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Abstract Today’s digital libraries increasingly include not
only printed text but also scanned handwritten pages and
other multimedia material. There are, however, few tools
available for manipulating handwritten pages. Here, we ex-
tend our algorithm from [5] based on dynamic time warping
(DTW) for a word by word alignment of handwritten doc-
uments with (ASCII) transcripts. We specifically attempt to
incorporate language modelling and parameter training into
our algorithm. In addition, we take a critical look at our eval-
uation metrics. We see at least three uses for such alignment
algorithms. First, alignment algorithms allow us to produce
displays (for example on the web) that allow a person to eas-
ily find their place in the manuscript when reading a tran-
script. Second, such alignment algorithms will allow us to
produce large quantities of ground truth data for evaluating
handwriting recognition algorithms. Third, such algorithms
allow us to produce indices in a straightforward manner for
handwriting material. We provide experimental results of
our algorithm on a set of 100 pages of historical handwrit-
ten material–specifically the writings of George Washing-
ton. Our method achieves average F-measure values of 68.3
on line by line alignment and 57.8 accuracy when aligning
whole pages at time.

Keywords Aligning handwriting and transcript · Dynamic
Time Warping

1 Introduction

A number of today’s digital libraries contain handwritten
material. Some of these libraries include both handwritten
material and ASCII transcripts. An example of such a
digital library is the Newton Project (http://www.newton
project.ic.ac.uk) that proposes to create ASCII transcripts
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for Newton’s handwritten manuscripts. Such historical
manuscripts are hard to read. A word by word alignment
of the transcript and the handwritten manuscript would
allow a person to easily read the manuscript. It would also
allow him or her to find their place in the manuscript using
the transcript. For example, one could display both the
manuscript and the transcript and whenever the mouse is
held over a word in the transcript, the corresponding word
in the manuscript would be outlined using a box.

Such alignments have other applications. One such ap-
plication is the ability to create ground truth data for evalu-
ating handwriting recognition and retrieval algorithms [11].
Effectively producing ground truth data for large collections
of handwritten manuscripts is a manually intensive and la-
borious process that requires a person to first create a tran-
script based on the entire manuscript and then label indi-
vidual words. The process of labelling can be avoided if
alignment algorithms are available. Alignment also allows
us to create an index for the manuscript. Specifically, this
allows one to search the manuscript by searching its ASCII
transcript. The alignment can then be used to highlight the
search terms in the manuscript (as is done with conventional
text search engines).

Creating such alignments is challenging since the
transcript is an ASCII document while the manuscript page
is an image. Handwriting recognition is not accurate enough
to recognize such large vocabulary historical document
collections. We therefore propose an alternative approach
to aligning such material. The handwritten page image is
automatically segmented. Features (for example box and
text position, aspect ratio etc) are then computed for both
the transcript and the page image. An algorithm based on
dynamic time warping (DTW) is then used to align the
words on the page image and the transcript. We compute
alignments for whole pages and also for situations in which
one can assume that the beginning and end positions of
lines are known. We show results on a set of 100 pages from
George Washington’s handwriting.

Alignment is difficult because every step in the above
mentioned approach produces errors. Segmentation of hand-
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writing is known to cause errors–both over and under
segmentation occur. Since our corpus consists of scanned
images of old historical documents, there are even more
errors. In addition, the alignment algorithm itself produces
errors.

Our prior work [5] consisted of using a DTW model
for performing alignment. It assumed that images must be
aligned with ASCII text from the transcript. In this paper
our research is extended in several ways. First, we take a
closer look at the estimation of our DTW features. Sec-
ond, we introduce language modelling into our framework
by adapting methods described in [4]. Third, we train values
for feature weights and local path costs. Fourth, we exam-
ine the possibility of using a more complex local continuity
constraint. Fifth, we introduce one more evaluation measure
and provide empirical analysis of our proposed evaluation
measures. Finally, we report results on a larger number of
documents (100 vs. 70).

