
IJDAR (2009) 12:21–32
DOI 10.1007/s10032-009-0079-7

ORIGINAL PAPER

A blackboard approach towards integrated Farsi OCR system

Hossein Khosravi · Ehsanollah Kabir

Received: 11 July 2008 / Revised: 20 November 2008 / Accepted: 5 January 2009 / Published online: 12 February 2009
© Springer-Verlag 2009

Abstract An integrated OCR system for Farsi text is
proposed. The system uses information from several knowl-
edge sources (KSs) and manages them in a blackboard
approach. Some KSs like classifiers are acquired a priori
through an offline training process while others like statisti-
cal features are extracted online while recognizing. An arbi-
ter controls the interactions between the solution blackboard
and KSs. The system has been tested on 20 real-life scanned
documents with ten popular Farsi fonts and a recognition rate
of 97.05% in word level and 99.03% in character level has
been achieved.

Keywords Farsi · Persian · OCR · Blackboard approach ·
Segmentation and recognition

1 Introduction

Nowadays with advancement in character recognition
technology, OCR systems are well known for lots of peo-
ples. There are several commercial OCR products available
for popular languages in the world. Today anyone who buys
a scanner expects to find an OCR software within the scan-
ner package as well. At the same time users of some lan-
guages suffer from lack of such OCR product for their native
language.

Farsi or Persian is the official language of more than
150 million peoples of the world. Like Arabic, Farsi is a
right to left script, but there are some differences like number
of alphabets, font styles, vocabulary and signs, which make
Farsi OCR somehow different from Arabic. In last decades

H. Khosravi (B) · E. Kabir
Department of Electrical Engineering,
Tarbiat Modarres University, Tehran, Iran
e-mail: HosseinKhosravi@modares.ac.ir

several researchers worked on Arabic OCR [1–3,8,14,22],
and as a result today there exist some commercial OCR prod-
ucts for Arabic language. But in the field of Farsi language,
lots of OCR papers are about isolated character/digit recogni-
tion [10,16,19,23] and there are only a few papers in the field
of printed text recognition [4,6,17,18,24]. Here we review
some important works reported on Farsi OCR.

It seems that the first paper about Farsi printed text recog-
nition is [21]. In this paper, an OCR system for Farsi text with
large font size like newspaper headlines is proposed. Amzi
and Kabir [4] proposed a new segmentation algorithm based
on the conditional labeling of the upper contour. They also
proposed a technique to adjust the local base line for each
subword. Menhaj and Adab [18] proposed a segmentation
and recognition method for printed text recognition. They
used Fourier descriptors as features and MLP as classifier. In
[6], an OCR system based on subword shape recognition is
proposed. In this approach each subword is treated as a shape
and recognized as a whole without segmentation. They used
characteristic loci as shape descriptor and K-means for clus-
tering subwords of four fonts in three sizes. PCA has been
applied to reduce feature length. They tested their work on
two sets of images; one set of five good quality images gen-
erated in computer, printed and then scanned, and one set of
four real documents. They achieved the recognition rates of
96 and 90% on first and second set respectively.

At this time there are only two OCR products that support
Farsi language, Automatic Reader from Sakhr1 and Readiris
from Iris.2 The accuracy of these products for Farsi language
is very low, something between 60 and 70%, so that no one
can rely on them to read his Farsi documents. This is due to

1 http://www.sakhr.com.
2 http://www.Irislink.com.

123

http://www.sakhr.com
http://www.Irislink.com

22 H. Khosravi, E. Kabir

the fact that both products are basically developed for other
languages.

To have a Farsi OCR system with high accuracy we should
consider all aspects of Farsi language. There are several
knowledge sources (KSs) related to Farsi scripts, which can
help us to develop more reliable and more accurate OCR
system.

In this paper, we propose an integrated Farsi OCR sys-
tem, which uses the information of several KSs in black-
board architecture. Some KSs like classifiers and vocabulary
are stable and will not change during the recognition process,
but some others like signs and dots information are transient
and will change while recognizing a text. We used blackboard
approach because it is simple to be modified and we are able
to add new KSs without changing the code significantly.

The rest of the paper is organized as follow. In Sect. 2
Farsi script specifications from OCR point of view will be
described. Section 3 describes the integrated OCR system
which is the main part of our work. In Sect. 4 the process is
demonstrated through an example. Section 5 includes exper-
imental results and the conclusion follows in Sect. 6.

2 Farsi script specifications

Farsi, like Arabic, is a right to left script and has its own
specifications. Here we describe the most important features
of Farsi script from OCR point of view.

• Letters are written from right to left, but numerals are
written from left to right. We should consider this attri-
bute for regenerating recognized text.

