose different implementations or even
different algorithms depending on if one part is executed on
the CPU or the GPU.

For part (1), the implementation is straightforward, since
the Laplacian image computation and the identification of
bright outlier pixels can be implemented using convolu-
tion. This can be implemented similarly for CPU and GPU
with help of OpenCL with the only difference of cache
management, which has to be done manually in the GPU
implementation.

Part (2) is similar to part (1) in that the same algorithm can
be used for CPU and GPU with exception of the cache man-

agement. However, while we use our own implementation
for part (1), part (2) is a modification of the Canny imple-
mentation from the OpenCV1 library. We extend OpenCV’s
implementation to make it possible to use relative values for
the high threshold thi and the low threshold tlo in contrast
to the absolute values of the original implementation. This
makes it easier to findfitting values for those thresholds, since
the same relative threshold value will be suitable for more
images, despite different absolute gradient values.

So far, we could use the same algorithm for the CPU and
the GPU. This is different for the energy minimization per-
formed in the third part. In his paper, Howe uses Boykov
and Kolmogorov’s graph cut algorithm [3] to perform the
minimization of the energy function [18]. While this is an
efficient algorithmwhen executed on a CPU, it is not suitable
for execution on a GPU due to its global tree data structure.
A graph cut algorithm, which is more suitable for execution
on a GPU is the JF-cut algorithm by Peng et al. [34]. This
algorithm is based on a push–relabel approach, which allows
parallel local updates, in contrast to sequential updates to a
global data structure, making it therefore more suitable for
the GPU. For this reason, we are using these two different
algorithms for CPU and GPU in our implementation.

3.2 GPU energyminimization

Asmentioned before, the locally applicable push and relabel
operations of the push–relabel algorithm make it suitable for
GPU execution. However, Anderson and Setubal [2] have
shown that a periodically executed global step, called global
relabel, greatly improves the execution performance of the
push–relabel algorithm. They also emphasize that this global
step should not be used too frequently, since it can affect
execution performance negatively, due to the required syn-
chronization. Therefore, Anderson and Setubal propose to
execute global relabel only after |V | or 2|V | push and rela-
bel operations depending on the ratio between number of
edges and vertices, where |V | is the number of vertices in the
graph. While this is a useful heuristic, it is time consuming
to keep track of the number of performed push and relabel
operations in implementations for the GPU, since a large
number of these operations is executed in parallel. Vineet
and Narayanan [52] reduce the number of global relabel exe-
cutions in their GPU implementation by executing it only
after a fixed amount of iterations of push and relabel phases.
However, Peng et al. [34] claim that global relabel benefits
execution performance only in the first stages of their GPU
implementation and can be omitted thereafter. While this is
true for the type of image segmentation they analyzed, we
argue that HBA requires global relabeling steps throughout
the energy minimization part.

1 http://opencv.org.
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Fig. 5 Subgraph of a graph built for an m × n image representing the
first five pixels of the first image row

In order to understand the difference between the problem
of image segmentation Peng et al. looked at and document
image binarization, we first need to understand what global
relabel actually does. Take the three vertices v0,0, v2,0, and
v4,0 in Fig. 5,which depicts a subgraph of a graph constructed
for an m × n intensity image corresponding to the first five
pixels of the first image row. Remember that in the push–
relabel algorithm, we imagine that each of the vertices has
a water reservoir attached to it, which is located at a certain
height level. According to the graph, the reservoir of v0,0
is empty and can still forward water to the sink. However, it
can only forward asmuchwater as the reservoir of v2,0 holds,
namely 2 units of water. The reservoirs of v2,0 and v4,0 both
hold 2 units of water, v0,0 is their closest connection to the
sink, and v2,0 is closer to v0,0 than v4,0.

For a dramatic effect, you can imagine a large number of
empty reservoirs, which cannot forward water to the sink,
instead of the shown two vertices v1,0 and v3,0. The edge
capacities connecting the reservoirs are sufficient to transport
all water in v2,0 and v4,0–v0,0. When we restrict ourselves
to local push and relabel operations, we might now increase
the height of v2,0 and v4,0 by one and start pushing the water
downhill. On a local scale, however, we do not know if we
should push thewater in v2,0 toward v0,0 or toward v4,0, since
both alternatives seem equally suitable. On a global scale,
we know that the closest path to the sink is via v0,0. There-
fore, global relabel, as proposed byGoldberg andTarjan [14],
computes for each reservoir the distance to the closest sink
and sets the reservoir’s height level accordingly. In this way,
global relabel builds a ramp rising from v0,0 via v2,0–v4,0
and it becomes clear for local push operations to push water
downhill in the direction of v0,0. Obviously, providing an ini-
tial direction toward the closest sink makes the push–relabel
algorithm more efficient almost regardless of the problem it
is applied to. This is the case, since we avoid locally correct,
but globally wrong decisions, such as pushing water from
v2,0 toward v4,0.

