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Abstract The convenience of search, both on the personal
computer hard disk as well as on the web, is still lim-
ited mainly to machine printed text documents and images
because of the poor accuracy of handwriting recognizers. The
focus of research in this paper is the segmentation of hand-
written text and machine printed text from annotated docu-
ments sometimes referred to as the task of “ink separation”
to advance the state-of-art in realizing search of hand-anno-
tated documents. We propose a method which contains two
main steps—patch level separation and pixel level separa-
tion. In the patch level separation step, the entire document
is modeled as a Markov Random Field (MRF). Three dif-
ferent classes (machine printed text, handwritten text and
overlapped text) are initially identified using G-means based
classification followed by a MRF based relabeling procedure.
A MRF based classification approach is then used to sepa-
rate overlapped text into machine printed text and handwrit-
ten text using pixel level features forming the second step of
the method. Experimental results on a set of machine-printed
documents which have been annotated by multiple writers in
an office/collaborative environment show that our method is
robust and provides good text separation performance.
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1 Introduction

After decades of research and development, automatic docu-
ment processing systems have attained considerable success
in that large volumes of paper documents can be digitized and
processed to recognize textual content and facilitate infor-
mation retrieval. Unfortunately, the convenience of retrieval
and search is limited to clean machine-printed text docu-
ment images and recognition of free-form handwriting still
remains a considerable challenge. In many scenarios, a mix-
ture of machine printed text and handwriting occur within
a single document, such as hand-filled medical forms, tax
forms, annotated correspondence as shown in Fig. 1. Some-
times, it may be of interest to know who signed or edited a
document or what was written on a document and retrieve
memos or a specific keyword by a particular author. The pre-
processing of mixed documents to isolate handwritten text
from machine printed text is a necessary step in the design
of such recognition and retrieval systems.

Although research into the location of text blocks and dis-
crimination of machine printed and handwritten text can be
traced back to the early work on extraction and recognition
of handwritten ZIP codes from mail pieces [36], much of it
was focused on identification of clearly separated and clean
text. A significant amount of prior research for handwrit-
ing identification is based on document layout analysis and
zone classification wherein a document is segmented into
words, lines, and zones in a bottom-up approach or in a top–
down manner [15,27] and contextual information based on
the location of text zones points to the location of handwritten
data.
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Fig. 1 Example of an annotated machine printed document

Another thrust has been on using textual elements alone
without considering context or layout. Eduardo et al. [9] sug-
gested two types of features (content related features and
shape related features) to characterize handwritten text on
bank check images. This approach uses a fixed size frame to
extract features, but locating and labeling overlapped text
is not part of the model in their work. Jang et al. [20]
proposed an approach using geometric features to classify
machine printed and handwritten addresses on mail-pieces.
Guo and Ma [17] separated handwritten material from doc-
uments using a Hidden Markov Model (HMM) by using the
vertical projection of each word on the horizontal axis and
considering a projected word as a sequential signal. This
model is reliable for recognizing machine printed isolated
characters but it is difficult to extend the work to recognize
annotations and handwritten text because of the large varia-
tions of personal fonts and styles. Farooq et al. [12] used an
EM based Bayesian neural network model in order to iden-
tify Arabic handwritten text in mixed documents. They used
multiple classifiers which were weighted by their posterior
probabilities and introduced a new neurons layer which used
an error function to penalize solutions that led to mis-clas-
sification. Fan et al. [11] isolated the machine printed text
from handwritten text based on their differences between the
geometric arrangement. In order to extract names in mixed
documents, Likforman-Sulem et al. [26] identified handwrit-
ten and printed pseudo words and classified them with a
neural network using both image-based and textual-based
features.

One potential problem of previous research on text sep-
aration is that although the basic unit (zone, line or word)
of the system works well to classify those patches whose
sizes are typically larger than words, it cannot separate over-
lapped patches which contain both handwritten and machine
printed text because they are considered as a single unit in
the system. Zhao and Davis [38] used color information of
each pixel to segment picture foreground from background
which can also be used for document segmentation. How-
ever, color information is rarely available in the document
analysis field where the input is usually a scanned binary
document image. Some work in computer vision also pro-
vides us with interesting clues to address the problem of

overlapped text patches. Eran and Shimon [10] presented a
top–down/bottom–up segmentation method using small frag-
ments that contain common object parts. Corso [8] suggested
a multilevel aggregation procedure which groups each pixel
to a set of aggregate regions in a multilevel coarsening of
the image. Alpert et al. [2] used a Bayes rule to determine
whether or not to merge two neighbor regions and segment
images using these regions. All these approaches show that
we can use a unit which is smaller than words as the basic
element to separate overlapped text.

In recent years, inspired by the success of Markov Random
Field (MRF) in the area of image processing and restora-
tion [13,14], considerable research has been made to extend
MRF to document restoration and preprocessing. Cao and
Govindaraju [6,7] proposed a method using small fixed size
patches to represent handwriting and restore broken hand-
written text based on a MRF framework. Similarly, Banerjee
[3] used a flexible MRF-based optimization framework to
remove noise and restore machine-printed text. These meth-
ods can be looked at as an extension of Freeman’s algorithm
[13]. Zheng et al. [39] proposed a two step approach to iden-
tify three different types of text in mixed documents. They
initially separated text using a Fisher classifier followed by
a Gibbs network based relabeling which was further opti-
mized using a Highest Confidence First algorithm. A similar
approach but using Conditional Random Field has been pro-
posed by Shetty et al. [35].

2 System structure

In this paper, we propose a two-step composite method to sep-
arate handwritten text, machine printed text and overlapped
text from annotated documents.