• Some letters take different shapes according to their posi-
tion in the word. For example letter Ein have an isolated
form “ ”, and three joint forms: beginning form “ ”,
middle form “ ” and final form “ ”. We divided all let-
ters into two groups; isolated and joint form and trained
separate classifiers for them (see Sects. 3–5 and 3–6).

• Each word is composed of one or more character(s) and/or
subword(s). A subword is a combination of joint letters.
For example the word Farsi “ ” is composed of one
letter, “ ”, and two subwords, “ ” and “ ”, each of
them having two letters. As described in Sects. 3–5 and
3–6 we recognize subwords through segmentation and
recognition but isolated characters are recognized with-
out segmentation.

• Some letters only differ in number or position of their
dots, e.g. letters Je “ ”, He “ ”, Khe “ ” and Che “ ”
have the same shapes, but different dots. Considering this
attribute, we firstly recognize bodies then add dot infor-
mation for each character.

• Some digits are very similar to some letters: digit 1 “1”
and character Alef “ ”, digit 0 “ ” and dot “ ”, digit 5

“ ” and character Ha “ ”. We resolve this ambiguity with
context information through post processing.

• Each letter can take some signs like Tashdid “ ”, Hat as in
“ ”, Sarkesh as in “ ” and other Arabic signs which are
used for unfamiliar words like proper nouns, e.g. vowels
“ ” and Tanvins“ ”. As described in Sect. 3–6
we firstly remove all dots and signs and construct body
(Fig. 5), then recognize signs using special engine and
finally during segmentation and recognition of body, add
signs info to the characters.

• In some fonts, digits 4, 5 and 6 and letters Kaf and Ye,
have two shapes, Arabic and Farsi, which both of them
may be used, e.g. “4” and “ ” for digit 4 and “ ” and “ ”
for letter Kaf. We resolved this ambiguity using samples
from both shapes while training the classifiers.

3 System architecture and knowledge sources

To have a reliable and efficient OCR system we should con-
sider several KSs involving in Farsi script. We saw Farsi OCR
as a problem which will be solved when the text is recognized
satisfactorily. We had several KSs from line detector to char-
acter classifier that each of them provides useful information
which can help us to solve the problem to some extent. A
good platform for this type of problems is blackboard archi-
tecture. Blackboard is a shared memory where the problem
is defined on it and every KS can share its information to find
the solution. An arbiter controls the interaction between KSs
and the blackboard.

In our OCR system we tried to include almost all possible
KSs. Also some tools are developed where some of them are
required to prepare KSs and others perform specific actions
like removing dots from subword. The general diagram of
our blackboard system is shown in Fig. 1. Here we describe
KSs in detail.

3.1 KS 1: statistical features

Statistical features consist of five elements: noise width, line
height, base-line position, pen width and space width.

Noise width is computed from projection analysis of text
block as follows:

nw = 1

n

∑

y

{h[y] |h[y] < nw0} where

h[y] =
∑

x

f (x, y)

f (x, y)=pixel value

{
1 for black pixels (foreground)
0 for white pixels (background)

nw0 = min

[
max [h(y)]

5
, min [h(y)] + 15

]

n = #{h[y] |h[y] < nw0} (1)

123

A blackboard approach towards integrated Farsi OCR system 23

Arbiter

Controls
interactions
between KSs and
the blackboard

Solution Blackboard

Font Candidates
Language Candidate

Characters
Word Hypotheses

Word Boxes

ubword Boxes

Tools

• Text Line Detector
• Font Recognizer
• Language

Recognizer
• Base-line Detector
• Feature Extractor
• Dot Remover
• Segmentor
• Overlap Detector
• Classifiers
• Spell Checker

Knowledge Sources

• Font & Language
Confidences

• Statistical Features (Pen
Width, Line Height, Space
Width, Base line Position)

• Confusion Matrix
• Writing Direction
• Signs & Dots Info
• Word Dictionary
• Segmentation and

Recognition Results
• Overlap Info

Fig. 1 Blackboard architecture for Farsi OCR

Fig. 2 Sample noisy image with noise width of about ten

This value is used in line detector to avoid detection of
noise pixels as lines (Fig. 2) and to prevent two successive
lines to be merged incorrectly.

Line height is computed from average height of text lines
detected by line detector as follows:

H = 1

n

∑

y

{h[y] |h[y] > nw0} (2)

It helps the system to find merged or split lines and correct
them.

Base line position is computed through horizontal projec-
tion of each line as follows (Fig. 3):

B = arg max
y

{h(y)} (3)

Base line is useful for segmentation module, because
almost all segmentation points in Farsi script are located on
base line. If a line is long, two base lines will be computed,
one for the left part of the line and another for the right part.