After motivating an initial global relabel step, the question
is now: Why should we repeat the execution of global rela-
bel? And why is this execution dependent on the problem at

Fig. 6 Images illustrating typical image segmentation and binarization
problems. Image a is part of a benchmark dataset made by Szeliski et
al. [51]. Image b is part of the DIBCO 2013 dataset [39]. Additionally,
image b illustrates bleed-through

hand? Going back to our example in Fig. 5, we can see that
after three push operations the water from v2,0 will reach the
sink t and will fill up v0,0’s connection to the sink. Assuming
that at the same time as we pushed the water from v2,0, we
also pushed the water downhill from v4,0, the reservoir of
v1,0 will now hold 2 units of water. Even though, we know
globally that the water in v1,0 cannot reach the sink through
v0,0, the local push operation will still forward the water to
this vertex. Only then, a local relabel operation will change
the height level of v0,0 to find another way to the sink. This
is not a big issue if the nearest vertex with a not saturated
connection to the sink lies in the same direction as v0,0, i.e.,
it is close to v0,0, such as v0,1, which is the vertex next to v0,0
in y direction in the complete graph. However, it becomes
an issue if the nearest vertex is located in the opposite direc-
tion, for instance, v9,0, not shown in the subgraph in Fig. 5.
In the second case, local push and relabel operations would
have to invert the previously built ramp one step at a time.
It becomes immediately clear that global relabel would sim-
plify this procedure by building a new ramp. Additionally, if
we would have executed global relabel after the three push
operations, we would not have pushed the water from v1,0 to
v0,0, but instead, we could have started to push thewater back
in direction of v9,0 directly. This may not seem significant
in this small example. However, as mentioned before, there
can be a large number of intermediate vertices between v0,0,
v2,0 and v4,0, increasing the number of superfluous push and
relabel operations. Therefore, depending on the situation, it
can be appropriate to repeat the execution of global relabel.

The two mentioned situations, i.e., the next closest sink
connection lies in direction of the current ramp and the case
it lies in the opposite direction, distinguish Peng et al.’s
image segmentation problem from the binarization of docu-
ment images. In the image segmentation case, as shown in
Fig. 6a, we have one central object, which should be sep-
arated from the background. Therefore, we have one main
region in which vertices have an excess flow and one region
inwhich vertices can forward flow to the sink. The first region
is marked with a white line in the image, while the latter
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region is marked with a black line. Due to these two clearly
defined regions, the next closest sink connection will most
likely lie in direction of the initially built ramp. In contrast,
in the document image binarization case, there is no central
region in which vertices with excess flow are located and no
general direction toward a region of sink connected vertices.
This is caused by Howe’s energy function, which makes ver-
tices of blank page regions carry excess flow, while vertices
of ink or bleed-through regions are connected to the sink.
With this in mind, one can see from Fig. 6b that there is
no single sink region, but that vertices connected to the sink
are scattered all across the image. Because of this structural
difference, it is far more likely that the next closest sink con-
nection will not lie in direction of the initially built ramp, but
that a direction change is necessary. Therefore, it is benefi-
cial for the execution performance to execute global relabel
throughout HBA’s execution, while this is unnecessary in the
image segmentation case.

As mentioned before, it is important to perform global
relabel not too frequently. Therefore, we propose a slightly
simplified version of Anderson and Setubal’s heuristic [2] to
achieve reasonable performance using global relabel without
the need of keeping track of the number of performed push
and relabel operations. Instead of performing global relabel
after a fixed number of iterations of push and relabel phases,
as proposed by Vineet and Narayanan [52], we double the
number of iterations after each execution of global relabel.
In this way, we account for the fact that less and less push
and relabel operations are performed with each iteration and
approximate Anderson and Setubal’s heuristic.

4 Parameter tuning

Another path toward improving HBA’s execution perfor-
mance is parameter tuning. In this section, we argue that
the correct choice of HBA’s parameters does not only benefit
binarization performance, but also execution performance,
Sect. 4.1. Furthermore, we describe a fast way to predict
suitable parameters for a given document image, Sect. 4.2.

4.1 Benefits of parameter tuning

As mentioned before, the most important parameters for
HBA are the Canny high threshold thi and the penalty or
capacity value c. Howe argues in his paper [19] that select-
ing suitable parameters for a given image highly benefits
the binarization performance. Additionally to this improve-
ment of binarization quality, we argue that a fitting parameter
choice benefits also the execution performance. In the fol-
lowing, we detail how poor choices for each of the two main
parameters can negatively affect execution performance.

Canny high threshold An optimal thi value is found when
the edges of most foreground elements, such as words are
detected, while the edges of most background elements, such
as bleed-through or stains, are ignored. Choosing a too low
thi value results in selecting many edges from background
objects. Since each detected edge results in a capacity of 0 in
the corresponding edge of the energy function, this leads to
a largely disconnected graph. The results are longer execu-
tion times for Ford–Fulkerson style algorithms as well as for
graph cut algorithms, since it increases the length of the paths
that flow needs to travel from the source to the sink. Addi-
tionally, such a largely disconnected graph has many narrow
passages, where only a few graph edges have the capacity
to forward flow, while most surrounding graph edges do not
have the capacity. This leads to the situation that the edge
capacities of those passages are used up fast, resulting in
direction changes in the push–relabel algorithm, which are
detrimental to the execution performance, as discussed in the
previous section.

