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Abstract Recent results on structured learning methods
have shown the impact of structural information in a wide
range of pattern recognition tasks. In the field of document
image analysis, there is a long experience on structural meth-
ods for the analysis and information extraction of multiple
types of documents. Yet, the lack of conveniently annotated
and free access databases has not benefited the progress in
some areas such as technical drawing understanding. In this
paper, we present a floor plan database, named CVC-FP, that
is annotated for the architectural objects and their structural
relations. To construct this database, we have implemented
a groundtruthing tool, the SGT tool, that allows to make
specific this sort of information in a natural manner. This
tool has been made for general purpose groundtruthing: It
allows to define own object classes and properties, multiple
labeling options are possible, grants the cooperative work,
and provides user and version control. We finally have col-
lected some of the recent work on floor plan interpretation
and present a quantitative benchmark for this database. Both
CVC-FP database and the SGT tool are freely released to the
research community to ease comparisons between methods
and boost reproducible research.
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1 Introduction

Current advances on structured learning methods in many
pattern recognition tasks have driven to the development of
new methods encoding structural information. In the field of
document image analysis, there is a long experience on struc-
tural methods for information extraction and analysis of mul-
tiple types of documents [21,29,37]. With all, these systems
usually need conveniently annotated databases to extract and
learn the structural interrelations between objects. The lack of
such available databases may constrain the research advances
in some domains, which is for instance, the case of automatic
floor plan understanding.

Indeed, automatic floor plan analysis is a hot topic. Despite
having a main architectural design purpose, nowadays floor
plans are spreading their usability into different areas. New
tools help non-expert users to virtually create and modify
their own house by simply drawing its floor plan on an on-line
application, such as Autodesk Homestyler1 and Floorplan-
ner.2 These tools can automatically generate the 3D view of a
building to get an idea of how it would finally look like. More
recently, Google has introduced more than 10,000 indoor
floor plans in Google Maps Indoor to facilitate the mobile
user navigation inside large buildings, usually airports, sta-
tions, and malls [1]. In addition, state agents with large num-
ber of properties may index floor plans by some structural
information extracted from them, as individual room size of
each building. This kind of indexing system would be of a
great help when customers ask for specific requirements, like
holding a conference or organizing musical shows.

These new applications combined with current architec-
tural re-utilization of old designs in order to cut designing

1 http://www.homestyler.com.
2 http://en.floorplanner.com/.
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costs have dramatically incremented interest on automatic
floor plan analysis systems. Thus, a wide research has been
recently undergone in this topic: Floor plans structure has
been extracted from hand-made images [8,28] and computer-
generated scanned images [5,12,31,40]. 3D reconstruction
from 2D printed documents has been studied in [19,30,33].
Moreover, the automatic analysis contributed to other spe-
cific applications such as structural floor plan retrieval [6],
and emergency evacuation simulation from complex build-
ings [48].

Despite the great effort of the community, automatic floor
plan interpretation is far from being solved. Floor plans con-
tain multiple structural elements, symbols, color, and text.
Moreover, there is not a common notation standard to draw
floor plans, which lead the styles to highly vary from archi-
tect to architect. With all, the task of creating a system able to
cope with all possible notations is very challenging. Indeed,
the vast majority of the recent systems only adapt well to a
limited number of notations, since most of them are tested on
own private collections, precluding the comparison to other
systems.

Therefore, there is a current need of public collections
that favor the research on floor plan understanding. These
databases should preferably be representative for the exist-
ing graphical notations on building modeling. Moreover, they
must grant the extraction of structural interrelations between
the architectural elements. This would let the systems to learn
how these elements are structurally arranged and thus to trig-
ger better interpretation less dependent on the graphical rep-
resentation of the documents.

Yet, the creation of databases entails another difficulty:
the image labeling. Even though it is a straightforward pro-
cedure, the creation of groundtruth (GT) is, for the most part,
tedious and slow. Thus, tools allowing complex GT genera-
tion in an efficient way are highly required to speed up this
procedure and make it as lighter as possible.

In order to give solution to the problems mentioned, this
paper presents the following contributions:

1. We present a new database of real floor plans (CVC-FP)
and the groundtruthing tool (SGT tool) that we have used
to generate its structural GT.

2. A benchmark on wall segmentation and room detection
tasks is presented in the paper.

The CVC-FP database, the SGT tool, the complete bench-
mark results, and the evaluation scripts presented in this paper
are available at the CVC-FP web page.3 Our intention is to
ease and promote the researchers to test and compare their
own interpretation methods.

3 http://dag.cvc.uab.es/resources/floorplans.

We have organized the paper as follows. In Sect. 2 we
review existing related databases and groundtruthing tools.
Then, we start by introducing the SGT tool in Sect. 3. This
will allow us to explain in detail in Sect. 4 the structural con-
tent and format of the groundtruth generated. Section 5 is
devoted to present the images of the four datasets that con-
form the CVC-FP database. We finally present benchmark in
Sect. 6 and conclude the paper in Sect. 7.

2 Related work

In order to put our work into context, we briefly explain the
existing databases related to floor plans analysis tasks. We
subsequently overview the characteristics of the available
annotation tools to generate GT in documents.