The remainder of this paper is organized as follows.
Section 2 discusses related work and how our approach dif-
fers. We then continue by formally defining the problem and
notation used for the rest of the paper in Sect. 3. In Sect. 4 we
discuss the format of our data. Several baseline algorithms
are discussed in Sect. 5. Section 6 goes over different eval-
uation metrics for the alignment tasks. Our DTW algorithm
is described in Sect. 7. We conclude with experimental re-
sults in Sect. 8 and our conclusions along with a discussion
of future research paths in Sect. 9.

2 Previous work

2.1 Historical documents

Very little research has been done on aligning transcripts of
historical documents. As far as we know few people have ex-
amined the problem of aligning transcripts with handwritten
documents.

Tomai et al. [14] investigated aligning transcripts with
handwritten documents. The method they propose is to limit
the lexicon of a handwriting recognizer by using the tran-
script. A ranked list of possible words from the lexicon is
returned for each recognized word image. Several different
likely segmentations of a line are made. The segmentation
that has the highest probability given the transcript and pre-
vious alignments is then used. If a mapping cannot be per-
formed with high enough confidence for a word then it is left
out.

Tomai et al. give a figure of 82.95% accuracy in map-
ping words to a page. However, this figure makes certain
assumptions. First they exclude 32 of the 249 words due to
their “extreme noisiness”. Including all words, their accu-
racy is roughly 72%. Second, they mention that of the 180
words they map, 17 are exactly mapped and 163 ‘roughly
mapped’. In the absence of other information, we are un-
able to decide what the term ‘roughly mapped’ means and
will assume that all 180 words were accurately mapped from

transcript to manuscript. Finally, the results are reported for
a single page of handwriting.

There has also been work in the areas of Automatic
Speech Recognition (ASR) [12] and machine translation [4]
on alignment. We note that these problems are somewhat
different. For example, in machine translation, the alignment
is between ASCII text in two different languages and addi-
tional constraints in terms of dictionary and grammar are
available that are not available for word images.

2.2 Optical character recognition (OCR)

The document recognition community [2] has done research
into aligning transcripts with machine printed documents for
the purposes of creating ground truth.

For example [2] tries to find a geometric transformation
between the document description and the image of the doc-
ument which minimizes a cost function. This technique as-
sumes that along with the transcript there is a page descrip-
tion that denotes where the words in the transcript appear
on the page. The most information that might be available
in existing transcripts of historical documents is where line
breaks occur. This limited information does not appear to be
sufficient to make use of the algorithm proposed.

Another technique was proposed by Ho and Nagy [1].
Their proposed algorithm uses a predefined lexicon to help
recognize characters. Ho and Nagy’s algorithm is to seg-
ment a printed page into individual characters and cluster
each of the segments. After clustering, character labels are
assigned to the clusters by finding mappings that maximize a
v/p ratio. The v/p ratio measures how well a set of mappings
matches the lexicon. This technique is not directly appli-
cable to our task because in general segmenting individual
characters from handwritten manuscripts is very difficult.
However, the idea of using the word-level language model
from the transcripts to make assignments is appealing and
similar to that of [4] which we use in this paper.

3 Problem definition and notation

Given a digitized image of a page Di (the set of all pages is
denoted by D) we generate a segmentation β(Di ) that pro-
duces a vector of word images {b0, b1, . . . , bM }. For clarity,
a segmentation actually produces bounding boxes for a dig-
itized image, the pixels within a bounding box comprise a
word image. We also have a transcript Ti that is a vector
of ASCII words {w0, w1, . . . , wN } for each page. For each
bm ∈ β(Di ) we wish to select a set Wm of words from the
transcript (Wm ⊆ Ti ∪ {}) such that Wm contains the ASCII
equivalent to what is represented by the word image bm . An
example of a handwritten page and a perfect alignment for
the page is shown in Fig. 1.

