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Abstract An important initial step of mathematical for-
mula recognition is to correctly identify the location of for-
mulae within documents. Previous work in this area has tradi-
tionally focused on image-based documents; however, given
the prevalence and popularity of the PDF format for dissem-
ination, alternatives to image-based approaches are increas-
ingly being explored. In this paper, we investigate the use
of both machine learning techniques and heuristic rules to
locate the boundaries of both isolated and embedded for-
mulae within documents, based upon data extracted directly
from PDF files. We propose four new features along with pre-
processing and post-processing techniques for isolated for-
mula identification. Furthermore, we compare, analyse and
extensively tune nine state-of-the-art learning algorithms for
a comprehensive evaluation of our proposed methods. The
evaluation is carried out over a ground-truth dataset, which
we have made publicly available, together with an application
adaptable fine-grained evaluation metric. Our experimental
results demonstrate that the overall accuracies of isolated and
embedded formula identification are increased by 11.52 and
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10.65 %, compared with our previously proposed formula
identification approach.

Keywords Mathematical formula identification ·
Machine learning · PDF documents · Performance evaluation

1 Introduction

Mathematical formulae are common components in many
scientific documents, and their automatic recognition, in
order to extract structural and semantic information, has been
researched from as early as 1968 [1]. Nevertheless, math-
ematical formula recognition remains a difficult research
problem as the lack of predefined structures of formulae,
together with the large number of non-standard symbols and
fonts, prevents their easy extraction, recognition and struc-
tural analysis.

Up to now, the majority of formula recognition methods
target images or rasterised documents. However, due to the
popularity of PDF for electronic publishing and sharing of
scientific documents, a new and important field of document
analysis is emerging, which is the direct analysis of PDF files.
Compared with images, PDF documents can provide richer
information such as Unicode, fonts and coordinates, which
can be mined to improve and complement the traditional
document analysis techniques adopted for images. In this
paper, we will focus on one of the most essential steps of
formula recognition in PDF documents: determining where
formulae are located by detecting their precise boundaries,
namely formula identification.

Mathematical formula identification from documents has
been researched for more than twenty years, but until now, the
performances of these methods have not been at a sufficient
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level to be adopted in realistic application scenarios. The
main obstacles can be summarised as follows:

1. Most existing methods target image documents, which
heavily rely on mathematical symbol recognition. Con-
sidering that math symbols in images are not yet satis-
factorily recognised, errors produced by OCR inevitably
propagate throughout formula identification, heavily red-
ucing its performance. For PDF documents, even though
precise character attributes are embedded within, few
mathematical formula identification methods using these
have been proposed.

2. Most of the existing formula identification methods are
purely rule-based. Although they work well for limited
sets of documents with simple layouts, a common short-
coming of the rule-based methods is parameter setting.
To our best knowledge, parameters in purely rule-based
formula identification methods are mostly set by experi-
ence. When dealing with various document types, doc-
ument layouts and formula formats, setting parameters
manually becomes very challenging.

3. To overcome the problems of rule-based methods, several
machine learning techniques are introduced. Although
these learning-based algorithms can solve some of the
existing problems, they are still at the preliminary study
stage. By now, many problems are still not addressed and
solved, such as selecting optimal learning models and
features and imbalanced data training.

4. Due to private datasets and closed-source code, it is
almost impossible to reimplement the algorithms pro-
posed in existing papers with only limited implementa-
tion details. This makes it difficult to evaluate and com-
pare the different formula identification algorithms.

To address the above problems, a learning-based approach
and a ground-truth dataset towards formula identification
from PDF documents were proposed in our previous papers
[2–4]. On the basis of this approach and dataset, this paper
makes an attempt to further improve the performance of our
formula identification technique via using both enhanced
machine learning techniques and heuristic rules: 1) Text
line/word classification, which serves as the learning-based
part of the method, is improved through extracting and min-
ing more content information and features directly from PDF
files and optimising the classifiers. 2) Through introducing
preprocessing and post-processing rules, reliable contents of
PDF files are obtained and oversegmented problems in mul-
tiline formula identification are overcome. Concretely, this
paper aims at contributing to previous work and improving
in the following areas: Firstly, a preprocessor for PDF docu-
ments is proposed to address the special problems in extract-
ing math symbols, especially the compound symbols, from
PDF files and obtain more reliable attributes of math sym-

bols; secondly, four new features and a post-processor are
proposed to improve the performance of isolated formula
identification; thirdly, optimised classifiers for formula iden-
tification are obtained through selecting the optimal classifier
from nine state-of-the-art learning algorithms and overcom-
ing the problem of imbalanced data training; lastly, in order
to facilitate fair comparison between different methods in
this area, the proposed method is tested and compared with
the previously published work [2,3] based upon a publicly
available ground-truth dataset [4].1

This paper is organised as follows: Sect. 2 discusses the
related work of mathematical formula identification. The
proposed system is introduced in Sect. 3. The experimental
results are described in Sect. 4. Finally, we draw conclusions
and discuss future work in Sect. 5.

2 Related work

We will discuss related work to the major steps of mathe-
matical formula identification from PDF, namely process-
ing PDF documents, formula identification and performance
evaluation.

2.1 Processing PDF documents

PDF is one of the most widely used document formats due
to its convenience in publishing and distributing documents
[5]. PDF documents are also called fixed-layout documents
or vector graphics documents, because they render document
contents via depicting the attributes (e.g., position, font, base-
line) of content (text, graphic and image) objects as vectors
embedded in the file. The main difference between formula
identification from PDF documents and from image docu-
ments lies in the character recognition [6]. In order to utilise
the character features to identify mathematical formulae in
image documents, great efforts have to be made to adopt
OCR techniques to recognise mathematical symbols. How-
ever, due to the large number of symbol classes and diffi-
culties caused by touching and oversegmented characters, it
is quite challenging to recognise mathematical symbols [6].
In contrast, attributes of characters are encoded as content
objects in PDF documents so that they are much easier to
recover directly via parsing the file. Furthermore, in PDF
documents, not only the identity of a character but also far
richer attributes such as fonts and baselines can be parsed
precisely [7], which can be of great benefit to mathematical
formula identification.

In most cases, math symbols can be parsed one-by-one
from the text objects of PDF. However, certain math sym-
bols (e.g., roots, fraction lines and parentheses) are usually

1 http://www.icst.pku.edu.cn/cpdp/data/marmot_data.htm.
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Mathematical formula identification and performance evaluation in PDF documents 241

encoded in special ways. For example, one symbol is possi-
bly represented by several different types of content objects
(e.g., text, graph, image). The root symbol “√ ” may be
composed by text object “

√
” (radical symbol) and graphic

object “ ” (horizontal line). In this paper, we refer to sym-
bols that cannot be directly parsed from text objects in PDF
as compound symbols. Due to various ways utilised by dif-
ferent programs to produce compound symbols, their com-
positions are usually unpredictable. Until now, extraction of
compound symbols from PDF remains a challenging prob-
lem and there exists no general methods to recognise them.
To solve this problem, Rahman et al. [8] rendered PDF to
an image and then recognised mathematical symbols using
OCR. However, this method costs extra effort and time to
execute the OCR process. Besides, this introduces potential
misrecognition of characters while losing the reliable charac-
ter information embedded in PDF documents. Alternatively,
Baker et al. [9] extracted attributes of characters (e.g., name,
font and position) from PDF and obtained bounding boxes of
symbols via compound component recognition from images.
Enhanced attributes of math symbol were obtained through
matching two versions of attributes about the same symbol.