2.1 Floor plan databases

Everyday, the amount of available datasets for research pur-
poses is increasing thanks to the collaborative work of the
community. Technical committees, research centers, and uni-
versities are highly contributing by updating, maintaining,
and sharing their resources [2]. Yet, we are still far away from
having a wide range of representative benchmark datasets
for the different scenarios in document analysis. Testing and
comparing different approaches in distinct domains is limited
to few well-known labeled collections. This fact sometimes
can favor ad hoc systems that fit very well in the existing
datasets over those ones that better fill in the large variability
of the real world. For these reasons, new annotated datasets,
well structured and detailed, that fill empty spaces in any
research domain are always welcome.

In our area of interest, graphics recognition in documents,
multiple available databases have been incorporated for the
different sub-areas that it covers. These datasets can be cre-
ated either by means of synthetic data generation or by real
document annotation. On the one hand, synthetic databases
consist of data generated by varying a predefined set of para-
meters to model different degrees of distortion, noise, and
degradation than real documents may suffer. The generation
of these sort of collections tends to be much faster than the
annotated ones. In return, the model has to be closed enough
to the reality to allow strong conclusions when using them.
On the other hand, the annotated databases of real docu-
ments reflect the real variability of the world. However, col-
lecting and manually groundtruthing the images can be very
time demanding. This issue can be relaxed by semi-automatic
annotation procedures [32].

One example of synthetic database is the GREC’2003
[44]. It was conceived in the IAPR International Workshop
on Graphics Recognition in 2003 to set up a common evalu-
ation strategy for symbol recognition. This challenge dataset
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contains 50 cropped models from architectural and electri-
cal documents. The primitives of these symbols are lines
and arcs, which are subjected to different levels of noise,
shape distortions, and linear transformations. Lately, the
GREC’2011 dataset [43] was created not only as an extension
of GREC’2003 in terms of recognition, but also included a
symbol spotting contest in both architectural and electrical
documents.

One of the most used databases for symbol recognition
related tasks is the SESYD database [17]. It is a collection
of labeled synthetic images. They include architectural and
electrical documents for symbol spotting, recognition, and
retrieval. Additional datasets for text-graphic separation and
text segmentation are included. Regarding its floor plan col-
lections, they are specifically generated for detection pur-
poses, leaving aside the semantic assembly between symbols
and the building structure.

The FPLAN-POLY database [38] is, to our best knowl-
edge, the only available collection of annotated real floor
plans. Nevertheless, it aims for symbol spotting tasks. It con-
tains 38 symbol models in a collection consisting of 48 vec-
torized images.

Although there is not any floor plan database for complete
analysis purposes, on other structured drawings such as flow-
chart diagrams, several work has been pursued on structural
and semantic understanding. Thereby, the CLEF-IP initiative
investigates information retrieval techniques on patent docu-
ments. One of the goals of that challenge consists of extract-
ing the structural information from patent flowcharts in order
to be queried semantically a posteriori. This process entails
not only the detection and recognition of the elements par-
ticipating in the diagrams (nodes, text, arrows), but also the
structural assembly between them and their semantic mean-
ing [35,39].

2.2 Groundtruthing tools

In the document analysis domain, we can find a large set of
tools developed for the generation of GT. We analyze them
by describing their functionality and limitations.

Most of the existing groundtruthing tools for document
analysis related tasks are oriented to deal with textual docu-
ments. On the one hand, some of them address the evaluation
of logical and physical layout methods, e.g., Aletheia [13],
GEDI [18], TRUEVIZ [24], PinkPanther [47], and GiDoc.4

Here, entities are represented by rectangular or polygonal
regions by both physical and logical information. Physical
information usually belongs to textual regions, pictures, fig-
ures, tables, etc., while logical information usually denote
the semantic meaning of each physical entity in the doc-
ument context, e.g., headers, title, footnote, etc. On the

4 https://prhlt.iti.upv.es/page/projects/multimodal/idoc/gidoc.

other hand, some tools focus on performance evaluation at
pixel level. These tools aim at a very accurate pixel anno-
tation and include semi-automatic labeling tools to improve
the groundtruthing efficiency. Examples of these tools are
the multi-platform based on JavaTM PixLabeler [41], and
the very recent web-based tools WebGT [10] and APEP-
te [26].

The specific focus of the previously cited tools hinders
their usability on other document analysis tasks, e.g., graph-
ics recognition. Some of them only allow to label rectangular
segments [22,24,46]. Others delimit the definition of object
categories into a small set of predefined classes [10,41].
Moreover, the definition of object dependencies usually relies
on hierarchical information [26,47] and limited structural
concepts [13,18], e.g., reading order and relative location.
Furthermore, to our best knowledge, only [13] has a multi-
layer representation that permits the labeling of fully over-
lapped objects.

