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Abstract Flowcharts are considered in this work as a spe-
cific 2D handwritten language where the basic strokes are
the terminal symbols of a graphical language governed by
a 2D grammar. In this way, they can be regarded as struc-
tured objects, and we propose to use a MRF to model
them, and to allow assigning a label to each of the strokes.
We use structured SVM as learning algorithm, maximiz-
ing the margin between true labels and incorrect labels.
The model would automatically learn the implicit gram-
matical information encoded among strokes, which greatly
improves the stroke labeling accuracy compared to previ-
ous researches that incorporated human prior knowledge of
flowchart structure. We further complete the recognition by
using grammatical analysis, which finally brings coherence
to the whole flowchart recognition by labeling the relations
between the detected objects.
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1 Introduction

Sketched diagram is a powerful language that can help illus-
tratingpeople’s ideas. They contain self-explanatory symbols
and can expand their styles freely. One typical example of
such diagram is flowchart, which makes the illustrations of
programs or structural objects very intuitive. With the emer-
gence of electronic devices, the situations are becomingmore
common that people have to record their diagrams in their
tablets, and hopefully, the applications would facilitate the
process of diagram parsing. Understanding and processing
diagrams by machine learning techniques are also becoming
a hot research topic, and fortunate enough, as a 2D hand-
written language, the task of recognizing sketched diagram
is similar to recognizing handwritten mathematical expres-
sions and the latter can be referenced.

A traditional workflow of parsing 2D handwritten lan-
guage is a trilogy: grouping strokes into symbols, recognizing
symbols, and then analyzing structures [9]. We can follow
this process in diagram recognition in a broad way; how-
ever, the properties differ from one specific 2D language
to another. Cases are rare that one symbol is contained in
another except square root operator in mathematical expres-
sions, but it is common in flowchart that texts are contained
in terminal nodes. Sketched diagrams also have a more flex-
ible grammar in that they can almost expand their symbols
in all directions, but in mathematical expressions, rules are
settled so that there is less variability. From Fig. 1, we can see
that arrows in a flowchart can have various shapes, and can
point to almost everywhere. Flowchart also covers a larger
scope than mathematical expressions [9,19]. All these add
difficulties in sketched diagram recognition.

Although most of the 2D handwritten languages can be
interpreted as the trilogy that has been mentioned above,
recent researches tend to use a global method to avoid the
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Fig. 1 Two 2D handwritten languages: sketched diagrams and math-
ematical expressions. The diagram has much flexibility while the
mathematical expression follows a rather strict grammar. a Example
of flowchart and b examples of mathematical expression

propagation of errors, which decrease the recognition rate
by feeding the misinterpreted symbols or structures into the
following steps [9,19].

Instead of enlarging the search space by generating several
segmentations and several symbol hypotheses, our pro-
posal is to guide the local recognition using neighborhood

information. In this way, the problem is not solved by sim-
ply performing classification of individual component, that
approach does not take into account the empirical fact that
labels do not occur independently; instead, each label dis-
plays a strong conditional dependence on the labels of the
surrounding components. To this end, document is arranged
as a structured object, which can fit into an undirected graphi-
calmodel ormore specifically aMarkov randomfield (MRF).
A MRF that would incorporate local, neighborhood, and
global informationwould be a superior solution to solve sym-
bol ambiguity problems. In addition, it is possible to train this
model in a structured learning framework. Two alternatives
exist for parameter learning: logistic loss-based conditional
random field (CRF) approach and hinge loss-based struc-
tured SVM approach. CRF is almost intractable for general
graphical models [17,21], as shown in Fig. 2. Meanwhile,
several works [15,30] showed that structured SVMs avoid
the inference in the whole label space by a heuristic search
in a primal form, making the learning tractable. This paves
a new way of learning parameters of MRF, and due to its
max-margin property of its loss function, the structural SVM
can lead to a max-margin Markov random field (M3N).

In this work, we adopted structured SVM learning meth-
ods and MRF for the first time in the field of 2D handwriting
recognition, leading to a novel statistical and structural
information combined online flowchart recognition method,
which is also applicable to other 2D handwriting problems.
We build a M3N on the stroke level of the online flowcharts
for stroke labeling. The parameters ofM3N are learned using
structured SVM. After stroke labeling, we use a grammatical
description language extended from a previous work [18] to
parse the structure of a given sketched diagram, thus obtain-
ing the final recognized flowchart. In order to fully evaluate
of the recognition process, the ground truth of the flowchart
dataset [2] has been completed by adding the object relations.

Fig. 2 Examples of graphical models. MRF and CRF share the same
graphicalmodels, butMRF are generativemodelswhichmodel the joint
probability distribution, while CRF are discriminative models which
model the conditional probability distribution. The black triangles on

the edges are the unary factor nodes, while black squares on edges are
the pairwise factor nodes. A linear chain model (left example) will be
easier to train and will be used for inference with respect to a general
model which contains cycles (right example)
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In the following sections,wefirst have a reviewof previous
works on 2Dhandwritten language recognition and the appli-
cation of structured learning, especially CRF and structured
SVM, and how they inspired our handwriting recognition
research. In the third section, we will describe the stroke
labeling problem, in which a full description of our max-
marginMRF building and trainingwill be given. In the fourth
section, we explain how the strokes labels are used in the
syntactical analysis. The experiment will be given in the fifth
section after a short description of the new version of the
evaluation dataset. We will conclude the research in the sixth
section.

2 Related researches

Flowchart can be viewed as one type of 2D handwrit-
ten languages. To enlarge the scope, we will review more
generally 2D handwritten language recognition researches
that complete symbol recognition and structure recogni-
tion simultaneously. Integrating neighborhood information
in handwritten document understanding can be done glob-
ally by using strict languagemodeling like grammars ormore
locally through CRF or alternatively with structured SVM.
Both kinds of approaches will be discussed in this section.