2.2 Mathematical formula identification

According to the features used, the existing formula iden-
tification methods can be classified into two categories:
character-based and layout-based. Furthermore, according
to the techniques adopted, they can be classified as follows:
rule-based or machine learning-based.

The rule-based methods for mathematical formula identi-
fication detect mathematical formulae through constructing
heuristic rules on different types of features, and most of the
character-based methods are rule-based. Usually, they first
identify special math symbols (e.g., “=”, “+”, “<”), which
only appear in mathematical formulae rather than ordinary
text, then apply specific context propagation rules on these
symbols according to their operator domains [10–13]. Kacem
et al. [14] constructed a fuzzy logic model to identify math
symbols and then utilised features of math symbols (bound-
ing box, relationship between symbols, etc.) to merge or
expand their regions to form the embedded formula area. In
[15], all characters were first recognised by traditional OCR
engine and then the outliers were considered as the candidates
of mathematical symbols. Along this direction, Suzuki et al.
[16] added verification rules according to positions and sizes
of characters in order to develop a dedicated OCR system for
mathematics documents. To identify isolated formulae from
PDF, Baker et al. [17] established rules according to the pro-
portion of plain text words in a line to discriminate isolated
formulae from ordinary text lines.

Based on the assumption that formulae are usually type-
set with different layout features, such as isolated formu-

lae being larger and more sparse than plain text lines, many
layout-based methods to identify formulae have been pro-
posed [11,12,14,18]. Chowdhury et al. [19] proposed a
recognition-free method and built decision trees based on
layout features to distinguish formula lines from plain text
lines. Another recognition-free method [20] extracted math-
ematical expressions using image segmentation technique.
Although this approach only relied on projection features,
the segmentation thresholds in this approach were hard to
set, especially for unknown types of documents. Besides,
it did not work for embedded formula extraction. Garain
et al. [21,22] identified isolated formulae through compar-
ing features of a text line with features of the averages of
all text lines in a document. To extract embedded formulae,
they first adopted n-gram models to identify text lines, which
might contain embedded formulae and then constructed rules
based on common typographical conventions of mathemati-
cal expressions.

One common problem with rule-based methods is that
they inevitably introduce decision parameters of predefined
rules. However, it is difficult to set optimal values for these
parameters manually or empirically. In addition, these para-
meters are sensitive to different formula types, document lay-
outs, styles and fonts.

To solve the problems in rule-based methods, machine
learning-based methods are proposed. The main idea of sev-
eral isolated formula identification methods is to consider
each text line as an instance and build classifiers to decide
whether a text line is a formula or not. The main difference
between those learning-based methods is the choice of fea-
tures and learning algorithms. For example, Jin et al. [23]
exploited Parzen Windows technique to identify isolated for-
mulae. Drake et al. [24] adopted computational geometry fea-
tures of the neighbour graph of connected components, which
are the results of the Voronoi Graph Analysis. Based on the
assumption that complex page components (e.g., table, for-
mulae, graphs) are more sparse than plain text lines, Liu et al.
[25] exploited SVM (support vector machine) and CRF (con-
ditional random field) to identify sparse lines, then applied
rules to distinguish formulae from other complex page com-
ponents (e.g., tables and graphs) among the sparse lines.

Although the preliminary progress of adopting machine
learning techniques in formula identification has been made,
several problems still exist in current machine learning-
based methods: 1) Features utilised to build the classifica-
tion models are not discriminative and informative enough to
adapt to various types of formulae and documents. Although
simplistic features may work well in certain documents, it
may cause underfitting problems and fail to deal with large
and diverse documents. 2) Several learning algorithms are
attempted in this area and proven to outperform the rule-
based methods. However, the performances are still not good
enough to meet the need of real-world application, and effec-
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Table 1 Quantity performance
evaluation of mathematical
formula identification

Methods Isolated Embedded Datasets

Kacem et al. [14] p=93 % 300 formulae

Jin et al. [23] p=91.65 % / 93 pages

r=82 %

Garain [22] p=97 % p=95 % 150 pages (776 isolated and
892 embedded formulae)

r=97 % r=83 %

Chowdhury et al. [19] p=97 % p=68 % 197 pages

Drake and Baird [24] p=97 % / 132 pages

Chang et al. [20] p=97 % / 150 pages (237 isolated formulae)

tiveness of different learning algorithms applied in formula
identification has not been investigated. 3) Most of the exist-
ing machine learning-based approaches take text line as
basic unit and recognise formula text lines as isolated for-
mulae. However, in practice, one mathematical formula may
be composed of several formula text lines (e.g., multi-line
formula). How to merge the formula text lines into logical
formula as a whole has not been discussed. 4) Few learning-
based methods are proposed towards embedded formulae,
which are much more challenging to identify [3].

2.3 Performance evaluation

The reported performances of mathematical formula identi-
fication techniques are listed in Table 1.

Dataset: It is seen that all these methods were evaluated on
datasets with moderate size containing less than 200 docu-
ment pages. It is worth noting that most of these datasets
are private and unavailable to others. In [22], 35 document
pages from the public Infty dataset [26] are introduced to be
a part of their dataset. However, as the rest of the dataset
is unavailable publicly, fair performance comparison still
cannot be made upon this dataset. Moreover, the existing
public datasets [26,27] are composed of image documents
whose corresponding digitally born PDF documents are not
included. This makes comparison of existing methods tar-
geted at PDF documents difficult. Recently, a public dataset
and a platform [28] are proposed to facilitate result compar-
ison of mathematical notation understanding, which aims at
identifying math definitions from documents in text format
(e.g., xml).

Performance: Most reported work uses precision and recall
as evaluation metric to evaluate the performance of formula
identification. In [14,22], fine-grained result types, such as
partial detected, are proposed to evaluate the results of for-
mula identification. Due to the difference of sources and
compositions of the datasets, the performances reported by
different work vary significantly. The precision of isolated
formula identification can reach as high as 97 % or be as

low as 91.65 %. Only two embedded formula identification
methods report their performances which vary a lot.

3 Mathematical formula identification

3.1 Architecture

In this paper, a method using both machine learning tech-
niques and heuristic rules is proposed to identify mathe-
matical formulae from PDF documents. Figure 1 shows the
workflow of the proposed system which includes five phases.
It is worth noting that only the text line/word classification
(denoted in slashed background in Fig. 1), which serves as
the core module in isolated/embedded formula identification
is learning-based, the rest phases are rule-based.