Finally, it is worth to mention that the current tendency is
to design multiuser tools that foster real-time groundtruthing
cooperation either by version control [10,26] or following
crowdsourcing strategies [7,22]. Moreover, the vast majority
of the recent tools use slight variations based on XML for GT
specification,e.g., the PAGE format [36]. This fact permits to
easily adapt the existing platforms to parse GT files generated
by other applications. Yet, none of the existing web-based
tools use the SVG format to naturally display the GT at the
web browser interfaces.

3 The structural groundtruthing tool

The SGT tool is thought to perform general purpose
groundtruthing, not restricted only to one specific domain
as most of the existing tools are. It grants full flexibility
since the database owners can create, modify, and erase
their own object classes. Additionally, it is possible to define
and declare n-ary properties for the labeled objects. Thus,
the groundtruth can be seen as an attributed graph repre-
sentation where nodes are objects and edges are relations
between them. In Fig. 1 we can see a scheme of the SGT
tool architecture. The SGT tool is user-friendly, it allows
two different labeling options (bounding box and polygo-
nal), and the output is in the standard Scalable Vector Graph-
ics (SVG). The tool is a cross-platform running on a web
service, which enforces co-working without sacrificing secu-
rity. It has been implemented in php5 and HTML5, and the
collections are stored in a relational database like MySQL
[3].

In this section, we overview the SGT tool. For a further
detailed explanation we encourage the users to read the user
guide, available in the project CVC-FP web page.
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Fig. 1 Overview of SGT tool architecture. The multiple users access
through a version and user control module to define and generate the
GT

Fig. 2 Window for new category creation

3.1 Classes and structural relations: definitions and labeling

The SGT tool can be used in multiple domains since it allows
the user to define their own object classes. For example, in the
floor plan interpretation framework that we are interested in,
we define object classes as Wall, Room, and Door. Contrar-
ily, for symbol spotting we would rather define Bed-type1,
Bed-type2, and Shower-bath, and for textual document layout
analysis Title, Legend, and Graphic. The classes are defined
at dataset level in a Class Management window, where the
user can define, modify, and delete their own classes. When
a new class is created an example image of the object can be
added into its definition, see Fig. 2. This image is shown at
labeling time to help unexperienced users in the cooperative
groundtruthing task.

Object properties not only allow to define attributes for the
different elements, but they also permit to declare structural
and semantic dependences among multiple object instances.
They are similarly defined and administered as classes at the

Fig. 3 Window for new relation creation

Relation Management window. At definition time, the user
can define the arity of the property: They can be specific
for a single object or relating n. A brief description to help
users can be also written in their definition, see Fig. 3. Their
labeling is done by selecting first the desired property and
then by picking those labeled objects that participate in it.
The SGT tool ensures that the arity declared agrees with the
property definition.

SGT tool facilitates the user the labeling procedure with
a clear interface (see Fig. 4). Objects can be labeled either
by drawing their bounding box through selecting just two
corners or by drawing their polygon through a sequence of
clicks. Moreover, it allows to make local zooming to ease
the labeling of tiny objects. In other GT tools, the visual-
ization and selection of the desired objects can become a
challenging task in crowded images with multiple overlap-
ping objects. Since SGT tool uses a multilayer representation
for each object category, the users can display or hide object
annotations at their convenience. This functionality extrapo-
lates to object properties.

3.2 Creation and version control of a database

A registered user that uploads a collection of images to
the SGT tool is its owner. Once uploaded, any registered
user can participate in the groundtruthing task. They have
only to select one image and start the annotation. Then, the
tool will automatically avoid concurrent edition by control-
ling the access to the in use documents. For each of them,
the new GT version associated with its author is stored
by the versioning control system. Thereby, the database
owner can track and control the whole groundtruthing pro-
cedure.
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Fig. 4 View of the editing page. Among other functionalities, the user can import an existing GT, choose the labeling procedure, label objects
and structural information, and select those objects and relations want to show/hide

3.3 Input images and groundtruth SVG files

Concerning the input documents, our application accepts the
most common types of image formats: PNG, JPG, and TIFF.
When an image is uploaded, it is stored by its file name
and indexed locally in its database. The SGT tool has been
implemented to support heavy files; it behaves smoothly with
images around 20 mega pixels.

To make easier the exchange of classes and relations
between databases, the SGT tool incorporates importing/
exporting tools. For a given image called X, the tool generates
an extended version of a Scalable Vector Graphics (SVG) file.
We have chosen SVG for formatting our GT mainly because
of three reasons: It uses a well-structured format XML-based
language, it is a recommendation of W3C,5 which ensures
evolution and maintenance and, finally, allows to describe 2-
dimensional vectorial graphics that are displayable in most
of the Internet browsers. It is worth to notice that, since the
SGT tool is web-based, the user interface is displayed at the
Internet browser. Therefore, the use of SVG format permits to
adapt to different browser preferences while maintaining the
same labeling visualization. Obviously, the tool also allows
to import external SVG files to update the GT.

The format of an extended SVG file includes own meta-
data information and is defined as follows. Firstly, the gen-

5 http://www.w3.org/Graphics/SVG/.

eral information regarding the GT is specified. It includes the
image dimensions (width and height) in pixels, the number of
different instances labeled, the number of classes appearing
in the document, and the name of all the classes that appear
in the dataset. Secondly, it contains the list of the elements
in the image. Each text-line describes one object by its label,
its document-unique identity number, and its polygon com-
posed by the extremity points selected by the user. Finally,
the document describes the relations between the objects.
Each relation is identified by its type and the identities of the
elements involved.