As shown in Fig. 2, the first step (step I) of the proposed
method takes the entire document as its input and separates
the text into three classes: machine printed text, handwritten
text and overlapped text on patch level. This step has three
sub-procedures. The first sub-procedure is a preprocessing
procedure to extract patches of the document and extract fea-
tures for each patch which is covered in Sect. 4.1. Section 4.2
describes the second sub-procedure of step I which is a G-
means based initial classification procedure. The last sub-
procedure of patch level text separation is to relabel the result
of initial classification using a MRF based model. Section 4.3
describes the details of the relabeling. Section 4.4 presents
the experimental results of MRF based patch level text sep-
aration.

The second step (step II) takes the overlapped text patch
as its input which is then further separated into machine
printed text and handwritten text on pixel level. The first
sub-procedure in step II is to extract shape-context based fea-
tures for each pixel. The next sub-procedure is an aggregation
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Fig. 2 Overall structure of proposed method

coarsening algorithm which extracts the basic element for
the overlapped text separation. Sections 5.1 and 5.2 describe
these two sub-procedures. The last sub-procedure is the sep-
aration of machine printed text and handwritten text using a
MRF model and is described in Sect. 5.3. Section 5.4 shows
the experimental setup and results of overlapped text separa-
tion.

Prior to presenting the details of each step of the proposed
method, we briefly provide a background of MRF in Sect. 3
and our conclusions are presented in Sect. 6

3 Background—Markov Random Field

The Markov Random Field (MRF) is a graphical model in
which a set of random variables have a Markov property
described by an undirected graph and “provides a convenient
and consistent way of modeling context-dependent entities
such as image pixels and correlated features” [25]. MRFs are
widely used in the field of image processing and document
analysis, including image binarization [21,22], document
restoration and image super-resolution [18,33], image and
document segmentation [5], noise removal and filtering [3],
etc. These applications can be categorized as the low-level
processing. The high-level processing in image processing
and vision field includes object detection and recognition. Li
proposed a general framework of using MRFs for a computer
vision problem by converting the high-level vision problem
to a low-level labeling problem [24]. He used this idea to
match objects in [23]. To detect objects in the image, Sheikh
designed a two-step algorithm which used the probability
density to estimate the object, and refined the final result by
using the MAP-MRF decision framework [34].

From the view of mathematics, the MRF can be consid-
ered as a labeling procedure which is a proper model for the
purpose of the document text separation (labeling).

We can use MRF to model the entire document in step I or
overlapped text in step II and to separate patches (defined in
Sect. 4.1) in step I or aggregations (defined in Sect. 5.2) in step
II. We assume that the the foreground of a document/over-
lapped text image I is represented by a graph G = (V, E),
where V = {ν : 1 ≤ ν ≤ N } is the set of vertices which cor-
respond to patches or aggregations in the image. E is the set
of edges which connect vertices based on a neighbor system.
The neighbor system can be based on four-neighbors lattice
connectivity or any other metric defined by the user.

Given the graph G = (V, E), a random field X =
x1, . . . , xN which is indexed by V can be formed where each
vertex takes a random variable xν from a set of possible con-
figurations � as its underlying label. In this paper, the con-
figurations are taken from a set of cluster centers which are
described in the following sections in details. According to
these configurations (cluster centers), we can easily map a
hidden random variable xν to the corresponding index as its
label. Let Y = y1, . . . , yN be the observations which are the
corresponding features for each vertex. An optimal configu-
ration of the random field X is computed by maximizing the
posterior:

X̂ = arg max
X

P(X | Y) = arg max
X

N∏

ν=1

P(xν | yν,XV−ν)

(1)

where yν and xν are the observed feature and hidden configu-
ration respectively for a given vertex ν, and V −ν is the set of
all vertices in graph G except vertex ν. This equation shows
that the configuration of site ν is dependent on its observation
and all other vertices in the graph.

By taking the Bayes rule and the Markov property, Eq. 1
can be rewritten as:

X̂ = arg max
X

N∏

ν=1

P(yν | xν,XV−ν)P(xν | XV−ν)

P(yν | XV−ν)
(2)

Since the denominator P(yν | XV−ν) is just a normaliz-
ing constant and remains unchanged, we can disregard it and
have the following equation:

X̂ = arg max
X

N∏

ν=1

P(yν | xν,XV−ν)P(xν | XV−ν)

= arg max
X

N∏

ν=1

P(yν | xν)P(xν | XN (ν)) (3)

where prior P(xν | XN (ν)) means the configuration of site ν

is conditioned by its immediate neighbors N (ν). Likelihood
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Fig. 3 Message update and belief propagation in MRF. Each grey node
ν which is a configuration for a text patch/aggregation connects to its
four nearest neighbors N (ν). It has associated a configuration, xν , for a
text patch/aggregation, and an observation, yν , which is a feature vector
corresponding to its hidden lable xν [29]

P(yν | xν) describes the relation of a configuration and its
corresponding observation for a given site ν. Equation 3
shows that the configuration of site ν is dependent on its
observation and immediate neighbors only.

Inference of the MRF model can be achieved using belief
propagation (BP) method. We use the topology as shown in
Fig. 3 to illustrate the belief propagation and message update
procedure for our MRF model. The messages in a network
propagate in two opposite directions [13,28,37] which lead
to two update rules for vertex ν.

1. The procedure for calculating maximum a posteriori
probability (MAP) of belief can be expressed as:

x ′
ν =arg max

xν

P(yν | xν)
∏

ν′∈N (ν)

mν,ν′(xν), 1≤ν ≤ N

(4)

where mν,ν′(xν) is the incoming message to vertex ν

from its neighbor ν′ and ν′ runs over all neighbors of
vertex ν.