1. In preprocessing phase, ways of representing compound
symbols are investigated. A preprocessor is proposed,
aimed at extracting precise attributes of mathematical
symbols, especially compound symbols from PDF doc-
uments produced by different software.

2. In isolated formula identification phase, text lines and
their features are first detected. Then, text lines are clas-
sified into isolated formula lines or non-isolated formula
lines. Next, the isolated formula lines are post-processed
into isolated formulae.

3. In embedded formula identification phase, non-isolated
formula lines are first segmented into words. Then, words
are classified as embedded formula words or ordinary text
words. Finally, the embedded formulae are finalised by
merging the adjacent embedded formula words.

4. Building classifiers (denoted in grey background in Fig. 1)
is executed before formula identification process begins.
In this step, efficiencies of different learning algorithms
are compared and parameters are refined to obtain the
optimised classifiers.

5. In performance evaluation, text line and word classifica-
tion using different learning algorithms is compared on
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Fig. 1 Workflow of the proposed mathematical formula identification system (modules in slashed background are learning-based. Modules in grey
background are executed offline)

the public ground-truth dataset. A fine-grained evaluation
metric is adopted to evaluate the overall performance of
formula identification.

3.2 Preprocessing

In our system, preprocessing is used to extract mathemati-
cal symbols from PDF documents. In other words, it aims
at converting the low-level content objects within PDF files
into corresponding mathematical symbols. First, low-level
content objects, namely text, graphic and image objects, are
obtained via a PDF parser. Next, most of the math symbols
are extracted with little effort from the low-level text objects
by checking their Unicode. In contrast, it is more difficult to
extract the extensible symbols, which in this paper are named
compound symbols.

The main obstacle of this step is the difference between
PDF documents produced by different tools or programs.
To learn how mathematical symbols are presented in vari-
ous versions of PDF documents, we investigate the differ-
ent compositions of compound symbols on the ground-truth
dataset [4] crawled from CiteSeerX. The dataset consists of
400 pages from 194 PDF documents produced by different
software. We find that the composition of compound symbols

varies a lot according to different PDF files. For instance, the
root symbol can be presented in three different ways. It is
observed that the compound symbol compositions in PDF
can be classified into four categories which are illustrated
in Table 2. Based on this observation, we construct rules to
recognise compound symbols according to each category of
composition rather than particular symbols. In this way, the
compound symbols can be found and recognised from a wide
range of documents, even when they are unknown.

Single graphic/image object: Most of the fraction lines, math
accents, vertical bars and some of the roots are presented by
a single graphic or image object in PDF. We recognise most
of these symbols except roots through finding horizontal and
vertical lines. First, lines constructed by graphic objects are
recognised via parsing the path operations embedded in PDF.
For lines presented by image objects, they are recognised via
verifying whether the shapes of image objects are horizontal
or vertical lines. Then, lines that do not connect to other
content objects are considered as the candidates of fractions,
math accents or vertical bars.

Multi-text objects: Many vertical brackets of a size larger
than the font size of ordinary text, arrows and inequalities
are presented by multiple text objects in PDF. To recognise
symbols composed of multiple text objects, we first find out
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Table 2 Compositions of compound symbols of different PDF documents

the text object sets in which objects connect to each other by
sharing an edge of the bounding box. Then, all the text object
inside each set are merged to obtain the bounding box of the
compound symbol. Last, the identity is recognised through
checking the Unicode of each text object.

Single text object and single graphic/image object: Most of
the root symbols in PDF are constructed by one text object
and one graphic/image line. For this type of compound sym-
bols, we first find all the connected text and graphic/image
object pairs which do not connect to other objects. Then,
objects in each pair are merged to be compound symbol.
Next, the identity of the compound symbol is obtained via
checking the Unicode of the text object in it. For example, if
the object pair contains a text object “

√
”, this compound

symbol should be a root symbol.

Multi-text objects and multi-graphic/image objects: Most of
the under (“

︸︷︷︸

”) or over (“︷︸︸︷”) braces and some roots

are presented by multiple text objects and graphic/image
objects. To recognise these compound symbols, we first find
all the connected text and graphic/image object sets which
contain more than two objects. The bounding box is obtained
through merging all the objects in each set. However, only a
part of the identities of this type of compound symbols can
be recognised through finding the predefined patterns. For
instance, the under- or overbraces are composed of three text
objects and two graphic or image objects. To identify them,
we start with finding object sets containing three text object
and two graphic/image objects, then verify their text objects
via checking Unicode, finally, verify whether two horizontal
lines and three text objects share the same baseline.

After extracting compound symbols using the aforemen-
tioned techniques, attributes of each mathematical symbol
are obtained, including its identity and bounding box. For
math symbols extracted directly from text objects, the base-
lines, font names, font styles and font sizes are also available.

3.3 Isolated formula identification

To model the isolated formula identification problem as a
classification problem, we first take text lines as basic units,

then classify the text lines into isolated formula lines or non-
isolated formula lines; finally, we post-process the adjacent
isolated formula lines into isolated formulae.

3.3.1 Text line detection

To cope with documents with multi-columns, column detec-
tion is applied before detecting text lines. This is because
some geometric layout features, discussed in Sect. 3.3.2,
of text lines will be calculated based upon columns. In this
paper, we adopt a column detection technique proposed in
[29] to detect columns.

After the columns are extracted, we cluster the symbols
into text lines if two symbols satisfy the following require-
ments: 1) They overlap in the vertical direction; 2) the text
objects belong to the same column.

3.3.2 Feature extraction

To determine whether a text line is an isolated formula
text line is a classical binary classification problem. Like
many pattern recognition problems, the key problem is to
extract discriminating features. In this paper, a 14-element
feature vector is defined for each text line, including the
geometric layout and character features listed in Table 3.
The first 13 elements describe the layout of text lines. The
last feature is character feature, which specifies the appear-
ances of mathematical symbols or predefined functions in
the text line. Since precise information of the text lines and
math symbols are already obtained by the preprocessor, the
feature vector is enhanced by using font information (e.g.
V-FontSize). Besides, some attributes used in the features,
such as identities and baselines of characters, are already
embedded in PDF documents, so they can be extracted with
a higher confidence compared with methods for rasterised
documents.