4 The floor plan groundtruth

In this section, we review in detail the GT for the CVC-
FP database constructed using the SGT tool. This GT not
only contains the location of the architectural elements, but
also those structural relations that we have considered to be
of the interest for floor plan analysis systems. In the defi-
nition of this database we have taken into account several
considerations. We have contacted a team of architects to
address their needs in automatic interpretation applications.
We experienced several cooperations with research and pri-
vate companies aiming for different applications related to
floor plan interpretation. We have considered other floor plan
definitions in the literature that entail some sort of structural
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understanding, such is the case of [48] for evacuation build-
ing simulation, and [45] for structural floor plan retrieval.
Additionally, we have also been inspired by the relevance
of the structural information for high-level understanding in
graphical documents, e.g., flowchart interpretation in patent
documents [35]. Still, this is our own definition of the GT
and it will vary for other applications, images, and experts.
Obviously, since the SGT tool is shared freely, the GT data
can be modified or upgraded agreeing to every system and
person requirements.

Nine people working on distinct areas of graphics recog-
nition have participated in the generation of this GT. Thanks
to the version and user control of the SGT tool, the creation
of the GT has been parallelized for the complete collection
of images. Once the annotation has been completed, one sin-
gle person has checked the correctness and consistency of the
data according to the definitions settled a priori. This task has
been pursued to correct different subjective perceptions for
the distinct users that have participated. Since the SGT tool
is designed in a way that every category and relation can be
displayed with independence to the rest, this process has been
easily attended. We firstly review the convention followed in
the object labeling and secondly the relations instantiation.

4.1 Element labels

Let us explain how we performed the labeling of the structural
symbols. These are rooms, walls, doors, windows, parking
doors, and separations. The labeling of each object has been
pursued by selecting that polygon that maximizes the over-
lapping of its area; this is by selecting each of the extremities
of the object.

– Walls work mainly to bear the structure of buildings, to
isolate, and to delimit room space. Aiming for simplicity,
they are usually rectangular-shaped, generating corners
at their intersections, and gaps to locate doors and win-
dows. However, with the lack of additional architectural
information, it is not clear how wall-instances should be
separated. We have followed our own convention trying
to stick to their structural purpose. We split walls when
they have different thickness, and when they intersect at
some point generating a L-shaped corner. In Fig. 5 we
show a detailed example to clarify our strategy.

– The labeling of doors, windows, and parking doors has
been much easier since their boundaries are well defined.
Yet, to label those objects with curved shapes (doors and
windows), we have followed a trade-off between an accu-
rate adjustment to the boundaries and object representa-
tion simplicity. A few examples are shown in Fig. 5.

– The labeling of rooms sometimes encloses ambiguity as
their limits are not clearly defined. An example is shown
in Fig. 6, where thanks to the text and the structural shape

Fig. 5 Wall, door, and window labeling

of the building we can presume the separation between
the dining room (repas) and the kitchen (cuisine), the
separation between the salon and the hall, and the sepa-
ration of this latter and the corridor (degt.), although none
of them they are physically separated. On the contrary,
the text also instantiates the salon and the repas to be sep-
arated habitations. This time yet, the lack of furniture and
the building structure are not helping on presuming the
hypothetical separation between these two rooms. There-
fore, the labeling becomes subjective to the expert per-
ception. Due to the difficulty of creating a clear conven-
tion on these situations and given the lack of additional
information, each room annotation has been examined in
detail a posteriori by a single person trying to keep an
agreement in the whole collection of images.

– Separations are rectangular abstract elements that sepa-
rate two neighbor rooms without physical frontiers, see
Fig. 6. These elements aim to make clear the accessibility
area between these rooms.

4.2 Structural relations

Similar to the object properties in ontologies, the SGT tool
permits the definition of relations between object instances.
In other words, the SGT tool allows to define attributed
graphs to enclose the mutual dependences among the labeled
elements. In these graphs, the annotated elements are the
nodes, whereas the contextual relations among the different
objects are defined by attributed edges. This fact enriches the
expressiveness our GT and allows systems to learn complex
features and affinities between elements. We have defined 5
following relations:

– Incident Two elements are called to be incident when they
intersect or collide at some point. An example on incident
relation is shown in Fig. 7a. The elements with incident
relations are walls, doors, windows, and separations.
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Fig. 6 Rooms labeling. Rooms are drawn in turquoise and separations in red (color figure online)

– Surround Several walls doors, windows, parking
entrances, and separations can delimit the space of a
room. The surrounding relation, as it can be seen at
Fig. 7b, creates a graph of these elements connected with
the room they encircle.

– Neighborhood Two rooms are called to be neighbors
when they share at least one wall, one door, one win-
dow, or one separation in their surrounding perimeters.
Figure 7c shows the neighbor graph that generates a little
part of a plan.