On the other hand, a too high thi value results in ignoring
edges from foreground objects, keeping their correspond-
ing vertices connected to the rest of the graph. Since the
vertices belonging to foreground objects get high-capacity
connections to the sink in the energy function, this means
that more flow can be pushed from the source to the sink.
This affects the execution performance negatively in Ford–
Fulkerson-style algorithms, since more paths from source
to sink have to be processed. In case of push–relabel algo-
rithms, more push and relabel operations need to be executed
to direct flow from many different, and potentially far away
sources to the vertices of foreground objects, until the capac-
ities of their sink or neighbor edges are consumed.

Penalty valueAn optimal value for c is high enough to equal
out background noise, such as bleed-through or stains, but
low enough to not erase faint ink strokes. Choosing a too
low c value results in the situation that short paths to the
sink get blocked fast, due to exhausted edge capacities. This
increases the execution time of Ford–Fulkerson-style algo-
rithms and push–relabel algorithms, due to the longer paths
to the sink. Additionally, fast blocked paths lead to many
direction changes in the push–relabel algorithm, which also
slows down execution performance. However, if the value
for c is near 0, processing will be fast, since most edges get
saturated immediately not allowing any equalization. On the
other hand, a too high value for c makes it almost impos-
sible for edges to get saturated. Therefore, flow can travel
over long distances to reach the sink, which leads to longer
execution times. This is particularly problematic in combi-
nation with a high thi value, since then many high-capacity
connections to the sink are available.
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4.2 Parameter prediction

In the previous section, we discussed how choosing thi and c
values lower or higher than the optimal value can negatively
affect not only the binarization performance, but also the
executionperformance.Therefore, it is important to be able to
estimate suitable parameter values for a given image. While
Howe provides a parameter tuning algorithm, which works
reasonably well [19], his algorithm is time consuming, since
it needs to binarize the given image several times. In order to
estimate HBA’s parameters in a timely fashion, we propose
to predict the parameters using multivariate regression based
on selected image features.

Initially, we looked at 20 different image features, such as
intensity mean, standard deviation, entropy or stroke width.
Several of these features were inspired by the work of Dinç
et al. [8], in which the authors select a binarization algorithm
to binarize protein crystal images based on the image’s fea-
tures. Examples for those features are the mean intensity of
the foreground region and the standard deviation of the back-
ground region. In order to reduce the time taken for feature
extraction, we used theBreiman–Cutler permutation variable
importance measure [4] for random forests to select 4 out of
these 20 features. After measuring the variable importance,
the four most important features were chosen for prediction.
In the following, we describe those four selected features,
while the other 16 features are described in “Appendix A.”

Co-occurrence matrix contrast This feature is computed
based on the image’s co-occurrence matrix, which was first
introduced by Haralick et al. [16] to extract textural features
from images. The co-occurrence matrix records for each pair
of intensity values, how often they occur in neighboring pix-
els in an image. In this context, neighboring pixels are all
pixels, which are one pixel away in horizontal direction. The
contrast of the co-occurrence matrix is a measure of local
variations in the image.

Co-occurrencematrix homogeneityAsecond feature derived
from the co-occurrence matrix is the image’s homogeneity.
This feature is a measure for the degree of smooth transitions
between pixels with different intensity levels in an image.

Edge mean This feature is computed by computing the
Canny edge image using a fixed value for the high threshold
thi. Then, the mean intensity of the image pixels belonging
to the detected edges is computed.

Background standard deviation In order to compute this fea-
ture, we use Otsu’s binarization algorithm [31] to get a rough
estimate of the image’s foreground and background regions.
Then, we compute the standard deviation of the image pixels
classified as background.

Using these four image features, we use random forests
to learn a mapping f̂ from these features to suitable HBA
parameters thi and c for a given image.

5 Experiment design

To verify that the proposed measures achieve our overall
goal to speed up binarization without losing binarization
performance, we designed several experiments. In this sec-
tion, we introduce our general experiment setup (Sect. 5.1)
and explain how we evaluate the execution performance of
different global relabel strategies (Sect. 5.2) and different
mappings of algorithm parts to CPU and GPU (Sect. 5.3).
Additionally, we describe how we measure the importance
of parameter tuning (Sect. 5.4) and how we evaluate the per-
formance of our parameter prediction algorithm (Sect. 5.5).

5.1 Experiment setup

All experiments were performed on a computer with an
Intel i7-6700K quad-core CPU @ 4.00 GHz, 32 GB DDR4
RAM and an Nvidia GeForce GTX 980. To execute parts of
HBA on CPU and GPU, we use our own implementation of
HBA, which uses the programming interface specified in the
OpenCL standard [49] for executing code on CPU and GPU.

The document image binarization contest datasets from
DIBCO 2009 [12], H-DIBCO 2010 [36], DIBCO 2011 [37],
H-DIBCO2012 [38],DIBCO2013 [39],H-DIBCO2014 [30]
andH-DIBCO2016 [40],were used in all experiments. These
datasets contain 86 images in total, of which 65 images
are handwritten and 21 images are printed documents. The
images of printed documents are from the DIBCO 2009,
DIBCO 2011, and DIBCO 2013 dataset.

For all experiments measuring execution time, we per-
form four consecutive time measurements and report the
average time for the last three time measurements. In this
way, we exclude the initial cold run and obtain more stable
measurement results, which are not skewed by operating sys-
tem caching. Furthermore, by averaging over the three warm
runs, we obtain a time measurement, which is less affected
by other operating system tasks running at the same time.
Additionally, it should be noted that we only measure the
execution time for the binarization algorithm, excluding the
time for loading and storing the respective image.