2.1 2D handwritten language recognition

Significant research effort has been reported for recognition
of math expressions in the recent years [19], in part due to
online input devices becoming more popular. Zanibbi et al.
[34] proposed baseline structure tree that parses the elements
of a mathematical expression into a tree that fits natively its
structure and then passed it to lexical parser and expression
analyzer. The output of this three-pass system is an operator
tree that can be interpreted by computer. In [29], a minimal
spanning tree (MST) is used to arrange all strokes into a graph
and used symbol dominance information to set theweights of
the tree so that they take into account the baseline of themath-
ematical expression. Symbol relation tree (SRT) is used in
[26], and it overcomes the baseline restrictions and builds the
tree using dominance symbol. They also used layered search
to include symbol hypothesis and prune search space. These
elegant solutions are well adapted for mathematical expres-
sions; however, they might not be applicable to flowcharts or
other sketched diagrams as the concepts baseline and dom-
inance symbol are too specific. Another drawback of these
approaches is their greedy decisions. In order to take the
final decisions as later as possible, Awal et. al. [3] used a 2D
dynamic programming algorithm symbol hypothesis gener-
ator, concatenating it with a time-delayed neural network
(TDNN) [31] symbol classifier. Besides, structure interpre-
tation also suffers from ambiguity, which is caused by the

ambiguous position of symbols and previous recognized
symbols. Symbol relation tree is proposed in [26] to include
all the symbol hypotheses and relation hypothesis. They used
a heuristic measure to calculate the cost of a certain tree, and
they get the interpretedmathematical expression by best-first
searching for the interpretation with the lowest cost. Hence,
this tree-style models may not be applicable to our diagram
recognition needs.

There are no public flowchart or any other sketch dia-
gram dataset until 2011 [2], and after that, many researches
appeared to improve that first trial research. Lemaitre et. al.
[18] analyzed the structure of the flowchart and described
them in DMOS (introduced in Sect. 4.1), a grammatical
method for structured document analysis. This approach
provides a global solution to the problem. The structure, sym-
bol, and stroke labels are recognized in one step. However,
this unified recognition framework did not use any statis-
tical learning methods. To improve this method, research
combined statistical and structural information [8]. They
used deformation scores to measure potential of candidate
symbols so that they could dynamically switch to a prefer-
able symbol in the structured search. However, the proposed
approach did not cover simply all the possible variations to
build a given symbol. For instance, the drawing of a rectangle
can be done in a single stroke or can be donewith four strokes,
one side at a time. To deal with this variability, the structural
approaches need to define one specific rule for specific case.
Wu et.al. [33] proposed to recognize symbols in flowcharts
by using shapeness, which is a property of whether a sym-
bol has a good shape. They used a 256 dimensional feature
and represented it compactly by using 16 INT64 numbers,
calling it INT64 feature. The INT64 feature is used in a lin-
ear classifier to filter out symbols with good shape; then, a
neural network is used to achieve the final recognition. This
research outperforms others due to its separation of process-
ing of symbols according towhether they are having a regular
appearance, and this is too specific to the field of flowchart
recognition: For mathematical expression recognition, there
are less texts, symbols have regular shapes, and the position
relationship between texts and symbols is more complicated.

Bresler et.al. proposed max-sum model in [6], which can
be viewed as a structuredmodel incorporating unary and pair-
wise relationships. Their max-sum model tried to maximize
the global compatibility of symbols. They first extracted a
bunch of symbol candidates (about 8.8 times the ground-truth
symbol set size) and evaluated their combinations to find the
most suitable symbols that fit in the flowcharts. They formu-
lated the max-summodel as a an integer linear programming
(ILP) [27] problem and solved it using IBM ILOG CPLEX.1

In their following research [7], they refined their research
by carefully dealing with text and arrow symbols: They first

1 www.ibm.com/software/products/en/ibmilogcpleoptistud.
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filtered out text by using bi-directional long short-termmem-
ory neural network (BLSTM)-based Bayesian classifiers and
then checked connection points of each symbol to decide
the connecting arrows. They also published finite automata
dataset to validate their research. One of the inspirations of
their effort to our research is that their max-sum model is
an attempt to include the global information in one model.
Though achieving high recognition precision, filtering of text
and their effort in deciding arrow type make their effort too
specific to flowchart. Besides, the large amount of gener-
ated symbol hypothesis increased the inference effort in the
max-sum model and will always inevitably drop some true
symbols.

2.2 Structured learning

Structured learning describes a wide range of problems that
involve structured objects instead of scalar discrete or real
values. By denotingX an input space, andY an output space,
the structured learningmeans fitting a function h tomap from
X toY using a set of training samples in (X×Y). Byusing the
word structured, the output Y should be arranged in a struc-
tured manner, like trees or graphs. The task of stroke labeling
in flowchart recognition corresponds to this description as the
underlying strokes are arranged in a Markov random field.
Here we have a review of previous researches that used CRF
and M3N, two practical forms in structured learning [22].

As we have mentioned before, CRF is a powerful tool
in describing regional context. Research utilized Bayesian
CRF in their flowchart recognition [25]. They first mod-
eled the distribution of parameters, pairwise probability, and
the inverse of partition function as Gaussian distributions,
and then they repeatedly trained the model by minimiz-
ing Kullback–Leibler divergence between the new and the
original models. This method is called expectation propa-
gation. They did their research on text-free segment-based
flowchart recognition. However, Gaussian distribution is a
strong assumption that may not applicable to pairwise poten-
tials. Besides, their research did not continue with symbol
recognition and their flowchart contains much fewer symbol
types compared to the flowchart dataset mentioned in [2],
only arrows and nodes are included.