2. The method to update the message from vertex ν′ to ver-
tex ν is given by:

mν,ν′(x ′
ν) =

max
x ′
ν′

P(x ′
ν | x ′

ν′)P(yν′ | x ′
ν′)

∏

ν′′∈N (ν′)−ν

mν′,ν′′(x ′
ν′)

(5)

where ν′′ runs over all neighbors of vertex ν′ except ver-
tex ν.

The prior P(xν | xν′) and likelihood P(yν | xν) in
Eqs. 4 and 5 are approximated as a similarity function and
dependency function respectively in our MRF model and are
described in detail in Sect. 4.3.2 for step I and Sect. 5.3.2 for
step II.

Fig. 4 The procedure to extract patches from a binarized document

4 Patch level text separation (step I)

The first step of our proposed method consists of three com-
ponents: (i) preprocessing which segments entire document
into patches and extracts features for each patch, (ii) G-means
based initial classification and (iii) MRF based relabeling.

4.1 Preprocessing

Our pre-processing consists of two steps: patch extraction
and feature extraction.

4.1.1 Patch extraction

Prior to classification, each binarized document is segmented
into patches which are small snippets of the image as
described in [29]. The patches are the basic units in our
MRF based classification system for patch level text sepa-
ration which models each document as a random field. The
extraction of patches is done by using a m × n (5 × 5 in
our experiments) sized window based morphology closing
operation on the original binarized image and the original
content within the bounding box of each connected compo-
nent is defined as a single patch. The size of the window
is empirically chosen such that the resultant patch typically
represents a handwritten or machine-printed word. Patches
are eliminated as noise if their size is smaller than a threshold
tl or larger than a threshold th .

The procedure of patch extraction for a binarized docu-
ment is shown in Fig 4.

4.1.2 Feature extraction

Three different categories of features are considered for clas-
sification of a given patch into one of three classes viz., hand-
written text, machine-printed text and overlapped text. These
features were introduced briefly in [29] and are described in
greater detail in the following sections.

– Patch level features

Considering each patch as a single unit in our system, we
extract several sets of features at the patch level. For a
given patch, the first feature is its relative location i and
j with respect to the entire document. The relative width
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w and height h of the patch with respect to its nearest
neighbor measures the size of this patch. The foreground
density of the patch is measured by equation:

d =
∑

i, j I (i, j)

w · h
(6)

where I (i, j) is the density of pixel (i, j) which repre-
sents black pixel as 0 and white pixel as 1 in our binary
image.
Generally, machine printed text and handwritten text indi-
vidually have constant stroke width. Therefore, we cal-
culate the average stroke width using:

s =
∑

i, j I (i, j)

l
(7)

where l is the length of contour for a given patch. The
crossing number within a patch measures the complexity
of the stroke [29,39] which counts the amount of pixels
whose density differs from its direct neighbors in hori-
zontal and vertical direction and is defined as:

fh =
∑

i, j I (i, j) ⊕ I (i + 1, j)

h

fv =
∑

i, j I (i, j) ⊕ I (i, j + 1)

w

(8)

where ⊕ is the exclusive or operator.
The standard deviation of horizontal and vertical projec-
tion of a patch and maximum runlength within the patch
in these two directions are also used to measure the dif-
ference between the three different classes. Figures 5 and
6 illustrate the process of computing these two sets of
features.
Total number of 12 patch level features are extracted for
each patch.

– Connected component (CC) features

A set of features is based on the statistical properties of
connected components within a patch which is extracted
from the original (non-dilated) binarized image.
Firstly, we compute the mean and standard deviation
of width and height of CCs within a patch. Normally,
machine printed character has a constant width and height
in a certain range which results in a small value of var-
iance. On the contrary, the width and height of the con-
nected component within handwritten text are more likely
to be scattered in the feature space and have larger vari-
ance value. The maximum width and height of CCs are
also used as features.
For a handwritten text patch, the area of holes within
characters is typically larger than the area of holes for

(a) The original patch (text)

0

200

400

050100150

(b) The profile of the horizontal 
projection of the patch           

0 200 400
0

20

40

(c) The profile of the vertical
projection of the patch

Fig. 5 The projection of a patch

Fig. 6 The vertical and horizontal maximum run-length of a patch

characters in a machine printed patch. So the hole area
normalized by the size of the patch is computed as a fea-
ture to distinguish handwritten text from the other two
kinds of patches. Another CC feature is the overlap ratio
which is the area of overlap between the bounding box
of CCs within the patch divided by the total area of the
patch [29,39].
To each patch, nine connected component based features
are extracted.

– Gabor features

Gabor filters can serve as directional band-pass filters
which are modulations of a complex sinusoidal and
Gaussian function. The 2-D Gabor filter is defined as Eq. 9
in the space domain (details of parameters can be found
in [16,31,32]):

gλ,θ,ϕ,δ,γ (i, j)

= K exp

(
− i ′2 + γ 2 j ′2

2δ2

)
cos

(
2π

i ′

λ
+ ϕ

)
(9)

where i ′ = i cos θ + j sin θ , j ′ = −i sin θ + j cos θ and
λ is the wavelength of the cosine factor of the Gabor filter
kernel, θ is the orientation, ϕ is the phase offset, γ is the
aspect ratio and δ is the squared deviation of the Gaussian
function. A set of different θ and λ lead to the eight gabor
filters used in our experiments which are shown in Fig. 7.
The eight gabor features are obtained by calculating the
standard deviation of each gabor filtered image (patch).
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Fig. 7 A set of Gabor filters.
a–d Gabor filters with λ = 4
and θ = {0◦, 45◦, 90◦, 134◦},
e–h Gabor filters with λ = 8 and
θ = {0◦, 45◦, 90◦, 134◦}
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4.2 G-means based training and classification

Training on the three different kinds of patches is carried
out using a modified K-means clustering algorithm known
as G-means [19].