We measure the binarization performance using
F-Measure, pseudo-F-Measure (Fps), the peak-signal-to-
noise ratio (PSNR) and the distance reciprocal distortion
metric (DRD), which are commonly used in binarization
competitions [30,38–40]. While F-Measure assesses bina-
rization quality in terms of misclassified pixels regardless
of the pixels’ location, Fps weights pixel misclassifications
differently to emphasize readability. PSNRmeasures the sim-
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ilarity between ground truth image and respective binarized
image and DRD measures visual distortions in the binarized
image.

As we show in Sect. 6.3, the binarization parameters thi
and c have a significant impact on binarization and execution
performance. To allow an unbiased comparison of execution
times, we use the binarization parameters found by Howe’s
parameter tuning algorithm [19] for all our time measure-
ments.

5.2 Evaluating global relabel strategies

For our evaluation, we consider four different global relabel
strategies for the push–relabel algorithm used on the GPU.
Those strategies are None, Initial, Fixed, and Exponential as
described in the following.

None We perform the energy minimization using the push–
relabel algorithm without any global relabel step.

InitialAs Peng et al. [34], we perform only one global relabel
step in the beginning of the push–relabel algorithm.

Fixed As Vineet and Narayanan [52], we perform a global
relabel step in fixed intervals with every eighth iteration of
the push–relabel GPU algorithm.

ExponentialAs described before, we double the interval size
after each global relabel step starting with an interval of eight
iterations.

For each of these four strategies, wemeasure the execution
time for the images of all datasets using the respective bina-
rization parameters found using Howe’s parameter tuning
algorithm. For this evaluation, all parts of HBA are executed
on the GPU.

5.3 Evaluating algorithmmappings

Asmentioned before, there are eight different possibilities to
map HBA onto a heterogeneous platform consisting of one
CPU and one GPU. To identify the most suitable mapping,
wemeasure the execution times for the images of all datasets.
Basedonour findings presented inSect. 6.1,weuse the global
relabel strategy Fixed in all measurements.

Apart from the execution performance, we need to ensure
that each of the eight mappings produces a comparable bina-
rization performance. Therefore, we compare the obtained
binarization results with their respective ground truth images
using the four previously described measures. Additionally,
we compare our results with Howe’s MATLAB implemen-
tation,2 executed on MATLAB version R2016b. This imple-

2 http://www.cs.smith.edu/~nhowe/research/code/.

mentation incorporates Boykov and Kolmogorov’s method
for efficient graph cuts [3], as well as Kohli and Torr’s
approach for reusing minimization results after modifying
the graph [25].

5.4 Evaluating parameter impact

In order to evaluate which impact HBA’s most important
parameters thi and c have on the binarization and execution
performance, we binarize the images from all datasets using
different values for these parameters. Here, we let thi range
from0.15 to 0.65 in steps of 0.1 and c from20 to 1545 in steps
of 25. For all combinations of these parameter values, we
measure the execution time in seconds and the binarization
performance using F-Measure.

Based on the results from Sects. 6.1 and 6.2, we execute
all parts of the binarization algorithm on the GPU and use
the global relabel strategy Fixed for all measurements.

5.5 Evaluating prediction performance

We evaluate the performance of our proposed parameter
tuning approach in terms of binarization performance of
the chosen parameters, as well as execution time. For our
approach, we use the DIBCO 2013 dataset as training dataset
to build ten random forest models for multivariate regres-
sion using ten different, randomly chosen seed values. In
this way, we can show that our approach is stable against
random variations in the construction of the random forests
model. The training dataset was built by choosing for each
image in DIBCO 2013 the binarization parameters thi and
c, which produced the best binarization performance with
respect to F-Measure in the previous experiment (Sect. 5.4).
For building the models, we used the default settings of the
randomForestSRC R package [21–23].

We use each of the 10 models to predict the binariza-
tion parameters for all images in the remaining datasets,
DIBCO 2009, H-DIBCO 2010, DIBCO 2011, H-DIBCO
2012, H-DIBCO 2014, and H-DIBCO 2016. The execution
time is measured for each image including feature extrac-
tion, parameter prediction, and image binarization. Here, we
measure the execution time including loading and storing
the respective image. Similarly, we measure the execution
time for Howe’s parameter tuning algorithm [19] from the
time the image starts loading until the binarized image is
stored.

In order to make it easier to compare our parameter tuning
approach with Howe’s algorithm, we use Howe’s MATLAB
implementation for image binarization, butweuse the param-
eters predicted by our random forests model. Therefore, the
only difference in binarization performance can be achieved
by the chosen binarization parameters. To compare the bina-
rization performance of Howe’s algorithm and our approach,
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Fig. 7 Execution times for the global relabel strategies None, Initial,
Fixed, and Exponential for the images of all datasets. Boxes illustrate
the first, second, and third quartile; whiskers indicate the lowest and
the highest value within the 1.5 interquartile range; dots mark outliers
outside this range

we use the four previously described measures for each bina-
rized image.