Geometric layout features: The geometric layout features are
defined based on the following observations: Under typo-
graphical conventions, isolated formulae are aligned cen-
trally. Therefore, AlignCenter, LeftSpace and RightSpace
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Table 3 Features of a text line

a These features are newly
introduced in this paper
compared with those proposed
in [2]
b This feature is redefined in this
paper compared with that
proposed in [2]

Name Definition

Geometric layout features

AlignCenter The relative distance of the line’s horizontal centre and the text block’s
horizontal centre

LeftSpace The left space of the text line (normalised by the text block’s width)

RightSpace The right space of the text line (normalised by the text block’s width)

AboveSpace The space between the current text line and adjacent text line above it
(normalised by the most commonly seen line space)

BelowSpace The space between the current text line and adjacent text line below it
(normalised by the most commonly seen line space)

Height A line’s height (normalised by the main font’s size of the page)

SparseRatio The ratio of the total area of all characters to the text line’s area

V-FontSize The variance of the font size of text objects in the text line

I-SerialNo Whether there is a formula serial number at the end of the text line

V-Heighta Variance of the heights of the characters in the text line (normalised by
the height of the text line)

V-Baselinea Variance of the baselines of the characters in the text line (normalised
by the height of the text line)

P-LongWorda Percentage of the long words in the text line. The word segmentation
method will be introduced in the Sect. 3.4.1. The word containing
more than two characters is defined as a long word

A-Delaunaya A Delaunay triangulation is constructed over the centres of all
characters inside a text line using the algorithm proposed in [30].
The average of the angles between horizontal line and edges in the
Delaunay triangulation, which do not overlap other character, is
calculated as A-Delaunay

Character feature

P-Mathbb The percentage of math symbols or named math functions of all the
characters in the text line. The named math functions (sin, cos, etc.)
are defined in the math function dictionary, and the math symbols
include binary relations, binary operations, Greek letters, delimiters,
functions, integral, fraction, square root

are defined to depict this feature. To discriminate the iso-
lated formulae from ordinary text line, isolated formulae
are usually formatted with larger space from its previ-
ous and following text line. Taking this into consideration,
AboveSpace/BelowSpace are defined to measure the space
between the current line and its previous/following text line.
Besides, isolated formulae are usually taller than ordinary
text lines, for they contain two-dimensional structures (e.g.,
superscript, subscript) and large-size operators (such as “

∑

”,
“
∫

”). Therefore, Height of each text line is also included.
Besides the first seven features that focus on the layout char-
acteristics of the text line as a whole, three features are defined
to depict the layout features of characters inside the text
lines. Usually, it is considered that sparse text lines are more
likely to be isolated formula lines [25]. Hence, SparseRatio
is defined to describe this feature. The font sizes of charac-
ters in a text line are almost the same, while the font sizes
of characters in an isolated formula vary a lot. V-FontSize is
defined to quantify the variance of font sizes of characters in
a text line. I-SerialNo indicates that whether a formula ser-
ial number (e.g., “(1)”) appears at the end of the text line. To

identify the formula serial number, a dictionary of commonly
used formula serial number formats is constructed.

It is worth noting that four new features are proposed in
this paper to describe the layout of characters inside the text
line compared with [2] (See the features in bold in Table 3). It
is observed that characters in ordinary text lines usually share
the same baseline and their heights are similar, whereas the
positions and heights of math symbols in formula are more
diverse. Therefore, V-Height and V-Baseline are introduced
to describe this feature. In addition, the ordinary text lines
are composed of ordinary text words, whereas the formula
lines are mainly composed of independent math symbols or
fragments. To describe this feature, P-LongWord is defined to
describe the appearance of long words in a text line. Further-
more, considering that angle is a useful feature to describe
the relative position of symbols, A-Delaunay is defined to
describe the average angles between characters in the text
line.

Character features: One character feature (P-Math) is rede-
fined to denote the percentage of math symbols in the text
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line. It is straightforward to consider that if a text line contains
more math symbols, then it is more likely to be an isolated
formula line. Besides, we also use I-Math, which denotes
whether a text line contains math symbols or math func-
tions, to filter the ordinary text lines which are impossible
to be isolated formulae or contain any embedded formulae.
This is because an isolated formula or a text line containing
embedded formula should contain as least one math symbol
or math function. Another consideration to utilise I-Math as
filtering rule rather than as an element of feature vector is
that, by filtering redundant text lines, the number of lines to
be processed in the following classification procedures can
be reduced significantly.

3.3.3 Classification

3.3.3.1 Different learning algorithms
After the features of text lines are extracted, text lines

are classified into isolated formula lines or not. At present,
many successful machine learning techniques have been
widely used in a variety of applications. However, the exist-
ing learning-based formula identification methods only use
some of them. Although they achieve better performance
than rule-based methods, the methods are still not good
enough to be adopted in real-world applications. Aiming to
improve the performance of mathematical formula identi-
fication, we attempt several representative machine learn-
ing techniques from the different categories [31]. Through
comparing their performances in identifying formulae, the
effectiveness of different learning algorithms is learned and
the optimal model is chosen. Concretely, nine learning algo-
rithms are adopted, including SVM, Logistic Regression,
Multilayer Perceptron (MLP), Decision tree (J48), Random
Forest, Bayesian networks (Bayes Net), PART, Bootstrap
aggregating (Bagging) and Adaboost. For each learning algo-
rithm, parameters are first selected, then a performance com-
parison is made in order to find the best learning algorithms
for mathematical formula identification.

3.3.3.2 Resampling techniques for imbalanced data
When applying learning algorithms in formula identi-

fication, we find that performances are seriously affected
by imbalanced data, where there are many more negative
instances, non-formula text lines, than positive instances or
formula text lines. In an imbalanced dataset, the negative
class and positive class are named the majority class and the
minority class, respectively. In this situation, the decision
boundary of the classifier is dominated by negative instances.
Most learning algorithms get into this trouble because they
assume that the goal of the algorithm is to maximise the
overall performance on the training set [32]. Therefore, the
performance over the majority class is better than over the
minority class. However, in many entity extraction problems,

the performance of the minority class is more important than
that of the majority class. Formula identification is a repre-
sentative case, which suffers from such an imbalanced data
problem. Unlike documents collected from the mathematics
field, there are far fewer formula text lines than ordinary text
lines in general documents, even scientific documents. There-
fore, the training dataset generated from a realistic document
dataset is naturally imbalanced.

Many approaches have been proposed to solve the imbal-
anced data problem [33]. At the data level, different resam-
pling approaches are proposed. The idea of resampling is
to balance the training set by adding the minority instances,
oversampling, or removing noisy majority instances, under-
sampling. According to whether class labels of instances are
utilised in the resampling process, resampling methods are
classified as supervised or unsupervised. At the algorithmic
level, the problem is solved through adjusting the weights for
each class, namely parameter tuning. In this paper, we adopt
the supervised oversampling technique SMOTE [34] and
propose an unsupervised undersampling method to resample
the training dataset, so as to obtain a more balanced train-
ing dataset. Details of SMOTE can be found in [34]. In this
paper, the unsupervised undersampling is briefly introduced
as follows:

Cluster-based sub-sampling: In our dataset, there are many
redundant samples or ordinary text lines, whose feature vec-
tors are extremely analogous. Based on this observation, a
cluster-based sub-sampling technique is proposed. The main
idea is to find and remove the redundant instances based on
clustering. Given a majority class instance set D, which needs
to be sub-sampled into D′, first, a clustering algorithm, K-
means, is adopted to cluster instances in D into |D′| clusters.
Second, for each cluster, the instance which is the nearest
to the centroid of the cluster is selected. The other instances
in the cluster are removed. In this way, a sub-sampled set
D′ is obtained. In our implementation, Euclidean distance
is utilised to calculate the distances of instances. This sub-
sampling method is referred to as cluster-based sub-sampling
hereafter.