Fig. 3 Base line detection

Fig. 4 Pen width and Space width for a typical line

This is to overcome small skew angles which are not removed
in preprocessing.

Pen width is computed from mode of stroke width of the
line (Fig. 4).

pw = mod(sw(x, y)) where:

sw(x, y) =
{

cp(x, y) if cp(x, y + 1) = 0
0 otherwise

cp(x, y) = cp(x, y − 1) + f (x, y)

f (x, y) is the pixel value at (x,y), 0 for white and 1 for black.

(4)

This is used to overcome image resolution dependencies;
if pen width is too small, current text line is resampled to
yield a typical pen width associated with a common font
size scanned at 300 dpi. This is important for segmentation
module where some dpi dependent thresholds are used.

The last parameter, space width, is the width between two
successive words. It is computed as the mode of spaces in
each line. If space between two successive words is less than
this parameter, they are subwords of the same word otherwise
they are two words (Fig. 4).

3.2 Classifiers and features

Before going into other KSs we prefer to have a brief descrip-
tion of classifiers and features used for training.

In our OCR system we have two classifiers for font and
language recognition and three classifiers per each font for
sign recognition, isolated character recognition and joint
character recognition. All classifiers are boosted MLPs3

which are trained based on AdaBoost.M2 algorithm [7]. MLP
is selected because of its speed advantage over other classi-
fiers like SVM, RBF or HMM.

To recognize font and language, we perform some pre-
processing and extract special features which may be dis-
cussed in another paper [12], but for other classifiers we

3 Multi Layer Perceptron.

123

24 H. Khosravi, E. Kabir

implemented several statistical features and after some
experiments considering speed and accuracy we selected a
combination of them for each classifier, e.g. Characteristic
loci (81 features), Size (3 features) and Gradient histogram
(144 features) [11] is used for isolated character classifier.

3.3 KS2, KS3: font and language confidences

In our OCR system a font recognition module [12] recognizes
the font type of individual lines. For each font, special char-
acter recognition engines have been trained; so every failure
in font recognition may decrease overall performance. Since
font recognition accuracy is not perfect we keep confidences
of three most probable fonts as KS to be considered later. At
first the system recognizes the text line assuming the most
probable font, but if it is recognized with low confidence,
its font will be changed to the next candidate and it will be
recognized again. This process may be continued up to three
times. The arbiter controls this process and decides through
character confidences that a line is recognized well or not.
Confidences are values between 0 and 100 which determine
how good an action is performed, e.g. if a character is rec-
ognized with confidence of 99% the result can be approved
without any doubt, but when its confidence is 40% it is not so
satisfactory. Usually, confidences come from classifiers out-
puts and may be modified through the recognition process.
For example if a character is recognized as Ghaf “ ” but its
number of dots is different from two, its confidence will be
decreased appropriately.

Another KS is language confidence. If a document has
English characters between Farsi scripts, a language recog-
nizer module will detect English words from Farsi words.
Here we are not going to describe the structure of this mod-
ule but like font recognition module, the result of language
recognizer is not perfect, so we do not rely on it. At first we
recognize the word with the proposed language from lan-
guage recognizer; if it is recognized with acceptable con-
fidence, the detected language will be approved, otherwise
the word will be recognized with the engines of the other
language and the result with the higher confidence will be
accepted. It must be mentioned that English words are recog-
nized using an existing OCR engine.

3.4 KS4 sign classifier

As described in Sect. 2, dots and signs have important role in
Farsi letters, so that some letters only differ in number or posi-
tion of dots, e.g. letters Je “ ”, He “ ”, Khe “ ” and Che “ ”
have the same shapes, but different dot attributes. Consider-
ing this characteristic, we designed a sequential recognition
strategy in which at first, character/subword body (Fig. 5) is
recognized and then dots and signs info is considered to find
final character.

Fig. 5 Sample subword and its body

Table 1 Signs and dots classes

Table 2 Isolated characters used in isolated character classifier

Table 1 shows all dots and signs used in Farsi scripts. Two
extra classes are used, 5 and 11. Class 11 represents invalid
signs or noise and Class 5 was included because sometimes
Classes 2 and 3 may be merged due to noise or bad binari-
zation. For each font, a classifier, called Sign Classifier, is
trained for these symbols.

We divided all isolated characters according to their bodies
into 50 classes (Table 2), some classes like 19 only include
one character, but some others like ten include four charac-
ters.