When performing alignment we can view a segmented
document β(Di ) as containing multiple lines. Transcripts,
however, might not contain such line breaks. In general,
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Fig. 1 Handwritten page and perfect alignment

when we refer to β(Di ), we view the entire document as
one long line. This is accomplished by placing each suc-
cessive line at the end of the previous line. For example, if
we have two lines {b1, . . . , bn} and {bn+1, . . . , bm}. We ad-
just every bounding box in {bn+1, . . . , bm} to have the same
baseline (y-coordinate) as the first line ({b1, . . . , bn}) and ad-
just the starting x-coordinate of each box in the second line
by adding the x-coordinate of the end of image bn .

Sometimes transcripts will have line break informa-
tion. In this case, it is useful to remove the abstraction
of a single long line and refer to specific lines. We de-
note this as λl(β(Di )) where l indicates that we are in-
terested in only the bounding boxes on the lth line. Sim-
ilarly λl(Ti ) denotes we are interested only in the ASCII
words on the corresponding line l of the transcript. |λ(x)|
gives the count of lines in either transcript or segmentation
data.

4 Data

Our data consisted of 100 digitized pages from George
Washington’s archive. For each page we have two different
types of segmentations with annotations and a line aligned
transcript.

Table 1 Number of bounding boxes and lines in our evaluation data

Segmentation Number of boxes Number of lines

Automatic (βauto) 25,213 3,379
Manual (βhand) 24,671 3,425

4.1 Segmentation (β)

The segmentation produces a list of bounding boxes that
when applied to the image should isolate all the pixels that
are part of a single word. For each bounding box we have
the coordinates that defines a rectangle and an indicator of
the line in the digital image the bounding box occurs on.
The two different types of segmentation are described below.
Figure 2 shows each type of segmentation. Table 1 contains
the number of boxes and lines in the segmentations for the
100 pages.

Automatic segmentations (βauto) Automatic segmenta-
tions are those generated automatically by a program
that is an improved version of [8] described in [7].
These segmentations are not perfect and can contain
four different types of mistakes:
1. Bounding boxes will sometimes be placed around ar-

tifacts on the page that are not real words.
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Fig. 2 An example of automatic and manual segmentation

2. Some words might have no bounding boxes placed
around them.

3. Bounding boxes are sometimes placed around more
then one word (under segmentation).

4. A word can sometimes be split into more then
one bounding box (over segmentation), or only be
partially included in a bounding box.

Manual segmentations (βhand) Manual segmentations are
corrections of automatically segmented pages. For each
page an annotator corrected the automatic segmenta-
tions to create a one-to-one and onto mapping of words
from the transcript to bounding boxes. Words in this
case are strings made from all alphanumeric charac-
ters. It is important to note that with manual segmen-
tations, alignment is trivial. We only use these segmen-
tations for validating different aspects of our system.
That is, the manual segmentations are considered ground
truth.

4.2 Annotations (A[β(D)])
Annotations consist of vectors of ASCII strings for each
bounding box in a segmentation. These labels provide us
with the true value of the contents of each bounding box,
that can be used to evaluate how well or poorly an alignment
algorithm works.

For manually segmented documents an annotation is
simply the ASCII text equivalent of the word in the bounding

box. Automatically segmented pages have a slightly richer
representation to account for possible errors in the segmen-
tation. For each bounding box that contains one or more
words, the string labels are the exact text that is located
within the bounding box (if a bounding box only covers part
of a word, only the part covered is included). If a bounding
box only contains part of a word, then in addition to exactly
what is contained inside the box, we also record the com-
plete word that was split by the box.

4.3 Transcripts (T )

A transcript is an ASCII text file consisting of text that corre-
sponds to a specific page. Each file is aligned in parallel, on
the line level, with the two different segmentations above. A
transcript for a document is the same thing as an annotation
for a hand segmented document image with some additional
punctuation. It contains an exact match for the text in the
document image.

Figure 3 contains an example transcript for the three
lines contained in Fig. 2.

Fig. 3 Example transcript
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5 Baseline algorithms

Baseline algorithms are fairly simple, naive algorithms that
give us a reference point for determining how well our algo-
rithm performs.