– Access This relation put in correspondence two rooms
that are accessible from each other through a door
or a separation. It is also used for defining which
rooms through which doors are possible entrances to the
dwellings. Figure 7d shows the access graph that gener-
ates a little part of a plan.

– Surrounding perimeter It defines the exterior bound-
ary of a building. It is composed by walls, doors, win-
dows, parking entrances, and separations. Each iso-
lated building only contains one surrounding perimeter
relation.

5 The CVC-FP images

Let us now introduce the images in the CVC-FP database.
This is a collection of real floor plan documents compiled
and groundtruthed during the last recent years. It all started

with the SCANPLAN6 project in 2008, and still today the
Document Analysis Group of the Computer Vision Centre is
working on these graphical documents in multiple domains,
such as structural analysis, semantic reasoning, and sym-
bol spotting and recognition. The dataset is composed of
122 scanned documents and a partially groundtruthed ver-
sion was presented in [14]. Nevertheless, these documents
have been shared much before to foster the research in floor
plan analysis [4,5,31].

The four sets have completely different drawing styles,
image qualities and resolutions, and incorporate different sort
of information. This is not an arbitrary fact; We have created
a heterogeneous dataset to foster the creation of robust tech-
niques that are able to deal with different image scenarios
and graphical notations. It is important to take into account
that different architects and architectural studios usually have
their own graphical conventions. Therefore, there is a need
of constructing systems that are able to learn each specific
notation to be able to generalize for the existing architec-
tural conventions. In addition to that, the different amount
of images in each dataset permits to test the effectiveness of
the proposed methodologies either when there is a large or a
small set of documents available for learning purposes. We
subsequently overview the characteristics of each subset sep-
arately, focusing on the structural information of the images,
their symbolism, and the textual information.

6 SCANPLAN PROJECT: http://www.eurekanetwork.org/project/-/
id/4462.
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Fig. 7 Examples for the different structural relations between objects. a Incident relation. b Surround relation. c Neighbor relation. d Access
relation

5.1 Black dataset

The name of this subset, as the rest does, references the graph-
ical modeling of the walls, a thick black line as it can be seen
in Fig. 8. It consists of 90 floor plan binary images of good
quality. The size of these images is 2,480 × 3,508 or 3,508
× 2,480 pixels depending on the orientation of the building.
These plans were conceived to sample the structural distrib-
utions of the buildings to possible customers, so they do not
contain an excessive amount of technical information.

In this dataset, building drawings are centered and well
oriented with respect to the document and most of the archi-
tectural lines are parallel to the horizontal and vertical axes.
They model the ground floor of detached houses, usually
including terraces, porches, and garages with cars. The draw-

ing style is clear, with few elements crossing among them.
Concerning the structural symbols, walls are mostly modeled
by black lines of three different thicknesses whether they are
main, interior, or exterior walls. Just in three plans, walls
are modeled by parallel lines. Simple doors are drawn by a
quarter of a circle arc, whereas building’s main doors have
an additional rectangular base of the size of their incident
walls. Moreover, toilet doors are represented by a quarter
circle arc, and double doors by two consecutive arcs cen-
tered in each of the wall limits and tangent in the center of
the accessible area (see Fig. 8b). The window models can
highly vary, see Fig. 8c. We can find full opened windows,
partly opened windows, and sliding windows, all of them
with different thicknesses. The last of the structural symbols
that appear in some of these images are the stairs. They are
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Fig. 8 Black dataset. a We show a sample image from this dataset. b We show the different types of doors, c the window models, and d some of
the difficulties of the dataset

modeled by consecutive parallel rectangles. In terms of non-
structural symbols, the floor plans contain mostly symbols
making reference to bath utilities. Different kind of sinks,
toilets, shower baths, and bathtubs are the only ones repeated
in all the images. In addition to that, occasionally in some
images, we can find living room furniture and in buildings
delighting of a terrace or a porch may include a garden table
with four chairs.

Text can be found in these documents. Each floor plan
has a title with big bold letters that it can be read “Plan du
Rez de Chauseé”, in English “plan of the ground floor”. As a
subtitle we find the scale of the model (always 1/100, 1 cm is
1 m) and information about the architectural studio. In some
plans, next to the title we can find information about the
surface area of the dependencies, the building utile area, and
the slope of the roof. Less frequently, information of the
surface and the orientation of the windows is included in the
subtitle. Moreover, each room encloses the text describing
its functionality and area—in squared meters. Finally, each
plan has two dimensions measuring in meters the rectangular
surface of the building. They are located in the limits of the
building perimeter.

5.2 Textured dataset

This is the second floor plan dataset compiled by the authors.
It consists of ten poor quality and grayscale images whose
resolutions can vary from 1,098 × 905 pixels the smallest
to 2,218 × 2,227 the largest, see Fig. 9a. They are computer
drawings of detached houses containing not only structural
symbols but also furniture, several dimension quotes, and
textual information.