Unlike normal K-means which is widely used in cluster-
ing methods but where k has to be determined in advance,
G-means estimates the number of clusters based on the dis-
tribution of the training data. The underlying principle of G-
Means is to split the training set using K-means with k = 2,
and if any sub-cluster does not have a Gaussian distribution,
then K-means with k = 2 is applied again for this sub-cluster
until each cluster has a Gaussian distribution. Further details
of G-means can be found in [19].

In our training phase, we run G-means clustering algo-
rithm for machine printed patches, handwriting patches and
overlapped patches individually to get three sets of clus-
ters and corresponding centers which construct the con-
figuration set � of the MRF. The total number of centers
is M .

For each cluster m, we calculate the co-variance:

Σm = 1

Km

Km∑

k=1

(yk − cm)(yk − cm)T , 0 ≤ m < M (10)

where Km is the number of feature vectors within the cluster,
yk is a feature vector belonging to this cluster and cm is the
center of the cluster.

During the patch classification phase (i.e., the labeling
initialization process), for each test feature vector y which is
an observation in the MRF framework, we find the nearest
cluster to this feature point using Mahalanobis distance Dy

which is defined in Eq. 11 and maps the test feature point to
the center of this cluster. The index of this cluster is initially
assigned as the label of the corresponding vertex ν of the
graph G:

m̂ = arg min
0≤m<M

Dy(yν, cm)

= arg min
0≤m<M

√
(yν − cm)T

∑−1

m
(yν − cm) (11)

This G-means based classification can be looked at as a
nearest neighbor search (NNS) with a reduced search space.
The label of the test feature point can be further mapped to
one of the three classes because the class to which each center
belongs (handwritten text, machine printed text or overlapped
text) is already known during the training phase.

From the viewpoint of the MRF, our G-means based initial
classification is a vector quantization (VQ) procedure which
constructs the configuration set � for the MRF as described
in Sect. 3.

4.3 MRF based relabeling

In practice, misclassification cannot be avoided using a sin-
gle classifier due to overlaps in the feature space. There-
fore, postprocessing or relabeling is needed. The intuition
for relabeling is that a patch surrounded by patches from
a single different class has a high probability of belonging
to that class. We use a MRF which describes the statistical
dependency between observed patch features and their hid-
den states (label) to model different patches in an annotated
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Handwritten text separation 7

machine printed document and then relabel the patches in
our scenario.

In step I of the proposed method where we do word (patch)
level text separation, we model the annotated machine printed
document I as the graph G defined in Sect. 3. Each ver-
tex in set V represents a patch within the document and the
set of edges E connect vertices based on a neighbor system
described in Sect. 4.3.1. The random field X defined in Sect. 3
is consistent with the graph G and we let the set of centers
� which is extracted using G-means from Sect. 4.2 to be the
set of all possible configurations of X , and the patch features
be the observations Y .

As described in the previous Sect. 3, the inference of the
MRF model is implemented by using belief propagation algo-
rithm which is shown in Fig. 3. Each grey node xν in the
hidden layer exclusively corresponds to a hidden configura-
tion for a document patch and is assigned to a label m(0 ≤
m < M) after initial classification. Each white node yν is a
observed feature point for that patch. In real documents, the
neighbor system of patches is determined by a convex-hull
based distance metric as defined in Sect. 4.3.1 but may not
necessarily be located on a grid as shown in Fig. 3.

4.3.1 Definition of neighbor system

As shown in Eqs. 4 and 5, we need to update the message and
belief in the network based on a neighbor system to compute
the optimal configuration for MRF X . Normally, the neigh-
bor system of a MRF is based on a four-neighbors lattice
connectivity. However, if we consider each patch in the doc-
ument as a single vertex in the graph G which may not be
rigidly located on a grid, we need to define a flexible neighbor
system to represent the spatial relationship between patches.

Firstly, we define a distance metric to measure the spatial
distance between each pair of patches in a document:

Dx (ν, ν′) = (dv(ν, ν′) − v̂)2

2v̂2 + (dh(ν, ν′) − ĥ)2

2ĥ2
(12)

where [dh(ν, ν′), dv(ν, ν′)] represent the convex-hull dis-
tance between patches ν and ν′ in the horizontal and vertical
directions, v̂ is the dominant gap between words and ĥ is the
dominant gap between text lines over the entire document.
Dominant gaps v̂ and ĥ can be estimated using histograms.
Based on spatial distance, the four closest neighbors are con-
sidered for each patch. The bottom part of Fig. 8 shows the
four nearest neighbors (which are represented by the four
black rectangles) of the patch contained in the red rectangle.

By using the convex-hull distance metric based neigh-
bor system, we can measure the similarity between patches
in spatial space by taking the distance as the variable of
an exponential function. In other words, the similarity to a
given patch decreases exponentially as the distance increases
and only patches which have the greatest similarity are

Fig. 8 A patch and its nearest neighbors

considered as the neighbors of the center patch. The plot
at the top of Fig. 8 shows the decrease of similarity with
distance from the center patch.