6 Results and analysis

In this section, we present the results obtained by car-
rying out the experiments described in the previous sec-
tion and analyze those results. We evaluate the perfor-
mance of the different global relabel strategies (Sect. 6.1)
and the different algorithm mappings (Sect. 6.2). Further-
more, we show what impact the two parameters thi and
c have on the binarization and execution performance
(Sect. 6.3) and evaluate the performance of our parameter
tuning algorithm in comparison to Howe’s tuning algorithm
(Sect. 6.4).

6.1 Performance of global relabel strategies

Figure 7 shows the measured execution times for the images
from all datasets for all four global relabel strategies. From
these box plots, we can see that there is a slight difference
between the execution times of the strategiesNone and Initial
compared to Fixed and Exponential.

Therefore, we conduct a repeated measures analysis of
variances (ANOVA) to analyze this difference more closely.
This is a suitable test in this situation, since we are analyzing
more than two dependent samples and the depended vari-
able, i.e., execution time, is continuous and approximately
normally distributed. We avoid problems with possible
violations of the sphericity assumption by building a mul-
tilevel linear model with maximum likelihood estimation for
ANOVA using the nlme R package [35].

The performed ANOVA test indicates statistically signif-
icant differences in the execution times of the four analyzed
global relabel strategies at the p < 0.05 level [F(3, 255) =
15.19843, p < 0.0001]. Here, numDF and denDF in
F(numDF, denDF) indicate the numerator degrees of free-
dom (numDF) and the denominator degrees of freedom
(denDF) of the F-statistic, respectively. Both degrees of
freedom are estimated by the nlme R package based on the
input data.

The next step in our analysis is to identify strategies
which differ significantly in their execution times. Therefore,
we use the multcomp R package [17] to perform Tukey’s
test as post hoc analysis. This test shows that there is no
statistically significant difference between the global rela-
bel strategies None and Initial (p-value = 0.926), as well
as between the strategies Fixed and Exponential (p-value
= 0.843). However, clear statistically significant differences
exist between all other combinations of these strategies with
p-values < 0.001.

Based on the box plots in Fig. 7 and the results of our
statistical analysis, we can see that repeated global relabel
steps improve the execution performance of the push–relabel
algorithm in the case of document image binarization. This
supports our hypothesis that performing global relabel steps
throughout the execution of HBA’s energy minimization
part improves the execution performance. However, none of
the two analyzed strategies, Fixed and Exponential, which
repeatedly perform global relabel steps, performs signifi-
cantly better than the other. Therefore, we decide which
strategy to use in further experiments simply based on the
lowest median value. In this case, this strategy is the global
relabel strategy Fixed.

6.2 Performance of algorithmmappings

As described in Sect. 5.3, we measure the execution times
for binarizing each of the images in all analyzed datasets to
find the most suitable mapping of HBA’s parts to CPU and
GPU. Figure 8 shows the measurement results for all map-
pings as shown in Table 1, as well as the time measurements
for Howe’s original MATLAB implementation (MATLAB).
Based on these box plots, one can see that there are certain
differences between the execution times of different map-
pings and the reference implementation.

To analyze these differences in more detail, we perform
a repeated measures ANOVA, as in the previous section.
This test indicates statistically significant differences in the
execution times for the eight analyzed mappings and the ref-
erence implementation at the p < 0.05 level [F(8, 619) =
34.91975, p < 0.0001]. Therefore, we perform Tukey’s test
as post hoc analysis, to identify between which mappings
there are differences in execution performance.
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Fig. 8 Execution times for all eight different mappings of HBA to CPU
and GPU for the images of all datasets. Boxes illustrate the first, second
and third quartile; whiskers indicate the lowest and the highest value
within the 1.5 interquartile range; dots mark outliers outside this range

Tukey’s test indicates that there is a statistical significant
difference at the p < 0.05 level between implementations
of HBA, which perform the energy minimization step on the
CPU, i.e., the reference implementation andmapping I, II, III,
and IV, and implementations which perform this step on the
GPU, i.e., mapping V, VI, VII and VIII. Additionally, we can
see statistically significant differences between mappings,
which perform the Laplacian and Canny edge detection on
the CPU, i.e., the reference implementation and mapping I
and V, and mappings which perform these computations on
the GPU, i.e., mapping IV and VIII. Apart from those differ-
ences, there are no other statistically significant differences
between mappings. From these results and the box plots in
Fig. 8, one can see that mapping all HBA parts to the GPU
yields the best execution performance. With this mapping, it
is possible to speed up the image binarization on average by
a factor of 3.5 compared to executing the whole algorithm
on the CPU.

In order to ensure that the achieved speedup is not gained
by decreasing binarization performance, we measure the
binarization performance for the images of all datasets for all
mappings, as well as the reference implementation using the
four chosen binarization quality measures. As for the anal-
ysis of the execution time, we perform a repeated measures
ANOVA to identify possible differences in binarization per-
formance between the different mappings and the reference
implementation for each quality measure. From the outcome
of this test, as shown in Table 2, we can see that there is
no statistically significant difference at the p < 0.05 level
between any of the mappings and the reference implementa-
tion when measuring binarization performance with PSNR
or DRD. However, when measuring the binarization perfor-
mance using F-Measure or Fps, we can observe a statistically
significant difference in binarization performance.