A promising result using CRF in sketch diagram recogni-
tion is described in [11], though it is originally designed for
text/nontext classification in handwritten documents. They
build the CRF using a set of associative potential functions
and interactive potential functions, and the latter are built
on a set of five relations, not limited to spatial, temporal,
and touching relations. In their later research [12], they fur-
ther improved labeling accuracy by building a hierarchical
tree CRF, on the same handwritten document database, and
they classify strokes to five classes, which is more specific
than just text/nontext. They grouped and recognized symbols

by building a MST on the recognized strokes of the same
type. However, the hierarchical tree CRF’s performance is
largely controlled by the clustering distance threshold, which
is specific to the document and can largely affect CRF’s per-
formance according to their experiment.

On the other hand, M3Ns are showing promising per-
formance in the field of image labeling. The property that
CRF can be reduced to a structured SVM [15,30] provides
smooth transition from traditional research of CRF to max-
marginMRF representation.One example is [24], which uses
M3N to combine multiple local beliefs of superpixels and
regional affinity. They also used global constraints to refine
unary potentials. Structured SVM has also been applied in
the field of object location [4], point matching [28], and pose
estimation [13]. However, one common idea behind the con-
struction of M3N is that unary potentials should describe
the local belief based only on the local observation, while
pairwise potentials or even higher-order potentials should
describe regional interactions.

Regarding all the previous researches usingMRF in hand-
writing recognition [11,12,35], MRF has shown to be a
powerful structured model to describe neighborhood infor-
mation. We discarded the idea of finding a tree structure in
the representation of sketched diagrams and resort to general
graph MRF that may contain cycles to capture neighbor-
hood relationship between strokes. Training by structured
SVM learning algorithm is a natural solution to avoid the
intractable learning problem in the partition function of CRF
that may contains loops in underlying graph [17]. Train-
ing a M3N consists of learning the unary potentials and the
pairwise potentials to incorporate local belief and neighbor-
hood compatibility accordingly.With the labeled strokes, the
grammar parsing will result in a legitimate, reasonable dia-
gram. This is the first attempt to use structured SVM in 2D
handwritten language recognition, and the combination of
structural grammars and statistical recognition result gives a
complete comparable referral on different recognition stages.

3 Stroke labeling using max-margin MRF

Suppose we have N diagrams, then we denote the stroke
observation set as X(n) for each diagram, which is indexed

by n. We denote strokes
{
X (n)
1 , X (n)

2 , . . . , X (n)
Mn

}
= X(n) that

belong to the observation set. Mn is the number of strokes in
an observation set. The topic of this section is stroke labeling
problem, so each of the stroke observations has a correspond-
ing label Y (n)

i , which takes discrete labels such as arrow and
terminal, depending on the diagram. In the following, in case
of no ambiguity, we simply define the observation set of a
specific sample of diagram X and its corresponding label set
as Y, and each stroke will be indexed by subscripts.
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Classically, we use an energy function to describe the
whole compatibility of the flowchart. It is composed of a
set of unary energy functions and pairwise energy functions:

E(X,Y)

=
⎡
⎣∑

i

ε(Xi ,Yi ) +
∑

〈i, j〉∈E
ε(Xi , X j ,Yi ,Y j )

⎤
⎦ (1)

In the energy function in Eq. (1), the unary energy function
describes the local belief Yi given only the isolated obser-
vation Xi . The pairwise energy function ε(Xi , X j ,Yi ,Y j )

provides regional compatibility. In many image segmenta-
tion researches, pairwise energy functions try to fix the local
belief by smoothing regional labels given the regional obser-
vations. That energy function, under the assumption of Gibbs
distribution [17], can be incorporated into a MRF:

P̃(X,Y) = exp [−E(X,Y)]

=
∏
i

e−ε(Xi ,Yi )
∏

〈i, j〉∈E
e−ε(Xi ,X j ,Yi ,Y j )

=
∏
i

Φ(Xi ,Yi )
∏

〈i, j〉∈E
Φ(Xi , X j ,Yi ,Y j )

(2)

Here in Formula (2), we use exponential form of poten-
tial function to ensure potential function is always positive,
which is a requirement of MRF [17]. The inference prob-
lem is to solve Y = argmaxY P̃(X,Y), which can also
be interpreted in the form of energy function as Y =
argminY E(X,Y). In the following subsections, we will
describe the feature selection, inference problem, and learn-
ing problem separately.

3.1 Potential functions

The potential functions should be built to exhibit the rele-
vant features from the raw data. Here we discuss the selected
features for unary potential functions and pairwise potential
functions and then describe the mathematical expressions.

3.1.1 Raw feature selection

Considering that diagrams drawn by different people have
different scales, as a preprocessing step, we rescaled all the
diagrams to a [−1, 1] bounding box and kept its height/width
ratio. For the convenience of uniform feature extraction, we
sampled each stroke to equal count of points with a constant
spatial step. Our trial on the number of points per stroke
showed that the denser the sampling, the better the feature
extraction ability, but performance is hard to improve after
30 points per stroke. For the balance between performance

Fig. 3 Graph illustrates raw features for unary potentials. i and i + 1
are two consecutive sampled points on a stroke, and we here showed
features Δx , Δy, θ , and γ for sampled point i

and processing time complexity, we set sampling point on
each stroke to 30.

To extract raw features for unary potential functions
Φ(Xi ,Yi ), we calculate theΔx ,Δy, cos θ , sin θ , cos γ , sin γ

on each sampling point as illustrated in Fig. 3. The angle θ is
the slope angle on the current point, andγi = θi+1−θi = Δθ .
This describes the curvature of that point. For the Δx , Δy,
we normalize them by dividing the width and height of the
bounding box of the flowchart separately. Altogether there
are 30 × 6 = 180 features that describe a stroke, and we
normalize them by dividing by the maximum absolute value
of each component.