3.5 KS5: Isolated character classifier

Inspecting Farsi letters, we found that some letters like “ ”
are very probable to be over segmented, if we segment them
like other subwords. On the other hand most of the letters
take different shapes when joining to other letters to create a
subword. Considering this, we designed Isolated Character
Classifier which is responsible for isolated characters. This
classifier takes the body of the input subwords (Fig. 5) and
decides whether the input is a character or a subword. If
it is a character, its code will be retrieved (Codes 0–48 in
Table 2) and the final character will be found considering its
dots; otherwise (Code 49) it will go through segmentation
and recognition module (Sect. 3–6). Table 2 shows all clas-
ses of isolated characters. As it shows, two subwords and

123

A blackboard approach towards integrated Farsi OCR system 25

(classes 47 and 48) are treated as isolated characters because
they have special shapes which cannot be segmented easily.
Class 49 is an extra class developed for subwords; if the clas-
sifier activates this class, it means that the input is a subword
not an isolated character, so it must go through segmentation
and recognition module (Sect. 3–6).

It is important that sometimes this classifier may be uncer-
tain, i.e. its output confidence for the winner class is low. In
these cases the system does not rely on its result and sends
the subword into segmentation module as well and decides
later; if the overall confidence of the segmented subword is
better than the confidence of the isolated character, it will be
assumed a subword and the result of segmentation will be
accepted otherwise the isolated character will be remained.

3.6 KS6: segmentation and recognition

3.6.1 Segmentation

An important part of our system is the segmentation module.
Since a subword is a combination of joint letters, segmen-
tation is required to break each subword to its composing
components. There are several segmentation algorithms for
Farsi/Arabic scripts, which can be divided into four groups:
methods based on vertical projection analysis [1,20],
contour-based methods [4,9], methods based on profile anal-
ysis [13] and recognition based segmentations [5].

Every failure in segmentation module may be unrecov-
erable on the other hand there is almost no segmentation
algorithm which provides segmentation points perfectly. Seg-
mentation and recognition is one of the best approaches which
its segmentation errors can be recovered through recognition.
In this method we can recover segmentation errors while rec-
ognizing each token of the segmented subword. It is impor-
tant that a primary segmentation algorithm must be designed
so that under-segmentation does not occur, but over segmen-
tation usually will be recovered during recognition.

We designed a profile-based segmentation for the initial
step (Fig. 6). This algorithm is more reliable from projection
analysis methods and is faster than contour based methods.
Segmentation process is as follows:

1. Crop subword body (Fig. 5) around the baseline position
with height of 3 * penwidth (Fig. 7). Baseline position
and pen width were provided previously by KS1. Seg-
mentation points of Farsi subwords are always located
on base line, so we crop subwords around baseline to
prevent from invalid segmentation points.

Fig. 6 Search area for segmentation points

Fig. 7 Top modified top profile. Bottom Enhanced profile

Fig. 8 Potential segmentation points

2. Find top-profile of the cropped subword. Usually this
profile is computed from the first cross of white to black
pixels viewing from top. But if we use this profile, some
portion of base line will become invisible behind some
characters like He “ ” or Kaf “ ”. So we changed the
profile to the last cross of white to black to solve this
problem (Fig. 7).

3. Smooth the top profile for better decision of segmenta-
tion points; search for horizontal strokes which are bro-
ken in the middle so that a level with one-pixel deeper
height is created in between. Change the middle level
value to the side levels value to have a better profile for
segmentation (Fig. 7).

4. Scan smoothed profile and assign middle point of hor-
izontal strokes with length of three or more pixels as
segmentation points (Fig. 8). These points are treated as
potential segmentation points and sometimes, as in the
case of Fig. 8, may be over segmented. This issue will
be solved during recognition phase.

3.6.2 Recognition

Recognition is the second phase of the segmentation and
recognition algorithm. Here we provided another classifier
which is responsible for recognition of joint strokes. Joint
character classifier is used to recognize subword tokens pro-
vided from segmentation process. This classifier includes 39
classes of joint characters in different positions and an extra
class that includes all stroke combinations which do not com-
pose a character (Table 3). This classifier helps us to recog-
nize the subword and decide what segmentation point is valid.

Having segmentation points provided, we can simply
recognize each stroke, store the results and move on. But
in this way every failure in segmentation phase will be unre-
coverable. The better way is to scan the segmented subword
from right or left and to recognize strokes sequentially; if a

123

26 H. Khosravi, E. Kabir

Table 3 Joint characters used in join character classifier

x0 = CP[i]
j = 1

x1 = CP[i+j]

Crop stroke fromx0 tox1

Classify Stroke

KS 4
Dots & Signs

Stroke position
in subword

Valid Char with
good confidence

orj = 4

End

j =j+1

The Last
stroke?

i =i+1

Yes

No

No

Yes

Select Best Character

i = 0

Fig. 9 Recognition algorithm while scanning from left

stroke was recognized as a valid character with good
confidence, it will be stored; otherwise two successive
strokes will be merged and recognized again. This process
may be continued up to four times or while a valid character
found. Although this method of scanning is better than rec-
ognizing all strokes separately, but if a non-character stroke