Table 2 Results of the ANOVA test for the four used binarization qual-
ity measures for all eight mappings and the reference implementation

Measure F(8, 680) p

F-Measure 2.185 0.0268

Fps 6.396 < 0.0001

PSNR 0.3718 0.9355

DRD 1.58421 0.1259
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Fig. 9 Fps results for all 8 different mappings of HBA to CPU and GPU
for the images of all datasets. Boxes illustrate the first, second, and third
quartile; whiskers indicate the lowest and the highest value within the
1.5 interquartile range; dots mark outliers outside this range

We analyze this difference by performing Tukey’s test as
post hoc test. From those test results, we can see that there
is a statistically significant difference only between the ref-
erence implementation and the different mappings, but not
among the mappings, for both binarization measures. There-
fore, we can conclude that the speedup was not achieved
by decreasing binarization performance. This is also shown
in Fig. 9, which shows the Fps results for the images of all
datasets for the different mappings and the reference imple-
mentation. The shown box plots also indicate that the found
difference between the binarization performance of the ref-
erence implementation and the different mappings is caused
by the fact that the reference implementation produces worse
binarization results compared to our implementation for the
chosen binarization parameters.

6.3 Parameter impact

By varying the binarization parameters thi and c for the
images from all datasets, we can observe that all images
tend to have an approximately concave response surface with
respect to binarizationperformance.Thismakes these param-
eters particularly suitable for parameter tuning, since small
deviations from an “optimal” parameter setting cause only
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Fig. 10 Images illustrating the response surface for binarization perfor-
mance (top row) and execution performance (bottom row) for different
parameter settings of thi and c for selected images from the DIBCO

2011 dataset [37]. The different markers show the “optimal” parameter
setting (circle), the parameter setting chosen by Howe’s tuning algo-
rithm [19] (cross) and our tuning algorithm (triangle)

small degradations in binarization performance. The approx-
imately concave response surfaces is shown in Fig. 10a, b,
c, which shows the obtained F-Measure values for different
parameter settings for images from the DIBCO 2011 dataset.
One should note that while these three images were chosen
for illustration purposes, their response surfaces show char-
acteristics, which can be found in all analyzed images.

When comparing the response surfaces for the bina-
rization performance with the surfaces for the execution
performance (Fig. 10d, e, f), one can see that the param-
eter settings yielding the best binarization performance, as
indicated by the white circle, also tend to have low execu-
tion times. Therefore, we analyze the correlation between
binarization performance and execution time for all images
using the Pearson product-moment correlation coefficient.
In order to make the F-Measure and time measurements of
the different images comparable, we apply standard score
normalization to all measurements of one image. By using
this normalized data, we see that there is a clear negative
correlation between binarization performance and execution
performance [r = − 0.194, n = 31,992, p < 0.0001]. This
supports our initial hypothesis that well chosen binarization
parameters in terms of binarization performance also yield
reasonable execution performance.

6.4 Prediction performance

As described in Sect. 5.5, we use the results of the previous
section to construct ten random forest models for predic-

Table 3 Results of the ANOVA test for the four used binarization
quality measures for the 10 random forest models and the reference
implementation

Measure F(10, 715) p

F-Measure 0.065 1.0000

Fps 0.219 0.9946

PSNR 0.1291 0.9994

DRD 0.00715 1.0000

tion of the binarization parameters. In order to ensure that
there are no statistically significant differences in binarization
performance between the binarization parameters predicted
by each of these models, we perform a repeated measures
ANOVA, as described in Sect. 6.1. Additionally, we include
in this analysis the measured binarization performance of
Howe’s parameter tuning algorithm.

The performed ANOVA test shows that there is no statis-
tically significant difference between the predictions of any
of the random forest models and Howe’s tuning algorithm
at the p < 0.05 level for any of the four used binariza-
tion quality measures, as shown in Table 3. This is shown
as well in Fig. 10, which shows for three selected images
which parameters were chosen by Howe’s algorithm (cross)
and by our prediction (triangle), as well as which parame-
ter settings are “optimal” (circle) for the respective image.
Optimal parameter settings are the settings resulting in the
highest F-Measure value, whichwere found during the previ-
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Fig. 11 Execution time in seconds for Howe’s parameter tuning algo-
rithm and our prediction algorithm for the images from all datasets,
except DIBCO 2013, which was used as training set. Boxes illustrate
the first, second and third quartile; Whiskers indicate the lowest and
the highest value within the 1.5 interquartile range; Dots mark outliers
outside this range

ous experiment (Sect. 6.3). From this image, one can see that
the parameters chosen by Howe’s algorithm and the param-
eters found by our algorithm are close to each other for all
images.

Next, we analyze the execution times for our ten random
forest models and for Howe’s parameter tuning algorithm.
Figure 11 shows the execution time of Howe’s algorithm for
the images from all datasets, except DIBCO2013, whichwas
used for training, compared to the random forests model,
which had the highest mean execution time among all ten
random forest models. From these box plots, one can see that
there is a clear difference in execution time between Howe’s
algorithm and our prediction algorithm.

To confirm this observation, we perform a repeated mea-
suresANOVA for the execution times of all ten random forest
models and Howe’s tuning algorithm. This analysis shows a
statistically significant difference in execution times at the
p < 0.05 level [F(10, 690) = 47.7139, p < 0.0001]. The
Tukey test shows that the detected differences in execution
times are only between Howe’s tuning algorithm and the ran-
dom forest models, with p values< 0.0001, but not between
the random forest models.