Thepairwise potentialsΦ(Xi , X j ,Yi ,Y j ) shoulddescribe
the regional compatibility of label Yi , Y j given observation
Xi , X j . We focus on two types of neighborhood in pairwise
function: temporal neighborhood and spatial neighborhood.
Hence, from the time domain, Xi and Xi+1 are considered as
neighbors, so there is a potential function that describes their
affinity. For the spatial neighborhood, we define a threshold
distance. If the stroke pairs’ minimal distance is below that
threshold, they are considered as neighbors. To decide the
threshold, we tested thresholds from 0.01 to 0.07 and evalu-
ated stroke labeling accuracy and training time, and we took
0.03 as a preferable threshold in the following experiments.
The detail of this spatial threshold decision can be referred in
Sect. 5. The pairwise potential function is undirected, which
meansΦ(Xi , X j ,Yi ,Y j ) is equivalent toΦ(X j , Xi , Y j , Yi ).
Figure 4 shows an example of sketch with its set of unary and
pairwise potential functions.

We extract raw features for pairwise potentials by finding
the displacement of each of the sampled points on one stroke
to the point on another stroke that can offer the minimal
distance. As shown in Fig. 5, X1 is the first sampling point
on the left stroke, and fromall the sampling points on the right
stroke, Yn has the minimal distance. The displacement from
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Fig. 4 A sample sketch diagram and its corresponding MRF. Unary
potential functions are represented by a solid triangle between X and
Y, and pairwise potential functions are represented by a solid square
between Ys. Those links indicate they are regarded as neighbors tem-
porally or spatially.aExample sketch diagramand bunderlyingMarkov
random field

Fig. 5 Graph shows raw feature pairwise relationship. Every stroke
is sampled to 30 points, X1, X2, . . . , X30 on the first stroke and
Y1, Y2, . . . , Y30 on the second stroke. Only a selected number of points
are presented. The features are the displacements vectors from every
sampling point from one stroke to another, as shown by dotted arrow

X1 to Yn is shown by a dotted arrow, and this displacement
generates Δx and Δy as two pairwise raw features. For the
sampling points Y1 on the right stroke, we find the sampling
point X1 on the left stroke with minimal distance. We do this
repeatedly on every sampling point of each pair of strokes.
Altogether, there are 30×2×2 = 120 pairwise raw features.

In many researches on analyzing online handwritten doc-
uments, researchers would chose manually selected and
refined features to feed the classifiers [12]. We, however,
simply selected very raw features as described above and
then use supervised classifiers to classify them to differ-
ent types of stroke relationships, and the feature derived

from the classification result is used as feature. In this way,
researchers avoided the effort to manually select different
features according to different scenarios, making our method
adaptable to fields beyond flowchart. However, domain-
specific raw features could have better results.

3.1.2 Mathematical formulation of potential functions

The unary potential function Φ(Xi ,Yi ) can be formally
defined according to Eq. (3).

Φ(Xi ,Yi ) = exp

[
−

L∑
l=1

1Yi=l

K∑
k=1

wk,l fk(Xi )

]

= exp

[
−

K∑
k=1

L∑
l=1

wk,l
[
1Yi=l fk(Xi )

]]
(3)

In the equation above,1Yi=l is the indicator function given
the current label, and K is the number of features that are fed
in this unary potential function. L is the number of possi-
ble labels. In this research, since unary potential functions
are to describe the local confidence of a label, we should
use a supervised classifier that gives confidence on the final
labels directly. Practically, all classifiers giving this kind of
outputs could be used. Since raw features directly reflect the
property of strokes which are of various shapes, and even
same type of stroke is having various shapes in flowchart,
we choose ensemble methods to improve robustness of the
feature extraction.We selected random forest [5], which uses
averagingmethods to combine different decision trees to pre-
vent over-fitting, and GBDT [23], which is using boosting to
combine several weak classifiers to a strong one. The refined
features are the probability of each label given the observa-
tion. Both classifiers give the probability of predicted class,
and here we concatenated them to form refined feature. Since
the fk(Xi ) describe the probability of different labels based
on two pre-trained classifiers, K = 2× L . The classifiers are
trained on raw features of observations.

Following the idea of unary potential functions, the for-
mulation of pairwise potential functions in Eq. 4 also used
an indicator and a feature descriptor.

Φ(Xi , X j ,Yi ,Y j )

= exp

⎡
⎣−

l1,l2∈L∑
l1=1,l2=1

1Yi=l1,Yi=l2

K∑
k

wl1,l2,k fk(Xi , X j )

⎤
⎦

= exp

⎡
⎣−

K∑
k

l1,l2∈L∑
l1=1,l2=1

wl1,l2,k
[
1Yi=l1,Yi=l2 fk(Xi , X j )

]
⎤
⎦

(4)
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That feature descriptor should describe local properties that
reflect local relationship of two neighboring strokes, thus
completing local compatibility description. We continue
using random forest and GBDT, taking pairwise raw fea-
tures, and classify them into given stroke relationships. For
within-symbol strokes, the symbol label is used as stroke
relationship label, and for inter-symbol strokes, stroke rela-
tionship inherits from symbol relationship (for a concrete
example, Sect. 5.1 describes possible symbol relationships
for flowchart database). By adding “no relationship” for other
situations, all possible stroke relationships are included.

Though there are choices for a more sophisticated and
advanced classifier, we simply disregarded the abundant
choice for other researchers to push our boundary further.
Whatever classifier one would use, the automatic feature
extraction process from raw features to the classified class
enables one to use this identical process in their own hand-
writing recognition task is one contribution in our work,
which greatly facilitated the transplanting of our system to
other problems.