Right scan

99.21%

Noon ()
Left scan

99.40%

Wav
Right scan

99.96%

Sin ()
99.98%

No char
33%

Be
Left scan

99.90%

Kaf ()
Right scan

99.59%

Ye
Left scan

99.93%

Sin

Fig. 10 Recognition of tokens for subword of Fig. 5

Fig. 11 Correct segmentation points of Fig. 4

Fig. 12 An example of vertical
overlap

recognized as a character incorrectly, the error will be dis-
tributed from now on. Considering this problem, we chose to
scan the segmented subword from both left and right simul-
taneously. In this way, we scan the subword from right until
finding a valid character with good confidence, then switch
to the left side and recognize one character from left, this
process continues until all tokens scanned. Fig. 9 shows the
flowchart of the recognition phase while scanning from left
side. After this process we will have the correct segmentation
points.

Figure 10 shows an example of segmentation and recog-
nition algorithm applied to subword of Fig. 5. As this figure
shows, except the character Sin, third row, which is recog-
nized after three epochs, all other characters which are cor-
rectly segmented, are recognize in single epochs. Figure 11
shows the final segmentation points.

3.7 KS7: writing direction

As mentioned in Sect. 2, Farsi letters are written from right to
left, but numeral strings are written from left to right. We must
consider this rule during text regeneration. We should read

123

A blackboard approach towards integrated Farsi OCR system 27

Line Detector: Average Line Height, Average Noise Width, Lines Positions

Line Processor: Makes Binary, Computes Pen Width (here: 8px), Removes dpi dependencies, Finds Base Lines

Word Detector
Average Space Width
Average Noise Height
Words Positions

Subword Detector
Subwords Positions

Character
Enhancer
Dilates or Erodes

Character Vav ì ”,
Confidence = 90.0%

Arbiter:
Acceptable

Component Analyser
Finds Main Region, Dots & Signs
Removes Noise Components

Isolated Classifier (KS 5)
Recognizes Isolated
Characters

Dot Classifier (KS 4)
Recognize whether it’s a dot,
sign or nothing

Character Alef “ ”
Confidence = 87.6%

Character Ha “ ”
Confidence = 6.0%

Alef hat sign (code 9)
Confidence = 60.0%

Arbiter:
Acceptable

Arbiter: Not acceptable
Overal confidence is too low

Character and sign doesn’t match; so
Enhance and Recognize Again

Main Region
261 pixels

Sign 1
227 pixels

Font Recognizer:
Constructs a texture
Extracts appropriate features
Classifies the feature vector

Outpout:
Lotus: 72.0%
Zar: 11.8%
Yaghut: 1.2%

Fig. 13 An example showing KS interactions with the blackboard and arbiter decisions

subwords from right to left, but when encountering numeric
subwords or English words, we must buffer their result until
the next Farsi subword and then reverse their order to have
the correct order in output text.

3.8 KS8, KS9: vocabulary and confusion matrix

Sometimes a word may be recognized with low confidence.
If this word exists in the vocabulary it will not be changed

because the low confidence may be due to noise, or low
quality of the document. But if it does not exist in the vocab-
ulary, it may be a segmentation failure, misclassification of
characters or loosing dots or signs. In this case we will use
the vocabulary to find the best word similar to the recog-
nized one. If the cost of this replacement is low, for example
requires substitution, deletion or addition of one character,
it will be applied; otherwise it will be remained unchanged.
The cost of this replacement is computed through a modified

123

28 H. Khosravi, E. Kabir

2. Overlap Detector :
It may be a combination
of two SWs

Segmentation & Recognition
(KS 6)

Sign Info (KS 4)

, Confidence = 51.2%

Invalid Sign (Code 11), Confidence = 83.0%

2-Dot Sign (Code 2), Confidence = 52.2%

1-Dot Sign (Code 1), Confidence = 98.4%

Invalid Sign (Code 11), Confidence = 8.3%

Arbiter: There are
two invalid signs close
to the initial body, one
item is very large and
may be a subword
itself; so
1. Reconstruct the
body and then
recognize it
2. Check whether 4th

sign is another
subword or not?

1. Body Reconstructor , Confidence = 98.9%

Segmentation & Recognition
Isolated Classifier (KS 5)
Sign Info

Final Word:
Average confidence = 92.2%

Vocabulary (KS8) :
It exists in vocabulary

After all words of the line are recognized:
Average Line Confidence = 75.2%
Arbiter: The average confidence is acceptable so the
recognized font, Lotus, is approved. Go to the next line.