Therefore, we can conclude that our prediction algorithm
chooses binarization parameters, which produce comparable
binarization performance toHowe’s algorithm,while execut-
ing on average 1.7 times faster. This speedup canbe explained
by the fact that Howe’s tuning algorithm has to perform the
computationally expensive binarization step several times,
while our approach requires only one binarization step per
image. Thus, the average speedup increases to 2.5, when
looking only at the larger images from the analyzed datasets,
with no statistically significant difference to the binarization

performance of Howe’s tuning algorithm in any of the four
measures. Here, the larger images are all images from the
analyzed datasets with an area at or above the third quartile.

7 Related work

In this section, we discuss previous work related to improved
execution performance of image binarization algorithms due
to their implementation (Sect. 7.1), as well as work related
to automatic parameter tuning for image binarization algo-
rithms (Sect. 7.2).

7.1 Efficient image binarization

Most research on image binarization has focused more on
the quality of the binarization result than on the execution
time. This is also reflected in the numerous binarization
competitions, in which the execution time is either not
reported [12,39] or not used as evaluation criterium [30,
38]. Nevertheless, there have been a few implementations
of common binarization algorithms utilizing the paral-
lel computing capabilities of GPUs. For example, Singh
et al. proposed GPU implementations for the binariza-
tion algorithms by Niblack, Otsu and Sauvola et al. [45–
47] to speed up these commonly used algorithms. In
their implementations, Singh et al. treat image binariza-
tion as a data parallel problem, where each image pixel
is classified as foreground or background pixel by its
own GPU thread. With this parallelization approach, they
report up to 20 times faster binarization in comparison to
a single threaded implementation of the respective algo-
rithm. Recently, Chen et al. [6] proposed another GPU
implementation of an algorithmically improved version of
Sauvola’s binarization algorithm using integral images, as
proposed by Shafait et al. [44]. With this implementa-
tion, Chen et al. report up to 38 times faster execution
performance compared to a CPU implementation. Further-
more, GPU implementations of other binarization algorithms
were proposed by Peña-Cantillana et al. [33] and Soua et
al. [48].

The main difference between the approaches mentioned
above and our approach is that we analyze potential bene-
fits of mapping different parts of a binarization algorithm
to different processors of a heterogeneous platform. This is
important to identify how the available compute platform can
be utilized most efficiently.

Work most closely related to our approach is described
in the paper by Westphal et al. [54], which is a work-in-
progress report describing the general idea of mapping HBA
to a heterogeneous platform including preliminary results for
execution and binarization performance. This paper extends
that report by analyzing the importance of global relabel steps
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during the energy minimization part of HBA, as well as by
exploring the relation between the choice of HBA’s param-
eters and the execution time. Furthermore, we propose an
efficient way of choosing these parameters and analyze the
obtained results for all performed experiments more exten-
sively.

7.2 Automatic parameter tuning

Many binarization algorithms, such as the algorithm by
Sauvola and Pietikäinen [43], Kim et al. [24] or Su et al. [50],
have parameters, which need to be fine-tuned depending on
a given image to achieve their upper bound binairzation per-
formance. This fine-tuning is normally done manually for a
sample of the document images to binarize and is then fixed
to the best parameter setting.

This required manual tuning is a limitation of these
approaches, which adds extra work to other document analy-
sis tasks, which use image binarization as one preprocessing
step. Additionally, the fixed parameter setting might not be
optimal for all images within one dataset. For this reason,
Gatos et al. [13] and Afzal et al. [1] propose different bina-
rization algorithms, which do not require manual parameter
tuning.

An alternative to parameterless binarization algorithms
is the approach by Mesquita et al. [27], which tunes the
parameters for Mesquita et al.’s perception of objects by dis-
tance (POD) preprocessing step for binarization [26]. The
parameter tuning is performed using the Iterated F-Race
approach on a training dataset to find a suitable parameter
configuration to be used for all images in the target dataset.
Here, it is important that the test dataset is representative
of the target dataset to find a reasonable parameter config-
uration. This approach differs from our own approach in
that it does not tune the parameters of the used binarization
algorithm directly and that it does not adapt the parameter
configuration to the specific characteristics of the currently
binarized image.

Another approach to address the parameter tuning prob-
lem was taken by Cheriet et al. [7], which is more closely
related to our own approach. In their paper, Cheriet et al.
propose a machine learning framework to add automatic
parameter tuning to any image binarization algorithm. The
core of their framework is a set of image features, which they
use as input to several univariate models built for each bina-
rization parameter with support vector regression. In contrast
to the approach by Cheriet et al., we use a different and
smaller set of image features, which is used to build a ran-
dom forests model for multivariate regression. This smaller
set of features is beneficial for execution performance, since
less time is spent on extracting different features from an
image.

8 Conclusions and future work

In this paper, we have shown that the execution performance
of a state-of-the-art binarization algorithm can be consider-
ably improved with help of heterogeneous computing and
prediction-based parameter tuning, while not affecting the
binarization performance.

After analyzing differentways ofmappingparts ofHowe’s
binarization algorithm (HBA) onto CPU and GPU, we come
to the conclusion that the whole algorithm should be exe-
cuted on the GPU to achieve on average a 3.5 times higher
execution performance compared to executing the complete
algorithm on the CPU.