3.2 Model inference

Inference problem has been a main focus of probabilis-
tic graphical model research. Here in this research, we
adopt alpha-expansion–fusion algorithm [14]. This is a graph
cut-based algorithm so it is faster than belief propagation.
Besides, this algorithm adopts quadratic pseudo-boolean
optimization (QPBO) so that its energy does not have to be
submodular.

3.3 Parameter learning

In the structured SVM framework, a discriminant function
F(X,Y;w) exists describing the compatibility of label Y
and observation X. The dot product of the feature vector
f(X,Y) and parameter w can give a good description of
F(X,Y;w), in which the parse feature function reflects the
property of the structured objects itself. As Formulas (3) and
(4) indicate, potential function can be reorganized in the for-
mat as exp [−w · f(X,Y )], so by aggregating (2), (3) and
(4) we can get the feature vector representation and parame-
ter vector w, expressed in formula (5). Inference problem
in the form of discriminant function can be expressed as
Y = argmaxY F(X,Y). The MRF expression formula (2) is
not a linear representation of features; however, minimizing
the energy function is equivalent to maximizing the struc-
tured learning discriminant function, as shown in Formula
(5):

F(X,Y) = −E(X,Y) = w · f(X,Y) (5)

A solution to generalize normal SVM training to struc-
tured outputs is presented in [15]. All the things to do in
training is to find a cutting plane, described by w, that sepa-
rates right labels from those inferred by the models but with
wrong labels. In this research, we use margin-scale prob-
lem formulation and solve the problem by using one-slack
structural SVM learning algorithm [16]. The problem can be
formulated as follows:

min
1

2
||w||2 + Cξ, (6)

with the constraints

1

N

N∑
i=1

{
Δ(Y(i), Ȳ(i))

−w ·
[
f(X(i),Y(i)) − f(X(i), Ȳ(i))

]}
≤ ξ

∀(Ȳ(1), Ȳ(2), . . . , Ȳ(N )) ∈ YN . (7)

In Formula (7), Ȳ(i) is the predicted labels for sample
i , while the true labels are denoted as Y(i). The structural
loss Δ(Y(i), Ȳ(i)) defined in this loss function specifies the
margin between true label and the incorrect label in our max-
margin MRF training. The one common form of structural
loss is Hamming distance between true labels and predicted
labels, andwe continue use that in this paper. The difficulty of
structural SVM is that the label space Y(n) may be tremen-
dously large: It takes LMn possible label combinations, so
the constraints in the QP may be very large, which could not
be handled easily. For this problem, [16] proposes N-slack
and one-slack structural SVM training algorithm that uses a
heuristic search strategy to add constraints dynamically. The
main idea is to get themost violated instance in each iteration
and to add that into constraints set W , replacing the con-
straints in (7), and then to solve the QP in primal space. The
iterationwill stopwhen the constraint set remains unchanged
after a certain iteration.Themajority of constraints are behind
the most violated one, so it is unnecessary to add all the con-
straints. For the completeness of this paper, we repeat the
algorithm in Algorithm 1.

4 Grammatical analysis of handwritten flowcharts

Once the isolated strokes have been labeled, we propose to
combine the results using a grammatical description. This
second step does ensure the global consistence of the recogni-
tion. The presented system is an extension of the grammatical
analysis from the previous works [18] and [8]. In this former
solutions, the analysis was based only the set of atomic ele-
ments in data: the full strokes and the straight lines (segments)
within the strokes. Using these terminals, their relative lay-
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Algorithm 1 Training Structured SVM by using margin-
rescaling One-Slack formulation

Require: S = [
(X(1),Y(1)), . . . , (X(N ),Y(N ))

]
,C, ε

1: W ← ∅
2: repeat
3: (w, ξ) ← Solving QP, replacing constraints (7) with W
4: for all i ∈ [1, . . . , N ] do
5: Ȳ(i) ← argmax

Ȳ(i)∈Y

[
Δ(Y(i), Ȳ(i)) + w · f(X(i), Ȳ(i))

]

6: end for
7: if 1

N

∑N
i=1

{
Δ(Y(i), Ȳ(i))−

w
[
f(X(i),Y(i)) − f(X(i), Ȳ(i))

] }
> ξ + ε then

8: W ← W ∪ (
Ȳ(1), Ȳ(2), . . . , Ȳ(N )

)
9: end if
10: until W unchanged during iteration

out, and the a priori lexical knowledge about flowcharts,
the syntactical analysis recognizes the symbols. Compared
to [18], this new work adds two main propositions: using
pre-recognized strokes from a statistical approach (the MRF
in our case) and producing the relationship labels between
the recognized symbols.

4.1 The DMOS approach

The description and modification of the segmentation
(DMOS)method [10] is a grammatical method for structured
documents analysis. The using of the grammatical language
EPF (Enhanced Position Formalism) enables a syntactic and
structural description of the content of a document. From the
description in EPF of a model of documents, it is possible
to compile automatically an analyzer which will be used to
process the documents.

The DMOS engine is based on the Prolog language. It
means that a document is described with a set of rules. For
example, the following rule allows to build a quadrilateral
object using four segments (TERM_SEG) locally named S1,
…, S4.

quadrilateral Q::=
TERM_SEG S1 &&
AT(end S1) && TERM_SEG S2 &&
AT(end S2) && TERM_SEG S3 &&
AT(end S3) && TERM_SEG S4

The AT(.) operator allows to add constraints on the next
used terminals. For example, AT(end S1) && TERM
_SEG S2 means that S2 should be at the end of the seg-
ment S1. Without these constraints, a quadrilateral would
be recognized for each set of four segments whatever their
layout. Using this rule, it is possible to build a top rule to
recognize a complex document based on several quadrilat-
erals. As DMOS is based on a Prolog solving engine, the
analyzer can try and test, using backtracking, all combina-

tions of segments to satisfy the main rule. The order of the
rules in the grammar can have a big impact on how efficient is
this search. Indeed, some predicates can have to enumerate a
lot of candidates. To optimize this search, the current version
of DMOS is able to build and save intermediate objects (like
quadrilaterals in the previous example) and then to use them
as new terminals in the explanation of a full document.