Here walls are modeled by two parallel lines with a diag-
onal line pattern in between for the exteriors, and a hetero-
geneous gray-dotted pattern for the interiors. The notation of
doors and stairs is exactly the same of Black Dataset. Contrar-
ily, all the windows follow a rectangular pattern of different
breadths, which can be seen in Fig. 9b. In this dataset, ter-
races are indicated by a repetitive pattern of squares. Regard-
ing non-structural symbols, we mainly can find sofas, tables,
and bath and kitchen utilities such as sinks, baths, and ovens.
Furthermore, most of the buildings have a garage with the
drawing of a car in it.

This dataset contains textual information, most of it
belonging to numbers of dimension measurements. All the
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Fig. 9 Textured dataset. a We show a sample image from this dataset. b We show three different window symbols. c We show some difficulties in
the dataset: the multiple intersection of symbols and text to the left, and the side effects of binarizing in poor quality plans to the right

rooms are labeled with their name and their area—in squared
meters. Some plans have also a big bold text at the bot-
tom of the image that says “vue en plan”, in English “floor
plan’s view”. Additionally, some extra structural information
is written in barely readable text.

5.3 Textured2 dataset

The Textured2 dataset is composed by 18 images of 7,383
× 5,671 pixels collected from a local architectural project
in Barcelona. The singularity of this dataset is that the 18
floor plans belong to a single building of six floors. The first
image, which is shown in Fig. 10a, contains the drawings
of two different floors: the one corresponding to the ground
floor, and just beside the overlapping of the first, the second,
and the third floors, which are identical. Similar to the first,
the second image contains the plans of the basement and the
4th floor. The rest of the images contain the same drawings
but not exactly located and with different sorts of information.
The two first contain general structural information; this is
for instance the habitable area of each floor, the area of living

rooms, and the area of the sleeping rooms. The second couple
of images contain the detailed architectural dimensions. The
third couple includes the information of the surface materials:
whether the ground is made of parked or marble and the
walls are covered by either plastering or natural stone. The
fourth pair of images shows the distribution of the dropped or
suspended ceiling. The fifth shows the plumbing distribution,
whereas the sixth displays the waste plumbing distribution.
In the seventh the building’s electrical installation is detailed.
The eighth shows the gas installation and finally, the ninth is
for heating installation.

The walls are modeled similar to the Textured Dataset, this
time with a higher frequency diagonal pattern between the
two parallel lines. Doors are drawn by 90◦ arcs and windows
follow the same model. Mostly all the utilities and furni-
ture symbols are drawn in the first couple of images: sinks,
toilets, bathtubs, ovens, beds, tables, and wardrobes. Mean-
while the rest of the images enclose the different types of
symbols agreeing to their architectural purpose, see Fig. 10b.
The types of suspended ceilings are represented by differ-
ent textural patterns, and water, electrical, gas, and heating
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Fig. 10 Textured2 dataset. a We show the structural distribution of all the floors in the flat. b We show the different types symbols: from left to
right water and electrical symbols

symbolism is specified in their respective legends. Mean-
while, textual information is omnipresent in all the images.
Firstly, a text-table situated at the bottom right corner of each
image specifies the information regarding the architectural
studio, the project, and the document. Secondly, each doc-
ument except for those enclosing the architectural dimen-
sions contains a legend detailing the semantic meaning of
the symbol encountered in the plan. Finally, every document
has specific text in key positions to help its interpretation.
This text includes for instance room’s naming, dimensions,
floor statements, walls’ height, and facade orientation.

5.4 Parallel dataset

This last collection is composed by only four images and was
added to perform wall segmentation on walls drawn by sim-
ple parallel lines. They are extracted from Google Images7

using the keyword floor plan and are created by one single
architectural studio to display the building distribution of two
detached houses for sale. An instance of this dataset is shown
in Fig. 11.

The binary images are of good quality and high resolution
(2,550 × 3,300 pixels). As mentioned, walls are modeled by
simple parallel lines, doors by a 90◦ arcs, and windows fol-

7 http://www.google.com/imghp.

lowing a rectangular model. Some house utilities are drawn,
as the usual from bath and kitchen. Moreover, since the build-
ings delight of a laundry room, washing and drying machines
symbols can be found. Text also appears in these images.
Each room has its functionality written in its perimeter. In
addition, two of them, those belonging to the ground floor,
have a text-table with the characteristics of the different sur-
face areas—in squared feet.

6 Experiments

Several floor plan analysis strategies have already been
applied on parts of CVC-FP while it was under construc-
tion. They have mainly been centered on wall segmentation
and room detection tasks. On the one hand, rooms define
the structure of the buildings, so their detection has been the
main objective of these systems. On the other hand, the cor-
rect segmentation of walls usually has lead to better room
detection in most of the floor plan interpretation techniques.

This section, which is slight extension of the evaluation
section in [14], has been included in this paper to give com-
pleteness to the database explanation. It is divided in two
main parts: the wall segmentation task and the room detec-
tion task. Both evaluations have been performed at pixel
level. Since the GT is at polygon level, we have used a
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Fig. 11 Parallel dataset image

JAVATM script to convert every SVG file into several binary
images (PNG format)—one for each object category. Addi-
tionally, we have performed a 1-way analysis of variance
(ANOVA) to each task in order to asses the significant differ-
ence on the performance behavior for the different floorplan
datasets [11]. This test allows to reject the hypothesis that the
reference method behaves similarly on every dataset when
the output p value is lower than a fixed significance value
α (usually α = 0.01 or α = 0.05). The evaluation scripts,
the JAVATM software to convert the SVG files into PNG for-
mat, and the evaluation results for every image are publicly
accessible at the project website.