3.3.4 Post-processing

After classifying text lines using the above classifiers, the
text lines are labelled as isolated formula lines or non-isolated
formula lines. However, even when isolated formula lines
are labelled correctly, some of them cannot be considered as
mathematical formulae directly. This is because one math-
ematical formula may be composed of several successive
formula text lines. In this paper, we call this type of for-
mulae as multi-line formulae. Two particular categories for
multi-line formulae are the following: 1) Operands of large
operators (e.g., “

∑

”) are detected as separated text lines in
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(a) (b)

Fig. 2 Comparison of formula identification results before and after post-processing. a Before post-processing. b After post-processing

text line detection step for they do not overlap vertically. 2)
Long formulae which are presented in continual text lines are
naturally composed of several formula text lines. Examples
of these cases are shown in Fig. 2a in which the first two
red boxes are examples of category 2) multi-line formulae,
and the last two boxes are examples of category 1) multi-line
formulae.

As aforementioned, in order to finalise the isolated for-
mula detection, we need to merge the formula lines belong-
ing to the same formula but separated in the text line detec-
tion step. In this paper, two rules are constructed to identify
the multi-line formulae. For the successive formulae lines,
they should be merged if they satisfy any of the following
requirements: 1) If a formula line contains one of the prede-
fined operators (e.g., “

∑

”, “
∫

”, “fraction”) while the spaces
with the previous/following formula line are smaller than a
threshold and the heights of the previous/following formula
line are smaller than that of an ordinary text line, the formula
line should be merged with its previous/following formula
line. 2) If the formula line begins with binary operators (e.g.,
“=”, “<”) and it has large indentation compared with ordi-
nary text line, it should be merged with the previous formula
line. Some examples after merging the multi-line formulae
are shown in Fig. 2b.

3.4 Embedded formula identification

After the upstream procedures, text lines that are classified
as non-isolated formula lines are utilised as the input of the
embedded formula identification. In this step, we first seg-
ment text lines into words, which are used as the basic units
of embedded formula identification. Then, features of each
word are extracted. Next, machine learning techniques are
adopted to classify the words into embedded formula frag-
ments or ordinary text words. Finally, the embedded formulae
are then extracted by merging the regions of the successive
embedded formula fragments.

It is worth noting that embedded mathematical formulae
concerned by our approach include not only two-dimension
mathematical expressions (e.g., superscript, subscript, frac-
tion), but also one-dimension mathematical expressions (e.g.,
variables, functions, explicit expressions).

3.4.1 Word segmentation

From a geometric view, ordinary text words are very dif-
ferent from embedded formula fragments. For instance, the
font sizes of the constituent symbols in an ordinary text word
always remain the same, whereas the font sizes of the sym-
bols in a formula fragment usually vary a lot. Therefore, we
select “word” as the basic unit and extract word-level features
when identifying embedded formulae.

To segment text lines into separated words, we employ a
simplified word segmentation algorithm [35] based on the
word gaps and special separators. Details of the implemen-
tation of this word segmentation algorithm can be found in
[3].

3.4.2 Feature extraction

On the word level, 12 features are extracted. As shown in
Table 4, these features can be classified into three categories:
geometric layout features, character features and context fea-
tures.

Geometric layout features: The geometric layout features of
a word are defined based on the following observations:

– The font size or baseline (in Y-coordinates) of the symbols
of a formula fragment varies a lot, such as “ai ” and “x2”.
On the other hand, the variances of font size and baseline
of the symbols of an ordinary text word are almost equal
to zero. To measure the variances of font size and baseline
of the symbols in a word, V-Fontsize and V-Baseline are
defined.

– The spaces between successive symbols of an ordinary text
word are regular, whereas the spaces between successive
symbols of a formula fragment change a lot, e.g., “ai +
b2”. V-Space is defined to measure the variance of spaces
between successive symbols of a word.

– The widths or heights of the symbols of an ordinary text
word stay relatively stable, but the symbols of a for-
mula fragment have different widths and heights in most
cases, e.g., “

∑

ai ” and “
∫ ∞

0
1
n ”. Therefore, V-Width and V-

Height are defined to describe the variances of the widths
and heights for the symbols of a word.

123



248 X. Lin et al

Table 4 Features of a word
Name Definition

Geometric layout features

V-Fontsize Variance of the font size of the symbols in a word

V-Baseline Variance of the Y-coordinates of the baseline of the symbols in a word

V-Space Variance of the space of the bounding box of the symbols in a word

V-Width Variance of the width of the bounding box of the symbols in a word

V-Height Variance of the height of the bounding box of the symbols in a word

Character features

D-Purity Degree of the symbols in a word that belong to the same type.
(Definition in detail is in Sect. 3.4.2)

P-Latin Percentage of the Latin characters of a word

I-Math Whether at least one of the specific mathematical entities appears in
the word. Specific mathematical entities include relation operators,
arithmetic operators, Greek letters and math functions.

T-Leftmost Type of the leftmost symbol of a word. (four symbol types are defined
in Sect. 3.4.2)

T-Rightmost Type of the rightmost symbol of a word. (The type of the rightmost
symbol is defined as the same as the leftmost symbol’s)

Context features

T-LeftAdjacent Type of the rightmost symbol of the previous word of the current
word. The definition of symbol type is the same as the definition in
T-Leftmost

T-RightAdjacent Type of the leftmost symbol of the following word of the current word.
The definition of symbol type is the same as the definition in
T-Leftmost

Character features: The existing embedded formula identifi-
cation methods [11–15] apply character features to construct
rules for each type of formula. Alternatively, to utilise these
features in a more general way, we exploit them as a part
of the feature vector to be trained automatically. Concretely,
five character features are defined based on the following
observations:

– Taking the document in English as an example, the sym-
bols in the ordinary text words are all Latin characters,
while the formula fragments are composed of not only
Latin characters but also math symbols. To evaluate the
degree of the symbols in a word belonging to the same
type, D-Purity is defined in Eq. (1):

D-Purity(word) = −PL · logPL
2 −PnL · logPnL

2 , (1)

in which PL represents the percentage of the Latin char-
acters of a word, and PnL denotes the percentage of the
non-Latin characters of a word.

– An intuitive idea is that the more Latin characters a word
contains, the more it is likely to be an ordinary text word.
This feature may be effective to discriminate ordinary text
words from formula fragments. Thus, P-Latin is computed
as one of the layout features of a word.

– If there exists any specific mathematical entity in a word,
namely math functions (sin, log, etc) or math symbols

including operators and Greek letters, the word usually is
a formula fragment. Hence, I-Math is defined to indicate
whether any specific mathematical entities appear in the
word. The specific mathematical entities are defined in a
math entity dictionary.

– The leftmost and rightmost symbols of the word may influ-
ence detecting the boundaries of the embedded formulae.
In particular, when the leftmost or rightmost symbol is
one of the operators “−”, “+”, “=”, etc., the operand
domains of these operators offer reliable information to
detect the boundaries. Operand domains indicate whether
the context content of the current word is likely to be
math fragments. For instance, if the rightmost symbol
of the current word is “=”, the right adjacent word is
very likely to be a formula fragment. According to the
types of operand domains, the symbols are classified into
four types, namely non-math symbols, math symbols with
no operand domain, unary arithmetic/relation operators
and binary arithmetic/relation operators. T-Leftmost and
T-Rightmost are defined to represent the types of the left-
most and rightmost symbols of the word.