4.3.2 Prior and likelihood

In order to compute an optimal configuration which maxi-
mizes the posterior as described in Eq. 1, we use belief prop-
agation which calculates the local maximum messages and
beliefs for each vertex to achieve global maximum. To use
belief propagation for a given vertex ν, the prior P(xν | xν′)
and likelihood P(yν | xν) in Eqs. 4 and 5 are modeled by a
similarity function which measures the similarity of config-
uration between hidden node xν and xν′ and a dependency
function which describes the influence of the observation yν

on its hidden node xν .
The prior P(xν | xν′) is approximated by:

P(xν | xν′) ≈ L(αe−Dx (ν,ν′) + βe−De(xν ,xν′ )) (13)

where Dx (ν, ν′) is the distance between two neighboring
patches (which corresponds to vertex ν and ν′ in graph G)
calculated from Eq. 12. De(xν, xν′) is the Euclidean dis-
tance between the configurations of two patches which rep-
resent the assigned centers in the feature space as described
in Sect. 4.2. α and β are two parameters that control the
influence from neighbors in the spatial space and the feature
space respectively (We set α = 0.1 and β ∈ [1.0, 1.5] in
our experiment). The final prior is normalized with a linear
transformation L so that P(xν | xν′) ∈ [0, 1].

Equation 13 illustrates that the influence from the neigh-
bors of a patch depends not only on their spatial distance
but also on the distance of the two configurations in feature
space. So, in our system, belief propagation is encouraged
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8 X. Peng et al.

for those patches which are close to each other in both the
spatial as well as the feature space.

Similarly, the likelihood P(yν | xν) is approximated by:

P(yν | xν) ≈ L′(e1/(λDy(xν ,yν ))) (14)

where Dy(xν, yν) is the Mahalanobis distance calculated
from Eq. 11, which measures the distance from the observa-
tion yν of vertex ν to its assigned center xν in feature space.
Parameter λ controls the influence of observations and their
hidden states (The final parameter of λ we chose in our exper-
iment is λ ∈ [0.1, 1.0]). The final likelihood is normalized
to the range between 0 and 1 using a linear mapping L′.

Equation 14 shows the relationship between the configura-
tion of a given patch and its corresponding observed features.

Optimal configuration for MRF is achieved by applying
BP algorithm as shown in Eqs. 4 and 5. All messages mν,ν′
in these two equations are initially set to 1. During the infer-
ence, the prior P(xν | xν′) and the likelihood P(yν | xν) are
calculated according to Eqs. 13 and 14. The updated mes-
sage mν,ν′ is passed from node ν′ to node ν and updating is
terminated until there is no flipping occurring during belief
propagation or when maximum iteration is achieved. More
details of belief propagation can be found in [13].

4.4 Experimental results for patch level text separation

Experiments were conducted on data sets generated at HP
Labs to train and test for patch level text separation (step I).
Precision (P) and recall (R) metrics were used to estimate
the performance of the MRF based relabeling system and
compare the proposed method with other classifiers. To any
one of three classes, the precision and recall are defined by:

P(k) = TP(k)

TP(k) + FP(k)
(15)

R(k) = TP(k)

TP(k) + FN(k)
(16)

where TP(k) is the true positive which counts the number of
correctly classified patches of class k by the system, FP(k) is
the false positive which counts the number of patches mis-
classified as class k by the system, and FN(k) is the false
negative which measures the number of patches classified as
other classes than k but belonging to class k.

The HP Labs data set consists of binarized images of anno-
tated office documents scanned at a resolution of 300 dpi. 82
documents from the HP Labs data set were used for these
experiments where the fonts of machine printed text in doc-
uments were mainly Calibri and Times New Roman with
the size of 10–12 points. The handwritten text (annotations)
which included arrows, brackets, circles, cross-lines, signa-
tures and comments were annotated by 10 different writers.
The data in the documents can be broadly classified into three
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Fig. 9 Distributions of different type of text for training

classes—machine printed text, handwritten text, and overlap-
ping text. This extremely imbalanced data set contains over
25,000 machine printed text patches, around 3,200 handwrit-
ten text patches and less than 400 overlapped text patches.
We used N-fold cross-validation technique to estimate the
classification accuracy for patch level text separation where
the data set was exclusively divided into N subsets (N = 3
in our experiment) and one subset was used for testing and
the remaining subsets were used for training iteratively.

In Fig. 9, we showed distributions of different type of text
for the entire data set and training sets of three splits. We can
see that three training sets have the similar distribution to the
entire data set. Thus, the evaluation on each fold predicts the
classification capability on the entire data set.

Prior to classification, a few preprocessing steps were per-
formed. A morphological closing operation with a 5 × 5
window was applied and patches were extracted. This was
followed by feature extraction. The G-means based cluster-
ing algorithm described in Sect. 4.2 was used to extract cen-
ters for the machine printed patches, handwritten patches and
overlapped patches on the training data set individually and to
construct our configuration set X . The initial classification
was carried out by assigning each test patch to the nearest
center in the feature space eventually mapping them to one
of the three classes. The MRF based relabeling procedure
was used to correct the misclassification for all patches as
described in Sect. 4.3.