We have also presented a new parameter tuning algorithm
for HBA based on multivariate regression using random
forests, which chooses parameter values producing compa-
rable binarization performance to Howe’s parameter turning
algorithm. However, we have shown, that our algorithm
performs on average 1.7 times faster than Howe’s original
algorithm when considering all images from the analyzed
datasets, and 2.5 times faster when considering only large
images, i.e., images with an area at or above the third quar-
tile. The main reason is that we only need to binarize a given
image once in contrast to Howe’s approach.

When comparing the execution time improvements
achieved by heterogeneous computing and parameter tuning
in absolute numbers, it becomes clear that the improvement
of the parameter tuning algorithm has the greater impact
on the overall execution performance. While we can save
on average 0.44 s using heterogeneous computing, we save
3.22 s using our parameter tuning algorithm, or 8.73 s when
considering only large images. Going back to our initial
example with 50 million images, this improvement trans-
lates to 6years of saved execution time for comparatively
small images or 14years for images with sizes similar to the
largest images in the analyzed datasets.

Apart from these two main contributions to the execution
performance ofHBA,wehave also shown that the continuous
application of global relabel steps during the push–relabel
algorithm is important for the execution performance when
dealing with document images. However, our results do not
show any significant differences between the two analyzed
global relabel strategies, which performed global relabel
steps either in fixed intervals or in exponentially growing
intervals.

Finally, we have shown that there is a statistically sig-
nificant negative correlation between execution time and
binarization performance for different parameter settings of
HBA. This is an interesting finding, since it means that it
is sufficient to tune HBA’s parameters with respect to bina-
rization performance to achieve also a reasonable execution
performance of the algorithm.
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In future work, it may be interesting to investigate the
possibility to improve the execution performance of the bina-
rization of a batch of images by interleaving the binarization
steps for these images. This could lead to potential speedups,
since the Canny edge detection for the next image could run
on the CPU in parallel to the energy minimization of the
previous image, running on the GPU.

Another direction for future work would be to further
improve the prediction-based parameter tuning. Since the
current implementation of the feature extraction and predic-
tion process is not optimized for fast execution, it would
be interesting to investigate how much more time can be
saved when improving the execution performance of these
two steps.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

Appendix A: image features

In this section, we describe the 16 image features, which
have been considered as base for our parameter prediction
approach, described in Sect. 4.2, but which have not been
chosen. We describe these 16 features in the following.

Intensity mean This feature calculates the mean over all
intensity values in the analyzed grayscale image.

Intensity standard deviation Similar to the previous fea-
ture, this feature is computed over all intensity values in the
grayscale image, deriving their standard deviation.

Co-occurrencematrix correlationWederive this feature from
the image’s co-occurrencematrix, whichwas first introduced
by Haralick et al. [16]. It measures the linear dependency
between the co-occurring intensity values and thus assesses
the general repetitiveness of certain patterns in the image.
While repeated smooth transitions between intensity values
lead to a positive correlation value, repeated jumps between
intensity values lead to a negative correlation value.

Co-occurrence matrix energy As the previous feature, this
feature is derived from the image’s co-occurrence matrix. It
is also known as uniformity and is a measure for the amount
of reoccurring transitions between intensity levels. A high
energy indicates that there are only a few, often reoccurring
transitions between intensity levels. Thus, a constant image
has the highest possible energy.

Number of connected components This feature counts the
number of connected components above a certain size. The
connected components are identified based on the binarized
image, which was produced using Otsu’s binarization algo-
rithm [31].

Average connected components size For this feature, the
connected components, which were identified for the previ-
ous feature, are used to compute this feature by averaging
over the different connected component sizes.

Normalized connected components size The aim of this fea-
ture is to make the previous feature comparable between
images by normalizing the average connected components
size by image size.

Image sizeWhile not a particularly relevant feature in itself,
the image size might help to put the values of other features
into perspective, making different images better comparable.

Foreground mean To compute the foreground mean, we
apply Otsu’s binarization algorithm [31] to first get an esti-
mated separation of foreground and background. Then, we
compute the mean over the intensities of all pixels classified
as foreground by Otsu’s algorithm.

Background mean As for the previous feature, the image’s
foreground and background separation is estimated and then
the intensity mean over all background pixels is computed.

Mean ratio In order to express how different estimated fore-
ground pixels are from estimated background pixels, we
compute the ratio between the previous two features, i.e.,
foreground mean and background mean.

Foreground standard deviation The foreground standard
deviation is computed by estimating the separation between
foreground and background pixels using Otsu’s binarization
algorithm.Then, the standarddeviationover all detected fore-
ground pixels is computed.

Number of edge pixels Using Canny’s edge detection algo-
rithm [5] with fixed parameters, we estimate the borders
between foreground and background. For this feature, we
simply count the number of pixels, which constitute this bor-
der.

Normalized number of edge pixels This feature normalizes
the found number of edge pixels by the image size to make
different images better comparable with respect to their edge
pixel number.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Efficient document image binarization using heterogeneous computing and parameter tuning 57

Average line width This feature estimates the average width
of all foreground elements in an image based on foreground
elements identified using Otsu’s binarization algorithm.

EntropyThe image’s entropymeasures the degree of random-
ness present in an image. Therefore, it is another measure for
the image’s structure.
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