Initial Body
596 pixels

Sign 2
448 pixels

Sign 3
144 pixels

Sign 1
72 pixels

Sign 4
113 pixels

Arbiter:
Acceptable Word

Initial Body; Waiting for arbiter decision.

Direction Rule (KS7)

×

Fig. 13 continued

Levenshtein distance [15]. The vocabulary contains about
55,000 Farsi words with their occurrence probability.

Confusion matrix is a useful knowledge that shows how
often two classes may be substituted with each other. This
matrix can be extracted through trained samples, or built
heuristically. From this knowledge we can decide to replace
low confidence characters with suitable choices whenever
required. For example, character Gaf “ ” usually is unrec-
ognized as Kaf “ ”, so we can substitute these two characters
with very low cost.

Levenshtein distance is a cost function which shows how
many operations, substitution/deletion/addition, is required

to change the first string to the second one. We modified this
cost function as follows:

1. The substitution cost is changed w.r.t. characters which
are going to be substituted. If both characters are in the
same position (beginning, middle or end) the cost will
be reduced considering their substitution probability in
the confusion matrix.

2. The final cost will be reduced according to the occur-
rence probability of the new word. This is useful when
two substitutions produce the same cost.

123

A blackboard approach towards integrated Farsi OCR system 29

Table 4 Experimental results
for three strategies

Test strategy Recognition rate in Recognition rate in Average document Average
word level (%) char level (%) confidence (%) execution time (s)

Proposed system 95.81 98.67 92.35 2.73

4 KSs removed 86.66 94.9 90.76 2.31

A KS improved 97.05 99.03 94.21 2.24

Table 5 Scanned document
info and recognition results of
the system

No. Fonts included Word count Char count ADC (%) Word RR (%) Char RR (%)

1 Titr, Naz 150 627 98.1 98.67 99.68

2 Compset, Yaghut 147 630 89.8 93.88 97.94

3 Lotus 263 1101 95.2 95.44 97.82

4 Nazanin, Yaghut 417 1555 94.3 97.12 99.1

5 Homa, Yaghut 116 484 92.9 100 100

6 Nazanin 63 253 81.9 95.24 98.81

7 Compset 315 1247 92.8 95.24 98.64

8 Lotus 85 451 92.5 95.29 98.67

9 Titr, Zar 162 608 95.8 99.38 99.67

10 Mitra 321 1297 84.2 95.02 98.69

11 Lotus, Mitra 253 1052 93.5 94.86 98.48

12 Karim, Titr 199 947 81.6 84.92 95.88

13 Lotus, Mitra, Naz 224 1156 91.6 91.52 97.92

14 Lotus 523 2054 94.5 96.94 98.88

15 Nazanin 305 1219 95.4 98.36 99.51

16 Nazanin, Traffic 267 1011 98.1 99.63 99.9

17 Nazanin, Zar 240 1049 92.3 95.42 98.67

18 Yaghut 173 898 91 93.06 97.1

19 Tahoma, Times 503 2280 95.5 96.22 99.04

20 Lotus, Mitra 265 1007 96 96.6 99.11

Sum/Avg 4991 20926 92.35 95.81 98.67

Beside KSs described above, some tools were also devel-
oped to facilitate the recognition process; some of them like
Feature extractor, Boosted classifiers, Line detector and Spell
checker are required to produce some KSs and some others
perform specific actions: Overlap Detector (Fig. 12), Body
Reconstructor, Dot Remover, Character Enhancer, etc. In
the next section we will demonstrate some of these tools
through an example.

4 An example

Here we describe the recognition process through an exam-
ple which shows how KSs interact with the blackboard to
recognize a line of text. We tried to select a sample text line
in which almost all KSs have good contribution to recognize
it (Fig. 13). In this example, the recognition process of the

first word of the line is described in detail and all required
explanations are inserted on figure as comments. As this fig-
ure shows, each KS has its own role towards better recogni-
tion of the text line.

Here the arbiter controls all interactions and decides
whether the input subword is recognized satisfactorily or not.
For example in the case of character Vav “ ” which is broken
into two parts, at first Dot recognizer and Isolated charac-
ter classifier, put their knowledge on the blackboard. Then
arbiter finds that the final result is not satisfactory because
the recognized character “ ” and the sign “Hat” will never
join together. Also recognition confidence of the character
is too low, 6%, so it proposes that the input subword should
be dilated and recognized again. After dilation, which is per-
formed by Character Enhancer tool, the sign is attached to
the body and character Vav “ ” with confidence of 90% is
recognized. Now arbiter approves the result.

123

30 H. Khosravi, E. Kabir

A similar process is happened while recognizing the next
subword “ ”, which its body is broken into three parts due
to binarization.