4.2 The flowchart analysis

The grammar processes the strokes in three main steps:

1. build all boxes found in the documents using [8],
2. label the boxes and connect them with arrows, and
3. use the remaining strokes to build text areas.

The second step follows a simple flowchart grammar: start
with a terminator or a connection symbol and then continue
with an arrow to the next box; each box (terminator, connec-
tion, process, or data) is followed by an arrow which ends
on a box; decision boxes are followed by two arrows; …

The next rule illustrates in a simplified EPF language how
an arrow follows a process box. This recursive predicate
builds a list of symbols starting by a process named Pr (of
course the real rules deal also with the other types of boxes)
and an arrow named Arr. The first step is to check if the
box Pr satisfies the graphical conditions to be a process. The
predicate ProcessCond can be seen as a binary classifier
of process boxes. Then, the arrow candidates are selected in
an area closed to the box Pr. At the end of the arrow, another
box among the previously found boxes should exist. If these
conditions are satisfied, the link between the arrow Arr and
the next box B is saved and the recursion is called to build the
remaining parts of the flowchart. If the new box B is also a
process, the same version of recursiveDiagwill be used
to look for the new arrow. The second part of the predicate
is an example of ending predicate: The last box should be a
connection box.

recursiveDiag [Pr, Arr|Remaining]::=
ProcessCond Pr && Pr == Process &&
AT(closeTo Pr) && anArrow Arr &&
AT(end Arr) && Box B in savedBoxes
&& save Arr B &&
recursiveDiag [B|Remaining]

recursiveDiag [LastBox]::=
LastBox == Connection

It should be noticed that the real grammar should accept
flowcharts which are not perfectly drawn. For example, in
Fig. 10 an arrow is missing to connect the “Input n,m” box
and the “r= n%m” box.
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The grammar is designed to force the explanation of all
available strokes. Thus, if some strokes are remained at the
end of the analysis and if they cannot be included in a text
area in the last step, then the predicate fails, and thanks to
the backtracking, another solution is explored.

In the previous work [18], the system was based only
on the syntactic description of the document based on the
relative positions of the strokes. In [8], some statistical infor-
mation based on the boxes shapes is used to first detect the
boxes and then, using the same structural grammar as in [18],
to build the flowchart.

In this work, the labels obtained from the MRF are used
to improve the syntactical analysis at three points:

– box labeling: In the first step of the analysis, if all strokes
of a box have the same label, then the box will have this
label; otherwise, criteria from [8] are used;

– arrow ending: During the third step, if a remaining stroke
labeled as an arrow is close to a detected arrow, then they
are merged;

– text detection: During the third step, the text areas start
with a stroke labeled as text, and then, they are expanded
horizontally with the unused strokes.

5 Experiments

We performed our sketch diagram parsing experiments on
the updated publicly available dataset flowchart dataset [2].

5.1 Data description

The flowchart dataset consists of handwritten flowcharts of
various complexities. Some are complex algorithms with
descriptive texts while some are just simple and straightfor-
ward sequential operations. The used samples are the same
as in the already published flowchart dataset [2], but the
ground truth has been updated. The symbols in the flowchart
dataset are divided into seven classes: data, terminator, pro-
cess, decision, connection, arrows, and text. Strokes inherit
their belonging symbol label. Compared to the initial version,
the ground truth contains the symbol segmentation and labels
but also their relationships in the flowchart. Thus, the lat-
est version includes three directional relationships between
symbols: (i) associated text between node or arrow and their
associated texts; (ii) source, and (iii) target, which clarify the
relationships between arrow and linked nodes. This opens
the possibility for researches to utilize and recognize these
relationships. The flowcharts have been collected using dig-
ital pens from university students of the research laboratory.
This dataset is split into train set and test set. However, we
further manually divided the training set into threefold to
perform threefold cross-validation for parameter tuning. We

Table 1 Flowchart database statistical overview

Writers Patterns Flowcharts Strokes Symbols

Training 30 14 248 23355 5540

Training fold 1 11 14 76 6896 1688

Training fold 2 11 14 83 7898 1861

Training fold 3 8 14 89 8561 1991

Test 15 14 other 171 15696 3791

Ten writers of the test part appear also in the train part

divide the training set in such a way that each fold has no
flowchart writers overlapped with the writers in other fold-
ers. We sacrificed the equality of each divided size for no
overlapped writer, to avoid the situation where the writers’
writing habits contribute to the recognition result on valida-
tion set. For the detailed statistics of flowchart dataset, please
refer to Table 1.

5.2 Parameter tuning by cross-validation

Our model has several hyper-parameters to be decided, and
that can be done by cross-validation using our divided three-
fold training set. Here in this subsection, we briefly explain
how to decide the spatial distance threshold mentioned in
Sect. 3.1.1. Spatial distance thresholdwould affect the graph-
ical model’s structure, and the smaller the spatial distance
is, the sparser the graphical model would be, which may
effect the training and inference time, and stroke labeling
performance. In each round of training, we select onefold
as validation set and train on the combination of the other
twofold. Then, we take the average on each fold as cur-
rent parameter’s performance measure. In this research, we
use pystruct [20] back-ended by OpenGM [1] to perform
structured SVM parameter learning and M3N inference.