In Table 1, we compared the proposed method to a G-
means based classifier and a backpropagation neural network
classifier which was implemented using a modified public
ANN tool, FANN [1]. The BP neural network with two hid-
den layers used the sigmoid function for each neuron in the
hidden layer and the sigmoid symmetric function for output
the layer. The overall accuracy in the table is defined as:
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Table 1 Performance of patch
level text separation
(classification into handwritten,
machine print and overlapped
text) on the HP data set

BP neural network G-means Proposed method

Precision (%) Recall (%) Precision (%) Recall (%) Precision (%) Recall (%)

Machine-printed 99.36 92.16 99.43 94.63 99.49 95.73

Handwritten 67.06 89.72 74.16 92.16 79.11 93.85

Overlapped 32.97 80.97 40.44 81.55 46.24 83.10

Accuracy (%) Accuracy (%) Accuracy (%)

Overall 91.72 94.16 95.52

Table 2 Error reduction rates of
patch level text separation Overall number of misclassified patches Error reduction rates

BP neural network G-means Proposed method (MRF) εr (%) εg (%)

Machine-printed 572 396 316 44.6 20.1

Handwritten 99 76 67 32.3 11.8

Overlapped 23 23 21 8.7 8.7

the number of all patches correctly classified by the system
divided by the total number of patches in the test set. We
see that the MRF based relabeling method had an overall
accuracy of 95.52% which outperformed the backpropaga-
tion neural network (91.72%) as well as the G-means based
classifier (94.16%). The precision and recall, especially for
the two minor classes (handwritten text and overlapped text),
were also increased by using the MRF based labeling method.

In Table 2, we showed the “Error Reduction Rates” which
were defined as:

εr(k) = FNr(k) − FNt(k)

FNr(k)
(17)

εg(k) = FNg(k) − FNt(k)

FNr(k)
(18)

where εr denotes the reduction rate of misclassified patches
between Neural network and the MRF based method for a
given type of text. FNr(k) is the false negative of class k
by using Neural network and FNt(k) counts the false neg-
ative by using MRF based method. Similarly, εg calculates
the error reduction rate between G-means based method and
the proposed method. As shown in the table, by using the
MRF based method, the error rate reduced to around 45 and
20% for machine printed text compared with Neural net-
work and G-means based method. The error reduction rates
for handwritten text and overlapped text were also decreased
effectively in the table.

Figure 10 shows results of the MRF based text identifi-
cation on a sample image from the HP Labs data set where
the original binarized document (Fig. 10a) is decomposed
to handwritten text document (Fig. 10b), overlapped text

document (Fig. 10c) and machine printed text document
(Fig. 10d).

To illustrate the effectiveness of the MRF based label-
ing, we showed three example results of machine printed
text extracted by different methods. As shown in Fig. 11, BP
Neural network based classification algorithm only consid-
ered the features of every single patch. Thus some machine
printed text were misclassified as other type of text, such as
word “Screen Size”, “Board” and “Laptop”, even these words
were among the context of machine printed text. Due to the
smoothness effect, MRF based method obtained better clas-
sification performance than Neural network and G-Means
based method, especially in the case of that a large amount
neighboring text were from the same class.

In our experiment, the patches which contained several
touched words by underline, rule-line or noises were labeled
as machine printed but were typically classified by the system
as overlapped patches as shown in the Fig. 10c. The machine
printed text were easily classified as overlapped text in our
system either if the size of text was big or the font of text was
bold. Most misclassifications for handwritten patches and
overlapped patches happened in the case of isolated hand-
written patch or overlapped patch surrounded by machine
printed patches which was smoothed by MRF.

The relatively low precision for handwritten text and over-
lapped text is mainly due to the imbalanced nature of the
HP Labs data set. The amount of machine printed text is
much more than the handwritten annotations and overlapped
text and dominates in the data set. If even a small propor-
tion of the machine printed text is misclassified as one of
the other two classes, it is still a significant number when
compared to the handwritten or overlapped text samples and
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Fig. 10 Experiment results on an example document from the HP data set: a the original binarized document, b handwritten text, c overlapped
text, and d machine printed text
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Fig. 11 Machine printed text extracted using different methods: a the original binarized document, b machine printed text extracted by FANN,
c machine printed text extracted by G-means, and d machine printed text extracted by the proposed method

hence leads to low precision. A tree-structured initial classi-
fier could perhaps be used to overcome the imbalanced data
set problem and we propose to test this in future work.

5 Pixel level text separation (step II)

As shown in Fig. 2, the second step of our proposed method
takes as its input the overlapped text from step I. Since the
overlapped text is considered as a single unit in step I, its basic
element (patch) and the features for patches are not suitable
to further segment the overlapped text into machine printed
and handwritten text. In this section, we propose a method
to decompose the overlapped text image into smaller units
using a coarsening procedure, which aggregates foreground
pixels of the overlapped text image according to their coher-
ence properties [30]. Shape context, a pixel level feature, is
used to measure the coherence or variance between pixels or
aggregations. The MRF based segmentation of overlapped
text is based on these small aggregations which are the basic
element in step II.

5.1 Shape context features

Prior to coarsening pixels to aggregations, we first extract
features at each pixel. We use shape context features to char-
acterize each pixel or aggregation. Shape context features
were first used by Belongie et al. [4] to compare the similar-
ity between two shapes.

Given a shape which contains a set of points, we can draw
vectors from a given point on this shape to each of the other
points and the shape can be exactly represented by these vec-
tors. Shape context features were inspired by this notion but
instead of using vectors to characterize each point on the
shape, shape context features tend to capture the coarse dis-
tribution of the rest of the points on a shape with respect to a
given point.

To compute the shape context features vi, j for a fore-
ground pixel whose coordinate is (i, j), a polar system is
centered on this pixel which divides the entire image into
several small bins. The feature vi, j is obtained by calculat-
ing the number of foreground pixels within each bin. More
details of computing shape context features can be found in
[4].

Figure 12 illustrates two examples of computing histo-
grams for two different points on the same shape by center-
ing the polar coordinate system on the points. The bottom
part of each polar system shows the extracted shape context
features where each colored rectangle corresponds to a bin in
the polar system and darker color represents a larger value.
In our experiments, we use three circles and eight quadrants
to divide the overlapped text patch into 24 bins as shown in
Fig. 12.