5 Experimental results

To evaluate the proposed system we scanned 20 pages from
16 different books at 300 dpi, using a flatbed scanner
(Appendix A). We designed three strategies for the
recognition:

1. Recognizing documents with the proposed system.
2. Recognizing after removing some simple KSs from the

system to find importance of each KS.
3. Recognizing after substituting KS2, font confidences,

with the user provided knowledge about fonts which is
more accurate.

The first strategy shows the performance of the system
itself. Here the average recognition rate of 95.81% in word
level and 98.67% in character level was achieved. The second
strategy designed to show how much some simple KSs are
important in this system; here we removed four KSs/Tools:
Body Reconstructor, Overlap Detector, Character Enhancer
and Fonts Confidences. As expected the average recognition
rate was reduced from 95.81 to 86.66%. Font Confidences
had the most effect on performance reduction. Body Recon-
structor and Overlap Detector had almost the same effect on
performance and finally Character Enhancer had the low-
est effect on average recognition rate. The final strategy was
designed to show how a low performance KS may decrease
the overall recognition rate. In this stage we substituted the
font confidences KS with user provided knowledge about
fonts involved in each document. In other words we replaced
the font recognizer module with a perfect font recognizer. In
this way the average recognition rate increased to 97.05%.
Table 4 shows the global results briefly and Table 5 shows
documents information and their recognition rates using the
proposed system.

We also put the average execution time for each strategy
in Table 4. As it shows, average execution time per each doc-
ument is fairly short. These times are computed on a PC with
2.4 GHz CPU and 2 GB of RAM. The required time in the
first strategy is greater than others, because here a time for
font recognition and taking care of its output confidences is
added. The details of execution times are shown in Fig. 14.

According to Table 5, we find that test pages two and seven
contain Compset font which is not supported in the proposed
system. But since this font is too similar to Lotus, the overall
recognition rate was not affected noticeably (Table 5, second
and seventh row).

Fig. 14 Recognition rates in word level and character level and average
document confidence for 20 test pages

123

A blackboard approach towards integrated Farsi OCR system 31

In test page 12 which the main font is Karim, the recogni-
tion rate is the lowest within all pages, 84.92%, because this
font is not supported and it is not similar to any other font.
Other pages have been read with high accuracy.

These results show that the system performance on typ-
ical documents of familiar fonts with resolution of 300 dpi
is quite well. However, for the case of low quality docu-
ments like Fax pages, old documents, camera images and
low-resolution documents, the problem is still open. In this
work, we did not consider these kinds of documents. In these
cases there are several broken characters, nonlinear distor-
tions and noise so that we need some other KSs to be designed
to improve the system accuracy. For example a preprocessor
module may be required to enhance the quality of the image.

One advantage of our system is that we can compute an
average confidence for the whole document. We have sev-
eral confidence measures from several KSs, Font Recognizer,
Language Recognizer and Other Classifiers. From these con-
fidences we can compute a confidence for each word and for
the whole document as well. Here we computed a confidence
measure called average document confidence as follows:

ADC = 1

n

∑

i

C[i]

Where n is the number of detected words in the document
and C[i] is the confidence of word[i] which is computed
through character confidences, signs confidences and word
occurrence probability in the vocabulary.

This confidence shows how good a document is recog-
nized. In Fig. 14 we show the recognition rates and average
document confidences for all 20 test documents graphically.
As this figure shows, the average document confidence almost
goes with the recognition rates.

6 Conclusion

In this paper, we proposed an integrated Farsi OCR system
based on blackboard architecture. In this system several KSs
and tools interact with the blackboard and perform appro-
priate actions whenever required. An arbiter controls KSs
actions and decides whether the problem is solved satisfac-
torily or not based on current blackboard state. The system
can recognize ten popular Farsi fonts using a Font Recognizer
module. It also detects English words in between Farsi sen-
tences and recognizes them using an English OCR engine.
The proposed system was tested on 20 real-life documents.
The average recognition rates of 97.05% on word level and
99.03% on character level were achieved. Based on several
confidences from some KSs, an average document confi-
dence is computed which shows how good a document is
recognized.

Appendix A: sample test pages

123

32 H. Khosravi, E. Kabir

References

1. Abdelazim, H.Y., Hashish, M.A.: Arabic reading machine. In:
Proceedings of the 10th National Computer Conference, Jeddah,
pp. 733–744 (1988)

2. Al-Shoshan, A.I.: Arabic OCR based on image invariants. In: Pro-
ceedings of the International Conference on Geometric Modeling
and Imaging—New Trends, pp. 150–154 (2006)

3. Amin, A.: Off-line Arabic character recognition: the state of the
art. Pattern Recognit. 31(5), 517–530 (1998)

4. Azmi, R., Kabir, E.: A new segmentation technique for omnifont
Farsi text. Pattern Recognit. Lett. 22, 97–104 (2001)

5. Cheung, A., Bennamoun, M., Bergmann, N.W.: An Arabic optical
character recognition system using recognition-based segmenta-
tion. Pattern Recognit. 34, 215–233 (2001)