Figure 6 shows the spatial distance threshold’s effect on
model inference time and stroke labeling accuracy. For stroke
labeling accuracy before 0.03, it is increasing steadily. This is
due to the fact that with larger spatial distance threshold, the
more connections exist for vertices on graphical models, and
the richness of connection provides more information of the
flowchart. However, the accuracy appears to be unstable after
that because expanded edges are providing a redundancy,
which is having a side effect on graphical model learning
and inference.By selecting twopeak values of stroke labeling
accuracy and drop 0.05 which is having a longer inference
time, we finally selected 0.03 as threshold value.

We use similar steps for determination of other parame-
ters, such as the minimal number per leaf and the number of
decision trees in random forest classifier, and maximal num-
ber of leaves of GBDT. Since there are too many parameters
to do grid search, we selected one type of parameters and
then settle down others to perform parameter grid search by
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Fig. 6 This experiment shows the result of tuning of spatial distance
threshold by threefold cross-validation. Two metrics are to decide the
final choice of spatial distance threshold: inference timeonper flowchart
and stroke labeling accuracy

cross-validation. Then, we switch to another type of parame-
ter, untilwehave tuned all the parameters. Finally, the random
forest has 80 trees and 14 as minimal samples per leaves and
GBDT has 25 trees with a maximal 31 leaves per tree to form
the unary potential function feature refiner; for the pairwise
potential function feature refiner, random forest has 80 trees
and threeminimal samples per leaves andGBDT has 30 trees
with amaximal 127 leaves per tree to form the refined feature
generator.

5.3 Stroke recognition

After the determination of parameters, we train our model on
the whole training set and perform test on test set. The first

Table 2 Stroke labeling result for each class and all together before
and after grammatical analysis (GA)

Before GA After GA

P R F1 P R F1

Text 97.88 98.42 98.15 96.81 99.27 98.03

Arrow 93.93 92.29 93.10 98.18 90.49 94.18

Process 90.17 94.08 92.08 93.13 94.69 93.91

Terminator 95.03 77.13 85.15 89.29 78.48 83.53

Connection 91.87 83.70 87.60 83.22 91.85 87.32

Data 90.00 91.56 90.77 93.28 94.59 93.93

Decision 90.44 93.82 92.10 95.69 92.53 94.08

All 95.71 95.70 95.67 96.19 96.18 96.14

Accuracy 95.70 96.18

P precision, R recall (%)

stage of our flowchart recognition system is to use M3N to
determine stroke labels. Due to the randomness of random
forest and GBDT, we launched five experiments to recognize
flowchart. The average recognition result is shown in Table 3,
and we selected the experiment that has median recognition
rate to illustrate the detail below. There are seven classes
of symbols in flowchart, so strokes are classified into seven
classes. Here we show the confusion matrix in Fig. 7 and
precision, recall, and F1 score of our model in Table 2:

OurM3Nmodel is using GBDT and random forest as raw
feature extractor, and we also tested their stroke recognition
rate along withM3N combined stroke recognition rate. From
Table 3, we can see that when using a standalone classifier
to classify strokes, the classifier does not use neighborhood

Fig. 7 Confusion matrix for strokes labeling result on test set. The left
one is the result after M3N inference but before grammatical analysis.
The right one is after grammatical analysis. Each row of thematrix con-

tains all the strokes of the ground-truth class, and each column contains
all the strokes of the predicted class. The denser the each block is on
the diagonal, the higher the recall rate
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Table 3 Stroke labeling result and the final symbol recognition recall
on the test set of flowchart dataset (%) with state-of-the-art recognition
result indicated in bold font

Stroke reco.
rate

Symbol reco.
rate

Lemaitre et. al. [18] 91.1 72.4

Carton et. al. [8] 92.4 75.0

Bresler et. al. [7] 95.2 82.8

Wu et. al. [33] 94.9 83.2

Wang et. al. [32] 95.8 84.3

GBDT only 80.87 ± 0.07 –

Random forest only 81.45 ± 0.10 –

GBDT+RF+M3N inference 95.70 ± 0.65 –

GBDT+RF+M3N
inference+GA

96.16 ± 0.34 80.69 ± 0.85

Considering the randomness from random forests andGBDT, our exper-
iment launched for five times, with mean and unbiased standard error
recorded. This table also listed some other researches on the same
dataset

information and it is keeping at a recognition rate a little
above 80%.By combining itwithM3N,weobserved a signif-
icant improvement in stroke recognition rate. This validated
our belief that MRF is suitable for modeling the 2D hand-
written language.

From the confusion matrix before grammatical analysis,
terminator class is having the lowest recall rate. That is
because terminator is having a similar shape with process.
Process is actually a rectangle while terminator is a rounded
rectangle, and there is no doubt why many strokes belonging
to terminator are classified to process. Besides, they can also
be misclassified to arrow because arrow is of various shapes
itself. Another interesting point is that text have the highest
recall rate, that is mainly because text has its own style, they
would cluster together and in a much smaller scale. Also,
the biased number of training samples of different strokes
is having a side effect on recognition result: Stroke classes
with few samples are more likely to be misclassified to other
classes.

Fortunately, with grammatical analysis, this biased sam-
ple problem is eased. From the right confusion matrix, which
is the result after grammatical analysis, we observe an obvi-
ous decrease in error recognition case on arrow, process and
data. However, there is an increase in the error where strokes
are labeled as text. The class text is hard to encoded in gram-
matical rules so our grammatical analysis process fails to
process it along with other shapes, and has to be left till last.
Overall, grammatical analysis improved the labeling result
from our statistical model from 95.70 to 96.18%, proving it
to be helpful in statistical model improvement. We also per-
formed a dual-side t test on stroke recognition rate compared
to the state-of-the-art stroke recognition rate [32], and we are
having a confidence above 90% that currentmodel is superior

than [32]. Considering that research [32] is also conducted
by us, by using MRF learned with structured SVM, they are
of same origination and they are all significantly superior to
flowchart recognition methods using other models.