Context features: Context depicts the relation and influence
between the adjacent words. Hence, the context features are
very important for boundary detection of the embedded for-
mulae. In rule-based methods, context features are exploited
to construct propagation rules according to types of mathe-
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matical symbols. To make use of the context of the words
to improve the word classification, two context features (T-
LeftAdjacent and T-RightAdjacent) are defined as two ele-
ments of the feature vector here.

3.4.3 Classification

The classification techniques applied to word classification
are similar to those utilised to detect isolated formulae as dis-
cussed in Sect. 3.3.3. It is well worth noting that the trouble
caused by imbalanced data is more severe in embedded for-
mulae identification compared with isolated formula iden-
tification. This is because there are far more ordinary text
words than embedded formula fragments even in scientific
and technology documents. Actually, in our dataset, the ratio
of number of ordinary text words to the number of formula
fragments is larger than 10.

3.4.4 Post-processing

When word classification is finished, each word has a class
label: ordinary text word or formula fragment. The regions
of the horizontally successive words classified as formula
fragments are merged. In this way, embedded formula regions
are finalised.

4 Experimental results

The dataset used in our experiments are introduced in Sect.
4.1. The experiments consist of two stages: 1) Experiments
of text line and word classification, which is shown in mod-
ules in grey background in Fig. 1, are discussed in Sect.
4.2. 2) After text lines/words are classified, post-processing
is carried out to merge the formula lines/words into iso-
lated/embedded formulae. The overall performance of iso-
lated/embedded formula identification is shown in Sect. 4.3.

4.1 Dataset

Experiments are carried out upon a ground-truth dataset,
which can be publicly available for academic research pur-
pose.2 This dataset is collected from 194 documents crawled
from CiteSeerX. From the 194 documents, 400 document
pages are selected to construct the dataset. This dataset con-
tains a wide range of document types and can be considered
as representative of documents in the real world. The statis-
tical analysis about the composition (e.g., publication year,
frequency of formulae) of this dataset is illustrated in [4].

In our experiments, 200 pages are selected randomly from
the 400 document pages to be the training set and the remain-

2 http://www.icst.pku.edu.cn/cpdp/data/marmot_data.htm.

Table 5 Proposition of positive instances in dataset

Training Testing

Isolated formula
text lines

16.31 % (=764/4685) 22.41 % (=1041/4645)

Embedded
formula words

5.52 % (=4310/78031) 6.53 % (=4699/71928)

ing 200 pages are used for testing. The training set consists
of 707 isolated formulae and 4,448 embedded formulae. The
testing set contains 868 isolated formulae and 3,459 embed-
ded formulae. Both the training and testing sets are imbal-
anced as shown in Table 5.

In the training process, the 10-fold cross-validation is car-
ried out on the training set. Concretely, the training set is
divided into 10 sets evenly and randomly. For the i-th round,
the i-th set is utilised as the testing set, and the remaining 9
sets are utilised as the training set. The average of the results
of the 10 rounds are referred to as the “training results”. After
that, the classifiers, which are used in downstream processes,
are built based on all the 200 pages in the training set. In the
testing process, these classifiers are evaluated on the testing
set and the corresponding results are referred to as “testing
results”.

4.2 Experiments of text line and word classification

In our previous papers [2,3], SVM with RBF (Radial Basis
Function) kernel and default parameters were adopted to clas-
sify text lines and words, based on two independent and pri-
vate datasets that are different from the public dataset used
in this paper. In order to compare the performance of the pro-
posed method with those proposed in [2] and [3], we reeval-
uate [2] and [3] on the dataset used in this paper. Their cor-
responding results are referred to as LibSVM-R-D [2] and
LibSVM-R-D [3] hereafter.

It is also worth noting that because the dataset utilised in
this paper is crawled randomly from CiteSeerX, the docu-
ments in this dataset are more diverse and imbalanced com-
pared with those in the datasets used in [2] or [3]. Therefore,
it can be seen later that the precision, recall and F1 rates of
the proposed method are lower than those reported in [2] or
[3].

4.2.1 Learning algorithms

In this section, performances of the nine different learning
algorithms are compared. In our implementation, SVM is
implemented by LibSVM [36] and Weka [37] is employed
to implement the other learning algorithms.

Parameters: To build the SVM classifiers, RBF kernel and
Polynomial kernel are utilised, respectively, denoted as
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Table 6 Comparison of text line classification using different learning algorithms (data in parentheses denote the increased F1 rate compared with
LibSVM-R-D [2])

Classifiers Training results Testing results

P (%) R (%) F1 (%) P (%) R (%) F1 (%)

LibSVM-R-D [2] 87.22 82.20 84.64 93.91 80.02 86.41

LibSVM-R 89.82 90.29 90.05 (5.41) 93.24 85.33 89.11 (2.70)

LibSVM-P 87.24 88.85 88.04 (3.40) 89.28 82.48 85.74

Logistic regression 83.72 80.97 82.32 90.77 86.19 88.42 (2.01)

MLP 88.26 85.83 87.03 (2.39) 91.25 85.43 88.24 (1.83)

J48 89.02 88.32 88.67 (4.03) 91.07 80.57 85.50

RandomForest 92.63 90.68 91.64 (7.00) 94.19 83.43 88.48 (2.07)

BayesNet 82.26 95.54 88.40 (3.76) 91.33 93.33 92.32 (5.91)

PART 86.50 88.32 87.40 (2.76) 93.36 81.71 87.15 (0.74)

Bagging-RF 91.95 92.91 92.43 (7.79) 94.52 88.76 91.55 (5.14)

AdaBoost-RF 94.16 90.94 92.52 (7.88) 93.10 84.76 88.73 (2.32)

Bold value indicates the highest P, R or F1 rates

LibSVM-R and LibSVM-P. Parameters (C, gamma) and (C,
gamma, r, degree) are related to LibSVM-R and LibSVM-P,
respectively. Cross-validation and grid search is adopted to
find the optimal parameters for these kernel functions [36].
Besides, the base classifiers of Bagging and AdaBoost are set
as Random Forest, denoted as Bagging-RF and AdaBoost-
RF.

Normalisation: Before applying learning algorithms, each
element in the feature vector is scaled to the range of [-10,
10] to avoid features in greater numeric ranges to dominate
those in smaller numeric ranges. Besides, to preserve the
precision of the feature values, feature vector are scaled to
range [-10, 10], rather than [−1, 1].

Evaluation metric: To evaluate the performance of learning
algorithms, P, R, F1 are utilised: 1) Precision (P) is defined
as the proportion of the true positives against all the posi-
tive results; 2) Recall (R) refers to the proportion of the true
positives against all the true results; 3) F1 is the harmonic
mean of precision and recall. The true results mentioned here
refer to the true isolated formula text lines or embedded for-
mula words. The positive results refer to the text lines or
words, which are classified as formula text lines or formula
words.