6. Ebrahimi, A., Kabir, E.: A pictorial dictionary for printed Farsi
subwords. Pattern Recognit. Lett. 29(5), 656–663 (2008)

7. Freund, Y., Schapire, R.E.: Experiments with a new boosting algo-
rithm. In: International Conference on Machine Learning, Bari,
Italy, pp. 148–156 (1996)

8. Gouda, A.M., Rashwan, M.A.: Segmentation of connected Arabic
characters using hidden Markov models. IEEE International Con-
ference on Computational Intelligence for Measurement Systems
and Applications, USA pp. 115–119 (2004)

9. Houle, G., Shridhar, M.: Handwritten word recognition with
OCR-based segmenter. In: Proceedigns of the Workshop on Doc-
ument Image Analysis, pp. 51–58 (1997)

10. Khosravi, H., Kabir, E.: Introducing a very large dataset of hand-
written Farsi digits and a study on their varieties. Pattern Recognit.
Lett. 28(10), 1133–1141 (2007)

11. Khosravi, H., Kabir, E.: Introducing two fast and efficient features
for Farsi digit recognition (in Farsi). Machine Vision and Image
Processing, Mashhad, pp. 1126–1131 (2007)

12. Khosravi H., Kabir, E.: Farsi font recognition based on Sobel-
Roberts features. Pattern Recognit. Lett. (Under Review) (2008)

13. Kimura, F., Shridhar, M., Chen, Z.: Improvements of a Lexicon
directed algorithm for recognition of unconstrained handwritten

words. In: Proceedings of 2nd ICDAR Conference, pp. 18–22
(1993)

14. Kurdy, B., AlSabbagh, M.: Omnifont Arabic optical character
recognition system. In: Proceedings of International Conference
on Information and Communication Technologies: From Theory
to Applications, pp. 469–470 (2004)

15. Levenshtein, V.: Binary codes capable of correcting deletions,
insertions, and reversals. Sov. Phys. Doklady 10(8),707–710
(1966)

16. Mansoory, S., Hassibi, H., Rajabi, F.: A heuristic Persian hand-
written digit recognition with neural network. In: The 6th Iranian
Conference on Electrical Engineering, pp. 131–135 (1998)

17. Mehran, R., Pirsiavash, H., Razzaziy, F.: A front-end OCR for
omni-font Persian/Arabic cursive printed documents. Digital Imag-
ing Computing: Techniques and Applications, pp. 385–392 (2005)

18. Menhaj, M.B., Adab, M.: Simultaneous segmentation and recog-
nition of Farsi/Latin printed texts with MLP. In: International Joint
Conference on Neural Networks, pp. 1534–1539 (2002)

19. Nabavi, S.H., Ebrahimpour, R., Kabir, E.: Recognition of handwrit-
ten Farsi digits using classifier combination. In: Third Conference
on Machine Vision, Image Processing and Applications, Tehran,
pp. 116–119 (2005)

20. Nashida, H., Mori, S.: An Algebraic approach to auto-
matic construction of structured models. Pattern Anal. Mach.
Intell. 15(12), 1298–1311 (1993)

21. Parhami, B., Taraghi, M.: Automatic recognition of printed Farsi
texts. Pattern Recognit. Lett. 14, 395–403 (1981)

22. Sarfraz, M., Nawaz, S.N., Al-Khuraidly, A.: Offline Arabic text
recognition system. In: Proceedings of International Conference
on Geometric Modeling and Graphics, pp. 30–35 (2003)

23. Soltanzadeh, H., Rahmati, M.: Recognition of Persian handwritten
digits using image profiles of multiple orientations. Pattern Recog-
nit. Lett. 25(14), 1569–1576 (2004)

24. Yazdi, S.A.B., A’rabi, B.N.: Printed Farsi text recognition with
simultaneous use of HMM. In: Dynamic Programming and SVM
(in Farsi), Machine Vision and Image Processing, Mashhad
(2007)

123

	A blackboard approach towards integrated Farsi OCR system
	Abstract
	1 Introduction
	2 Farsi script specifications
	3 System architecture and knowledge sources
	3.1 KS 1: statistical features
	3.2 Classifiers and features
	3.3 KS2, KS3: font and language confidences
	3.4 KS4 sign classifier
	3.5 KS5: Isolated character classifier
	3.6 KS6: segmentation and recognition
	3.7 KS7: writing direction
	3.8 KS8, KS9: vocabulary and confusion matrix

	4 An example
	5 Experimental results
	6 Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