5.2 Aggregation coarsening

In order to separate overlapped text, we propose a coarsening
procedure by which foreground pixels in the overlapped text
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Fig. 12 The polar system and shape context corresponding to two
different points

are grouped to aggregations, which have coherent attributes
(similar feature for each foreground pixel within aggrega-
tion) and can be used as the basic element for training and
classification.

We assume an overlapped text image I is modeled by
a graph G = (V, E), where each vertex corresponds to an
aggregation which contains a set of neighboring foreground
pixels Pν = {pi1, j1 , pi2, j2 , . . . , pim , jm } from the image, and
edges E connect vertices based on four-neighbors lattice con-
nectivity.

For each vertex ν, we measure its coherence by using the
mean μν and variance δν of shape context features within the
corresponding aggregation.

Then we define the diversity between two adjacent verti-
ces ν and ν′ as the difference of their mean values:

ην,ν′ = μν − μν′ (19)

By using variance δν within a vertex ν and difference ην,ν′
between two adjacent vertices ν and ν′, we define a criterion
as presented in Eq. 20 to determine which neighboring ver-
tex needs to be merged with a given vertex ν to create a new
single vertex (aggregation).

ν̂′ = arg max
ν′∈N (ν)

∑

ν′′∈N (ν)−ν′
ην,ν′′e−δν′′′ (20)

where ν′ ∈ N (ν) represents the neighbors of vertex ν, ν′′ ∈
N (ν)−ν′ represents all neighbors of the vertex ν but excludes
vertex ν′, ν′′′ means a test vertex which is merged by vertex
ν and ν′, and δν′′′ is the variance of the features within this
test new merged vertex (ν merged with ν′).

The underlying principle of Eq. 20 is that a vertex ν is tem-
porarily merged with its immediate neighbors ν′ individually
to create a set of candidate vertices {ν′′′} whose variances
are {δν′′′ }. Then, the vertex ν̂′ whose average feature value is
close to vertex ν’s average feature value and minimizes the
variance of the new merged vertex ν′′′ is the optimal vertex
which should be merged with ν.

Fig. 13 The coarsening procedure

Based on this criterion, we can extract aggregations start-
ing from a single pixel to produce larger coherent coarsened
regions. Figure 13 shows the procedure of coarsening. Ini-
tially, each aggregation for the vertex ν contains only one
pixel and all vertices V in graph G are pushed in a queue
Q. Prior to executing the main loop of the coarsening proce-
dure, the size t of all vertices is checked and the first vertex
whose size is smaller than a pre-defined threshold τ is picked
as the working vertex. The working vertex ν is merged with
an optimal immediate neighbor according to Eq. 20 to pro-
duce a new vertex which is stored at the end of queue Q
and its neighbors are inherited from its two parent vertices.
The two merging vertices are removed from the queue Q and
the neighbor system for graph G is also updated accordingly.
The iteration of coarsening is stopped when every vertex’s
size is bigger than threshold τ which is set to 130 in our
experiment.

Figure 14 shows an example of coarsening for an over-
lapped text image where machine printed text is circled and
touched by handwriting. Figure 14a is the original bina-
rized overlapped text image. Figure 14b shows the coarsening
result after first iteration when every pixel is coarsened with
its neighbor at least once. Figure 14c shows the aggregations
after the third round of iteration and Fig. 14d is the final
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Fig. 14 Example of coarsening procedure and aggregation: a the orig-
inal binarized text, b the coarsening result after one iteration, c the
coarsening result after three iterations, d the final coarsening result. All
aggregations are it colored randomly

coarsening result. The aggregations are randomly colored in
these figures.

5.3 MRF based classification

5.3.1 Modeling overlapped text using MRF

Markov Random Field model is reused in step II to separate
handwritten text from an overlapped text image. As shown
in Sect. 3, a key step in the usage of MRF is the defini-
tion of the random field X , the hidden configuration set �

and the observations Y . Unlike the definition of an MRF for
the entire document in Sect. 4.3 where each vertex in the
MRF corresponds to a text patch, the overlapped text image
is modeled as a random field whose nodes represent aggre-
gations extracted using the coarsening algorithm from Sect.
5.2. To build the configuration set �, G-means clustering
algorithm is used as a vector quantization (VQ) procedure to
separate the training set into several small clusters and the
center of each cluster is used to build a codebook to repre-
sent the configuration set �. The observations Y for each
vertex is obtained by normalizing each aggregation to the
size of 16 × 16. The neighbor system for the MRF of step II
is inherited from the coarsening algorithm where the neigh-
bors of each vertex are its direct connected vertices based on
the four-neighbors lattice connectivity relation.

5.3.2 Prior and likelihood

Similar to step I which uses Belief Propagation (BP) algo-
rithm to obtain the optimal configuration X for MRF in
Sect. 4.3, our MRF based classification for overlapped text
also achieves the optimal configuration based on Eq. 2 but
re-models the prior P(xν | xν′) and likelihood P(yν | xν).