5.4 Symbol and graph-level recognition

When the stroke recognition results are available, we can
process the grammatical structural analysis. This analysis
enables to build both objects based on strokes, and logi-
cal relationships between recognized symbols. The novelty
of our experiments is that the database now includes rela-
tionships in the ground truth. Consequently, we can evaluate
structural correctness in our graph-level recognition analy-
sis. Our graphical-level evaluation is done using the tools
mentioned in [19].

Table 4 gives object-level recognition result, specifically
symbol segmentation results and symbol recognition results.
Traditional recall and precision metrics compute the ratio
of correctly recognized symbols to ground-truth symbols
and correctly recognized symbols to all recognized symbols,
respectively. We can notice a higher rate for symbol seg-
mentation than for symbol recognition because a correctly
recognized symbol requires both a valid segmentation and a
valid symbol label.

Table 5 shows the recognition results at the global
flowchart level.Adiagram is considered correctly recognized
only when all of its symbols are correctly segmented and
correctly labeled and the structure is correctly parsed . These

Table 4 Symbol segmentation and recognition result after grammatical
analysis (%)

Precision Recall F1

Text 71.06 78.93 74.79

Arrow 72.89 76.89 74.84

Process 84.95 89.95 87.38

Terminator 78.21 77.83 78.02

Connection 85.18 92.74 88.80

Data 92.63 89.80 91.19

Decision 82.86 82.07 82.46

Object overall 76.13 80.85 78.42

Segmentation 78.21 83.06 80.57

Table 5 Graph-level recognition on test set, considering all 171
flowchart instances

Rate (%) Correct count

Correct symbol segmentation 19.88 34

Correct symbol recognition 12.87 22

Correct symbol+structure 5.85 10
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Fig. 8 Typical examples of
flowchart recognition, with
max-margin MRF stroke
labeling and grammatical
analysis. The strokes are colored
to indicate their recognition
result. The legend of figures is
shown in (c). a Flowchart
recognized without error, b
correctly segmented flowchart
but with one recognition error:
One terminator is recognized as
process and c legend

(a) An incorrectly recognized flowchart, recognized with
max-margin MRF only without grammatical analysis.

(b) Same flowchart recognized after grammatical analysis.

Fig. 9 A flowchart’s recognition result in two stages: a for after max-
marginMRF stroke labeling and b after stroke labeling and grammatical
analysis.Grammatical descriptionwould eliminate some stroke labeling

errors; for example, the process is confused with data symbol before
grammatical analysis. Most of this type of errors are corrected after
grammatical analysis step

three requirements come in an order that a later requirement
mustmeets a prior requirement, so inTable 5wegive recogni-
tion rate under these threemore andmore strict requirements.
It can be seen that the correctly recognized diagrams are rel-
atively few considering all the requirements. However, we
need a more detailed analysis of the causes of errors.

In Figs. 8, 9, and 10, we have shown four examples of
labeled flowcharts: Fig. 8a shows a correctly recognized
flowchart, Fig. 8b shows a correctly segmented but incor-
rectly labeled sample, and Figs. 9 and 10 show incorrectly
recognizedflowcharts. From the examples,we can have some
insight into the source of the errors. For Fig. 8b, the only
error occurs with a process box recognized as data. This
implies that though grammatical analysis ensures a valid

interpretation, a better flowchart recognition result can be
achieved by using stronger local raw feature extractor. Com-
pared to some researches that filtered text first as [7], our
performance is satisfying. The goal of the additional gram-
matical structural analysis is to recover as much as possible
these errors. However, the quality of the results will depend
on the strength of the rules that are hard-coded and relies
heavily on the designer experience. This is why, in some
cases, the initial probabilistic model would give better results
than the post-processed one. Such a situation is illustrated in
Fig. 10 where from the correctly labeled flowchart obtained
with the max-margin MRF, as shown in cf. Fig. 9a, an incor-
rect interpretation is then produced applying the grammar
rules, as shown in cf. Fig. 10b. To improve global recogni-
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(a) A correctly labeled flowchart using max-margin MRF. (b) The same flowchart recognized after grammatical analysis,
which leads to error.

Fig. 10 An incorrectly recognized flowchart compared to the state before grammatical analysis. a correctly labeled. The arrow and the decision
symbol are all recognized as text, while letter o is recognized as connector. This is due to the undetected decision box (as in [8], Fig. 6). Missed
boxes cannot be recognized

tion rate, higher-order MRF should be considered and shape
information-incorporated grammar parser, like [8], can be
used to avoid labeling part of the node symbol into strokes.

6 Conclusion

In this work, a mixed strategy is proposed for recognizing
online handwritten flowcharts. On the one hand, we develop
MRF models trained using structured SVM to label the
flowcharts at the stroke level. On the other hand, a syntactic
approach is used to parse the results of the stroke labeling and
to produce symbols with their relationships in consistence
with grammar rules. In a sense, an implicit and an explicit
grammar modeling is achieved with this solution. We vali-
dated our approach on a flowchart dataset that now contains
a complete ground truth, including logical order, and that is
available for experiments.

Furthermore, this symbol recognition method can sup-
port additional improvements. First of all, we can balance
differently the local and the global constancies. In this direc-
tion, MRF can support higher-order potential functions. This
could be helpful for producing better segmentation results.
Secondly, a deeper integration of our MRF model and gram-
matical model could be studied to use a probabilistic parsing
method to alleviate the dominant effect of the stroke labeling.
In further research, we will investigate the potential of MRF
more deeply to make it more compatible to global consis-
tency.
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