6.1 Wall segmentation task

6.1.1 Wall segmentation evaluation protocol

We evaluate the performance on wall segmentation using the
Jaccard Index (JI). The JI score is used in PASCAL VOC
competitions for object segmentation [20], and it counts the
mislabeled pixels in the image. In this evaluation, true posi-
tives (TP), false positives (FP), and false negatives (FN) are

Table 1 Definition of true positives (TP), false positives (FP), and false
negatives (FN) for wall segmentation evaluation

Original image GT image Output image

TP 1 1 1

FP 1 0 1

FN 1 1 0

Black pixels in an image are considered as 1 and white ones as 0

calculated only on the black pixels of the original images
binarized as Table 1 specifies. The reason is that only black
pixels covey relevant information on walls. The JI is calcu-
lated as follows:

JI = TP

TP + FP + FN
. (1)

6.1.2 Base-line results on wall segmentation

The first attempt to detect walls on the Black dataset was pre-
sented in [31]. They firstly spot lines using the Hough trans-
form on vectorized images. The lines of interest are those
that are longer over a threshold or fit alignment heuristics.
Then, wall hypothesis is generated by seeking parallel lines.
The ones totally filled by a black texture in between are con-
sidered as walls of the floor plan.

Very differently, a much more straightforward strategy by
minding wall thickness with respect to the rest of the lines
was used in [4–6]. They divide the image lines in three
different layers regarding their thickness using mathematic
morphology. Lines on the medium and large layer correspond
to walls and those in the large layer are part of the building
boundary.

Finally, the authors of this paper presented two differ-
entiated methods for segmenting walls independently to the
graphical notation. In [15], a bag-of-patches approach is able
to learn the graphical modeling of walls from few anno-
tated images. Contrarily in [14], some general structural
knowledge for walls modeling is used to segment possible
instances. After that, the walls graphical modeling is learned
out of these positive instances to spot the rest of the unrecog-
nized walls.

A comparison for the latest wall segmentation strategies
is shown in Table 2. At a glance, all the methods behave
robustly well for the Black dataset. However, for the rest of
the datasets, which contain more complex notations, their
performance drops to 70 %. This is also validated by the
ANOVA test, which returns a p value p ≈ 0 < α and states
that the performance of the method is significantly different
regarding the dataset.
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Table 2 Mean J I score on the wall detection task and p value of 1-way
ANOVA

[4] [15] [14]

BlackSet 0.90 0.97 0.97

TexturedSet – 0.83 0.86

Textured2Set – 0.81 0.82

ParallelSet – 0.70 0.71

p value – – ≈0

6.2 Room detection task

6.2.1 Room detection evaluation protocol

We based the performance evaluation for room detection on
the protocol of Phillips and Chhabra [34], which was first
introduced in [31]. This protocol searches for the best align-
ment between the rooms segmented and the ones in the GT
and allows to report the exact and partial matches.

First of all we create a match_score table where rows
represent the rooms segmented by the system and columns
are the rooms in the GT. Each table position (i, j) speci-
fies the overlapping between the segmented room i and the
groundtruthed room j . It is calculated as:

match_score(i, j) = area(d[i]⋂ g[ j])
max(area(d[i]), area(g[ j])) (2)

In the match_score table, a one2one/exact match is given
when the overlapping score in (i, j) overcomes an accep-
tance threshold, and the rest of the row and column are below
a rejection threshold. This means that the room segment i
matches with groundtruth room j and does not match with
any other. Both thresholds are set as in [5,6,31] to perform
fair comparison: This is to 0.5 and 0.1, respectively. Then,
the partial matches are calculated as it is described in [34]
and they are divided into the following categories:

– g_one2many: A room in the groundtruth overlaps with
more than one detected room.

– g_many2one: More than one room in the groundtruth
overlaps with a detected room.

– d_one2many: A detected room overlaps with more than
one room in the groundtruth.

– d_many2one: More then one detected room overlaps
with a room in the groundtruth.

Finally, the detection rate (DR), the recognition accuracy
(RA), and the one2onerate are calculated as follows:

DR = one2one

N
+ g_one2many

N
+ g_many2one

N
, (3)

RA = one2one

M
+ d_one2many

M
+ d_many2one

M
, (4)

one2one rate = one2one

N
, (5)

where N and M are the total number of groundtruth and
detected rooms, respectively.

6.2.2 Base-line results on room detection

Rooms in [31] are detected following a shape partitioning
strategy. This top-down strategy progressively splits the geo-
metric space into convex polygons using the method pro-
posed in [27]. Room boundaries are potentially undetected
walls, doors, or windows. A postprocessing step [23] is
applied at the end to reduce oversegmentation issues.