The prior P(xν | xν′) which is approximated by a simi-
larity function in our MRF based overlapped text separation
step is modeled as:

P(xν | xν′) ≈ L′′(t{α f (xν, xν′) + βe−De(xν ,xν′ )}) (21)

where xν, xν′ ∈ � are two configurations assigned to vertex
ν and ν′ respectively and satisfy ν′ ∈ N (ν), t is the size of
vertex ν which indicates the number of pixels contained in
the corresponding aggregation represented by the vertex ν.
f (xν, xν′) is the function that counts the pairwise occurrence
frequency of configurations of xν and xν′ for the neighbor-
ing vertex ν and ν′ in training set, and function De(xν, xν′)
measures the Euclidean distance between two configurations
(corresponding cluster centers) in the feature space respec-
tively. Parameters α and β control the strength of the influ-
ence from these two terms on vertex ν (We set α = 0.05 and
β = 0.01 in our experiment for overlapped text separation).

Equation 21 indicates that for two neighboring vertices ν

and ν′, two aggregations which co-occur frequently in the
training set and whose configurations are close to each other
in the feature space are encouraged by our criterion. The
size t in this equation shows that a larger vertex has more
influence on its neighbors.

The final prior P(xν | xν′) is normalized to the range
between 0 and 1 using a linear mapping L′′.

The likelihood P(yν | xν) in Eq. 2 is modeled by a depen-
dency function which can be approximated as:

P(yν | xν) ≈ 1

1 + eλDe(xν ,yν )
(22)

where xν is a configuration assigned to vertex ν, De(xν, yν)

is an Euclidean distance function to measure the distance
from an observation to a configuration xν for vertex ν. This
equation represents the probability of a configuration for a
vertex given its observation yν .

The same belief propagation algorithm as described in
Sect. 3 is used again for step II to get the optimal configura-
tion X . The final classification result is obtained by mapping
the optimal configuration to two classes (machine printed text
and handwritten text) as their relationship is already known
during the G-means clustering procedure.

5.4 Experimental results for overlapped text separation

To estimate the performance of MRF based classification
algorithm for overlapped text separation, we used the same
morphology closing operation as step I to collect a total of
330 overlapped patches (including crosses, edit marks and
other annotations within a single patch) from the HP Labs
data set. The set of overlapped patches was exclusively split
into three subsets and each subset was used for testing and
the remaining for training iteratively. Figure 15 shows the
similar distributions of machine printed text and handwritten
text for different training sets.

In the training phase, the coarsening method described
in Sect. 5.2 was used to extract aggregations for training
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Fig. 16 Recall curves during BP iteration

data followed by a vector quantization procedure based on
G-means clustering to construct the configuration set � for
machine printed text and handwritten text.

A similar coarsening procedure was applied on the test
data samples to extract aggregations for each vertex ν to
build the MRF to model the overlapped text patch.

Prior to MRF based classification, isolated characters were
filtered out based on an estimation of their size. The MRF
classification described in Sect. 5.3.2 was implemented to
segment overlapped text patch into machine printed and
handwritten text.

We measured the performance of the MRF classification
algorithm for step II using the recall metric and precision
metric. The recall for machine printed text is defined as the
ratio of the amount of pixels which are correctly classified
as machine printed text to all machine printed pixels in the
test set. The precision for machine printed text is defined as
the ratio of the amount of pixels which are correctly classi-
fied as machine printed text to all pixels which are classified
as machine printed text. The same metrics were applied to
handwritten text.

Figure 16 shows the recall curves of machine printed text
and handwritten text during BP iteration of classification. The
recall for handwritten text increased 27.72% and the overall
accuracy increased 4.38% from the start of BP.

Table 3 Performance of step II (separation of overlapped text into hand-
written and machine printed text) on HP data set

BP neural network MRF (proposed method)

Precision Recall Precision Recall
(%) (%) (%) (%)

Machine-printed 82.52 94.08 92.63 88.15

Handwritten 81.57 55.94 75.90 83.65

Accuracy (%) Accuracy (%)

Overall 82.44 86.82

Fig. 17 Examples with the labeled results for overlapped text from the
system

We compared the proposed MRF based segmentation
algorithm with an artificial neural network classifier which
was implemented using FANN [1]. The neural network had
one hidden layer which used sigmoid function for each hid-
den neuron in our experiment. Table 3 shows that our MRF
based method achieved higher overall accuracy as well as
higher accuracy on handwritten text than FANN.

Figure 17 shows sample segmentation results from step
II. Red strokes represent handwriting and black strokes rep-
resent machine printed text.

The main reason for the misclassification of overlapped
text in step II of proposed method is that although the coars-
ened aggregations have coherent attributes, their sizes are
determined by a predefined threshold τ which causes them
to not be strictly along the edges of areas where the machine
printed text and handwriting intersect. Using a heuristic
method to calculate an optimal threshold for each overlapped
text segment and applying a shape-driven coarsening algo-
rithm to restrict the growth of aggregates along certain direc-
tions should improve performance.

6 Conclusions

In this paper, we propose a novel MRF based framework to
classify three different kinds of text (machine printed text,
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handwritten text and overlapped text). The proposed method
contains two individual steps. In step I, where a document
image is segmented into handwritten, machine printed and
overlapped text, a distance function is defined to measure the
spatial distance between patches which is used to construct
the neighbor system for MRF. Unlike other relabeling sys-
tems that only consider the neighboring relationship in spatial
space, our model uses distances from both feature space and
spatial space to determine the similarity of two neighbors. A
similar MRF framework is used in step II to further separate
the overlapped text into machine printed text and handwritten
text. In step II, we propose a coarsening procedure to extract
the basic element for classification. The merit of the proposed
MRF framework is that it is easy to integrate other classifi-
ers which can provide a reliable distance measure in feature
space into our system as an initial classifier. The experimen-
tal results show that the proposed method outperforms other
methods upon the accuracy. Our future work includes the use
of other classifiers to overcome the issue of imbalanced data
sets, and development of better algorithms for shape-driven
coarsening.
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