Table 6 shows the training and testing results of text line
classification using different learning algorithms. In training
process, AdaBoost-RF obtains the highest precision and F1
rate. Nine learning algorithms outperform the previously pro-
posed approach LibSVM-R-D [2]. Among them, Adaboost-
RF obtains the highest increase (7.88 %) in F1 rate. In test-
ing process, Bagging-RF achieves the highest precision and
Bayes Net obtains the highest recall and F1 rate. Eight learn-
ing algorithms outperform LibSVM-R-D [2]. Among them,
Bayes Net obtains the highest increase (5.91 %) in F1 rate.

Table 7 describes the training and testing results of word
classification. In the training process, RandomForest obtains
the highest precision and Bagging-RF achieves the highest
recall and F1 rate. Six learning algorithms outperforms the
previously proposed LibSVM-R-D [3] in F1 rate. The largest
growth in F1 rate is 7.48 %, which is obtained by Bagging-
RF. In the testing process, the highest precision is obtained
by AdaBoost-RF. The precisions of five learning algorithms
are higher than LibSVM-R-D [3]. Only the recall of MLP is
higher than LibSVM-R-D [3]. Bagging-RF has achieved the
highest overall performance F1 and outperforms LibSVM-
R-D [3] by 0.11 %.

4.2.2 Imbalanced data

It is observed in Tables 6 and 7, the recall rates are much
lower than precisions in testing process due to the problem
of imbalanced training data. In this section, oversampling and
undersampling techniques are adopted to solve this problem.
Two phases of experiments are carried out, respectively:

Firstly, parameters for SMOTE and cluster-based sub-
sampling are selected based on the training dataset: 1) In
SMOTE, p denotes the percentage of minority class instances
generated. To find the optimal value for p, values increased
from 50 to 500 with an interval of 50 are tried on the train-
ing set using different learning algorithms. We observe that
there is no universal parameter for all learning algorithms.
Therefore, optimal parameters are selected for each learn-
ing algorithm, respectively, based on the observation on the
F1 rate of classification after oversampling by SMOTE. 2)
In cluster-based sub-sampling, M denotes the ratio of the
majority class instances and the minority class instances. In
order to find the optimal value of M , values increased from
1 to 10 with gap of 0.5 are tried. After observing the F1
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Table 7 Comparison of word classification using different learning algorithms (data in parentheses denote the increased F1 rate compared with
LibSVM-R-D [3])

Classifiers Training results Testing results

P (%) R (%) F1 (%) P (%) R (%) F1 (%)

LibSVM-R-D [3] 86.88 83.16 84.98 86.90 79.59 83.08

LibSVM-R 88.30 81.97 85.02 (0.04) 87.65 78.66 82.91

LibSVM-P 91.32 63.43 74.86 86.96 73.23 79.51

Logistic Regression 86.06 67.59 75.71 86.07 68.48 76.27

MLP 86.35 81.93 84.08 81.41 82.29 81.85

J48 89.77 88.33 89.04 (4.06) 85.48 78.57 81.88

RandomForest 93.11 90.97 92.03 (7.05) 88.63 76.68 82.22

Bayes Net 83.38 83.46 83.42 78.54 79.42 78.98

PART 88.82 87.54 88.17 (3.19) 84.06 76.23 79.96

Bagging-RF 92.76 92.16 92.46 (7.48) 88.31 78.63 83.19 (0.11)

AdaBoost-RF 93.00 90.70 91.84 (6.86) 88.69 76.57 82.18

Bold value indicates the highest P, R or F1 rates

Table 8 Testing results of text
line classifiers trained on the
resampled datasets (data in
parentheses denote the increased
F1 rate compared with
LibSVM-R-D [2])

Bold value indicates the highest
P, R or F1 rates

Optimised classifiers Techniques P (%) R (%) F1 (%)

LibSVM-R-D [2] / 93.91 80.02 86.41

LibSVM-R SMOTE (p=250) 92.16 89.52 90.82 (4.41)

LibSVM-P SMOTE (p=250) 90.83 87.71 89.24 (2.83)

Logistic Regression Sub-sample (M=4) 90.03 89.43 89.73 (3.32)

MLP Sub-sample (M=4) 91.51 90.29 90.89 (4.48)

J48 SMOTE (p=100) 90.78 86.29 88.48 (2.07)

RandomForest SMOTE (p=250) 93.05 90.48 91.74 (5.33)

Bayes Net Sub-sample (M=4) 90.43 94.48 92.41 (6.00)

PART SMOTE (p=100) 88.28 90.38 89.32 (2.91)

Bagging-RF SMOTE (p=250) 93.31 92.95 93.13 (6.72)

AdaBoost-RF SMOTE (p=250) 92.98 90.86 91.91 (5.50)

rate through adopting cluster-based sub-sampling with dif-
ferent M , optimal values of M are selected for each learning
algorithm.

Secondly, the data extracted from all the document pages
in training dataset are resampled using the selected resam-
pling models and parameters. Then, the classifiers are trained
on these resampled datasets and evaluated on the testing
dataset. Table 8 shows the testing results of text line clas-
sifiers trained on the resampled dataset. It is seen that the
recalls of all learning algorithms are increased after adopt-
ing resampling techniques. F1 rates of all the learning algo-
rithms are higher than those of [2]. Among them, Bayes Net
achieves the highest recall rate and Bagging-RF obtains the
highest F1 rate which is higher than that of [2] by 6.72 %.
Table 9 describes the testing results of word classification
after adopting the resampling techniques. Four learning algo-
rithms achieve higher F1 rate compared with LibSVM-R-D
[3]. The highest F1 rate is obtained by Bagging-RF after
oversampling using SMOTE with p = 100.

To summarise, after using additional features and adopting
resampling techniques, the performances of text line/word
classification are improved compared with our previously
proposed approaches [2,3]. The testing F1 rate of text line and
word classification is increased by 6.72 and 1.02 %, which
are both achieved by Bagging-RF using data resampled by
SMOTE.

4.2.3 Time efficiency

The processes of training and testing classifiers are imple-
mented in Java and run on a 2.5GHz PC with 2GB RAM.
LibSVM-P takes the longest time, 114 seconds to train a
text line classifier. The rest algorithms take less than 12 sec-
onds to train text line classifiers. Similarly, LibSVM-P takes
the longest time, 5,122 seconds, to train a word classifier.
The rest of the techniques take less than 763 seconds to train
word classifiers. In the testing process, the average time taken
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Table 9 Testing results of word
classifiers trained on the
resampled datasets (data in
parentheses denote the increased
F1 rate compared with
LibSVM-R-D [3])

Bold value indicates the highest
P, R or F1 rates

Optimised classifiers Techniques P (%) R (%) F1 (%)

LibSVM-R-D [3] / 86.90 79.59 83.08

LibSVM-R SMOTE (p=100) 85.34 82.00 83.63 (0.55)

LibSVM-P SMOTE (p=100) 80.62 63.29 70.91

Logistic Regression Sub-sample (M=4.5) 77.28 78.23 77.75

MLP Sub-sample (M=10) 85.55 79.63 82.49

J48 Sub-sample (M=5.5) 84.42 80.49 82.41

RandomForest SMOTE (p=100) 86.89 79.80 83.19 (0.11)

Bayes Net SMOTE (p=50) 81.98 78.21 80.05

PART SMOTE (p=400) 80.74 81.72 81.23

Bagging-RF SMOTE (p=100) 86.30 82.02 84.10 (1.02)

AdaBoost-RF SMOTE (p=50) 88.19 79.93 83.86 (0.78)

to predict whether a text line is formula text line or not is
less than one second. For word predicting, most of the algo-
rithms take less than 10 seconds to predict a word except
LibSVM-R and LibSVM-P model which take 22 and 40 sec-
onds, respectively.