In [4–6], room detection is divided into three dif-
ferent steps: information segmentation, structural analy-
sis, and semantic analysis. The first segmentation steps
involve the separation between text and graphic informa-
tion, and the segmentation of walls. In the structural analy-
sis, they approximate the wall polygons out of the bor-
der segments extracted by Suzuki and Be [42]. Then,
the gaps between walls from potential doors, windows,
and gates are closed by horizontal and vertical smear-
ing. Finally, in the semantic analysis, doors, windows,
and rooms are extracted from the images. Here, doors
and windows—which are represented by arcs—are detected
using the SURF detector [9]. Rooms are closed white con-
nected components within the dwelling boundary. They
are eventually labeled by applying an OCR on the textual
layer.

The authors in [14] divide the room detection into two
sequential steps: (i) a statistical wall, window, and door seg-
mentation and (ii) a structural wall and room recognition.
In (i) a bag-of-patches approach based on [15,16] learns the
graphical appearance and detects the potential areas where
walls, doors, and windows are likely to be. Then, in (ii) it
uses an own adaptation of the A* algorithm that searches
well-aligned individuals in the vectorized original image.
Finally, it recognizes the rooms of the building by finding
closed regions using [25].

We compare the existing room detection strategies in
Table 3. To do so, we have extended the results in [14]
to the Textured2 and Parallel datasets. According to this
table, the different strategies tend to perform better in terms
of RA for the Black and Textured datasets. This is caused
because in the Textured2 and Parallel datasets, the system
[14] falls into overdetection—the one2one rate is lower
and one2many count is much higher. This overdetection
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Table 3 Results on the room
detection task

BlackSet TexturedSet Textured2Set ParallelSet p value

[31] [5,6] [14] [14] [14] [14]

DR (%) 85 94.88 94.76 90.74 99.44 100 0.026

RA (%) 69 81.30 94.29 85.65 40.38 65.31 ≈0

one2onerate (%) – – 57.68 46.84 13.51 36.80 –

one2many count 2 1.48 1.34 1.4 10.44 4.75 –

many2one count 0.76 2.14 2.24 3.4 0.16 0 –

Fig. 12 Room detection for Textured2 and Parallel datasets. a The room detection for the image shown Fig. 10a. b The room detection for Fig. 11.
a Textured2 room detection. b Parallel room detection

is mainly produced because the system relies on a simple
heuristic based on relative orientation angles and distances
to decide which walls, doors, and windows are correctly
aligned. Moreover, in the Textured2 dataset, this overdetec-
tion is aggravated by the fact that the images always con-
tain two aligned flats of the building. The system enforces
considering the two flats as one single building and thus
tries to align possible rooms in the empty gap between
the two drawings. This issue is shown in Fig. 12a. Differ-
ently, in the Parallel dataset, the oversegmentation of walls
produces multiple possible room alignments, as it can be
seen in Fig. 12b. With all, the high scores on DR for all
the methods demonstrate that almost all of the rooms are
detected for all the datasets. This conclusion is also sup-
ported by the ANOVA test. The p value obtained for the
RA measure rejects the hypothesis that the method behav-
ior is similar on every dataset. Contrarily, the p value
for the DR measure is p = 0.026. Depending on the
significance level considered, this hypothesis cannot be
rejected.

7 Conclusion and future work

Recent results on structured learning methods have shown
the impact of structural information in the performance of a
wide range of pattern recognition tasks. Yet, these techniques
usually need conveniently annotated databases to learn the
interrelation between the objects of interest. In this paper, we
have presented the CVC-FP database. It is composed of real
floor plan documents that are fully annotated for architectural
symbols and make specific their structural interrelations. This
sort of information will let floor plan analysis systems to
learn directly from observable data how the elements are
structurally arranged and thus to trigger better interpretation.
We have additionally presented a quantitative benchmark on
the CVC-FP for two different tasks: wall segmentation and
room detection.

The groundtruthing tool used to generate this database, the
so-called SGT tool, is a general purpose groundtruthing tool.
It is a web-based service that permits to create own objects
classes and relations using a very intuitive user interface.
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This tool fosters the collaboration by allowing standalone
and multi-user handling, including user and version control.
Thus, the SGT tool is suitable for the creation, the upgrade,
and the maintenance of databases in domains where mak-
ing specific additional structural information can be of great
interest.

The CVC-FP database, the SGT tool, and the evaluation
scripts are freely released to the research community to ease
comparisons and boosting reproducible research.

Regarding future work, in a short-middle term we are plan-
ning to upgrade the SGT tool to allow the arrangement of
object classes and relations in a taxonomic way. The aim is
to organize and facilitate complex labeling procedures and to
foster the reutilization by defining formally the groundtruth
domain. This taxonomy will be defined by either creating
a class and relation hierarchy in the SGT tool, or upload-
ing a formal ontology definition. The SGT tool will be able
to export the GT in an ontological framework for further
semantic reasoning, e.g., to check the groundtruth consis-
tency according its definition. In a longer term, we plan to
include this ontological functionality to the tool. Hence, the
SGT tool will be able to help correct and make suggestions
to the user at real time.
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