4.3 Experiments of formula identification

After text lines and words are classified, post-processing is
carried out to merge the formula text lines/words into iso-
lated/embedded formulae. The outcomes of post-processing
are evaluated in this section. The performances of differ-
ent learning algorithms discussed in former section are
compared at this stage too. Since LibSVM-P and Logistic
Regression are obviously inefficient in classifying words,
they are not utilised and compared in this stage. Besides,
comparison between the proposed method and a rule-based
method [2] as well as the SVM-based method [2,3] is also
made.

Evaluation metric: To get an in-depth insight into the over-
all performance of the system, an evaluation metric pro-
posed in our previous paper [4] which distinguishes differ-
ent error types and quantifies the severity of different errors
is adopted. Eight result types are defined in this evaluation
metric, including Correct, Missed, False, Partial, Expanded,
Partial&Expanded, Merged and Split. For each result type,
a result type score is calculated according to the contribution
of this result type to the system. In other words, the severity
of each error type is quantified. Moreover, an overall perfor-
mance Score is computed based on the result type score of
different result types. The Score is obtained by the weighted
sum of each result type score. In this paper, weights of dif-
ferent result types are set as 1, meaning that each result type
is taken equally. The range of Score is [−1, 1] and the larger
value of Score indicates the better formula identification per-
formance. Further details about the evaluation metric can be
found in [4].

Fig. 3 Comparison of isolated formula identification using different
learning algorithms

Performance analysis: Fig. 3 shows the distribution of eight
result types of isolated formula identification. The proposed
approach using Adaboost-RF identifies 65.09 % of all the
results correctly, which outperforms the rule-based method
and LibSVM-R-D [2] by 11.52 and 9.99 %. The partially
identified cases are the main errors. This is mainly caused
by some formula text lines, which are mis-split in text line
detection. Some multi-line formulae which are not identified
properly in the post-processing process is another reason.
Fig. 4 describes the distribution of result types of embedded
formula identification. 42.05 % of all the results are iden-
tified correctly using Adaboost-RF, which outperforms the
rule-based and LibSVM-R-D by 10.65 and 2.76 %. The false
identified cases are the main errors, this is partially because
errors are produced in previous word classification. Many
embedded formulae are missed due to the low recall rate of
word classification.
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Fig. 4 Comparison of embedded formula identification using different
learning algorithms

Fig. 5 Overall scores of mathematical formula identification system
using different learning algorithms

The overall performance Score of the system using differ-
ent classifiers are illustrated in Fig. 5. From the perspective
of overall performance, all the learning-based methods out-
perform the rule-based method [2]. J48 and Adaboost-RF
obtains higher overall Score than LibSVM-R-D proposed in
[2,3].

It is observed that the rate of correctly identified formulae
is much less than the precision rate of text line/word classi-
fication, especially for the embedded formula identification.
The reasons causing the decrease in performance can be con-
cluded as follows: 1) The rules adopted in post-processing
after text line and word classification are not robust enough
to cover the cases in the dataset. 2) Some mis-identified
results are caused by the text line detection or word segmen-
tation processes. For instance, two isolated formulae might
be arranged in the same text line with different equation
index. However, according to the text line detection strate-
gies utilised in our paper, these two formulae are detected as
a single text line because they overlap vertically. Hence, they
will never be separated in the subsequent processes. Similar

problems also happen in word segmentation, some ordinary
words and adjacent embedded formula fragments are merged
into a single word. In these cases, whether this word is clas-
sified as formula word or not, the correct identified results
will never be given; therefore, expanded or missed identified
results will occur.

Time efficiency: The formula identification system is imple-
mented in C++ and run on a 2.5GHz PC with 2GB RAM.
It takes less than four minutes to identify both isolated and
embedded mathematical formulae from 200 document pages.

5 Conclusions and future work

In this paper, the main obstacles in the area of formula identi-
fication are analysed, together with a comprehensive review
of the existing formula identification approaches. In order
to overcome the existing obstacles, this paper targets for-
mula identification from PDF documents and attempts to
contribute in the following aspects:

Preprocessing & Post-processing: The problems associated
with PDF documents for mathematical formula identification
are addressed based on a deep investigation on a representa-
tive dataset collected from real-world documents, and a pre-
processing technique is proposed to extract compound math-
ematical symbols from PDF documents produced by vari-
ous software and tools. After preprocessing, rich mathemat-
ical symbol attributes embedded in PDF documents can be
extracted precisely, and therefore can be served as a reliable
data source to construct informative and descriptive features
of isolated and embedded formulae. Moreover, the problem
of the mis-split multiline formulae is addressed, and a post-
processing technique is proposed to merge the multiline for-
mulae.

Classification: Four new features for text line classification
are proposed in this paper in order to improve the perfor-
mance of isolated formula identification. Moreover, nine
machine learning techniques are applied to identify both iso-
lated and embedded formulae, and the efficiencies of dif-
ferent machine learning algorithms are fully investigated
and compared. Furthermore, the imbalanced data problem
of training text line and word classifiers are addressed and
overcome through adopting oversampling and sub-sampling
strategies.

Evaluation: The proposed method is evaluated on a public
ground-truth dataset [4], so as to facilitate the fair compari-
son with other algorithms. Moreover, experiments show that
marked improvements in formula identification are achieved
in this paper. Concretely, the proposed isolated formula iden-
tification method outperforms the previously proposed rule-
based method and SVM-based method [2] by 11.52 and
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9.99 % in accuracy. The proposed embedded formula identi-
fication method outperforms the previously proposed rule-
based method and SVM-based method [3] by 10.65 and
2.76 % in accuracy.

In the future, we would like to investigate an auto-
matic parameter and model selection scheme according to
application-related overall performance, as the preprocessor
and the post-processor of our system are still rule-based.
Furthermore, although text lines and words are commonly
utilised as the basic unit for isolated and embedded for-
mula identification, there remain oversegmented or under-
segmented problems in formula identification. Experimental
results show that more than 20 % of errors in isolated formula
identification are caused by partially identified results. There-
fore, how to identify text lines and words reliably for formula
identification and how to construct the post-processing strat-
egy are also a meaningful directions for further research.
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