5.1 Linear alignment

Linear alignment is the simplest possible type of align-
ment one can imagine. If we have a set of bounding boxes
{b1, . . . , bM } and a set of transcript words {w1, . . . , wN } we
can do a forward alignment by assigning wi to bi where
1 ≤ i ≤ min(M, N ). Alternatively, we can start from the
end of the document and move to the beginning by assign-
ing wN−i−1 to bM−i−1 where 1 ≤ i ≤ min(M, N ). Note
that when N �= M , these techniques leave some words or
bounding boxes unassigned.

5.2 Alignment using character position

Alignment using character position is done by aligning
words and bounding boxes by calculating a normalized char-
acter position for either boxes or words and then finding the
closest word to the position in the other set. In contrast to lin-
ear alignment, we are now trying to align words and boxes
based on their length, rather than counting from the begin-
ning or end. We define

XXX start(b)(b)(b) The starting x-coordinate of the bounding box for
word image b.

XXX end(b)(b)(b) The ending x-coordinate of the bounding box for
word image b.

YYY top(b)(b)(b), YYY bottom(b)(b)(b) The corresponding quantities for the y-
coordinate.

µµµ({bbbiii , . . .,bbbi+ni+ni+n}) is the width of a set of images and is
equal to Xend(bi+n) − Xstart(bi ). Note that if n = 0
then this definition is simply the width of the word
image bi . In addition, by defining width in this way, for
any value of n ≥ 1 spaces between word images are
included in the width. The rationale behind this method
of calculating width is that it will still provide accurate
position estimates even if a word fails to be segmented
as long as a mistake was not made at the beginning or
end of a line.

The alignment can work in one of two ways, either from text
to images or from images to text.

When aligning from text to images we calculate for each
w1, . . . , wN the character position (CP(w j )) as:

CP(w j ) =
∑ j

i=1(|wi | + 1)

µ({w1, . . . , wN }) (1)

We then multiply CP(w j ) by µ({b1, . . . , bM }). The result-
ing product, p j , is a position somewhere in the interval

0 ≤ p j ≤ µ(b1, . . . , bM ). Box bl is assigned to word
w j if position p j lies somewhere within the box i.e. such
that Xstart(bl) ≤ p j ≤ Xend(bl). If p j falls between two
bounding boxes, then it is assigned to the closest of the
two boxes bl+1, bl by computing (argb min(Xstart(bl+1) −
p j , p j − Xend(bl))).

Alignment can also be performed by calculating the esti-
mated character position in the images and multiplying it by
the character width to get the position. The ratio is calculated
as:

CP(b j ) = Xend(b j )

µ({b1, . . . , bM }) (2)

We then multiply by the width of the transcript
(µ({w1, . . . , wN })). The resulting product is a character po-
sition. If the character happens to be the space we arbitrarily
pick the word preceding the space as the one to assign to box
b j .

5.3 Upper bound alignment

In upper bound alignment we try to assign the correct word
with the correct box. Note that if a bounding box encir-
cles two words, this alignment causes both ASCII words
to be assigned to this box. This measure allows us to see
what the maximum value of an evaluation metric we can
expect, without performing the more complicated task of
splitting ASCII words. It is generated automatically by as-
signing the complete word annotations to each box (see
Sect. 4.2).

6 Alignment evaluation

Evaluation of the alignment is not straightforward. Evalu-
ation metrics vary depending upon the goal of the align-
ment. For instance, if we are interested in generating train-
ing data for other handwriting recognition or retrieval al-
gorithms, then we wish to have exact annotations for each
bounding box. Alternatively, to build an index directly from
alignments and use it for retrieval, a less strict measure
might give a better idea of the results we can expect when
conducting retrieval. Described below are four different
evaluation methods that we use to evaluate alignments we
generate.

Our evaluation measures are all defined by giving a
score, on a bounding box level and then averaging this score
for all of the bounding boxes in all of the documents.

6.1 Exact matching (σexact)

For b j ∈ β(Di ) of a document we have an annotation, S j ∈
A[β(Di )], and an alignment vector W j (the words assigned
to b j ). Exact matching gives a point (1) for b j if |S j | = |W j |
and ∀i : {1 ≤ i ≤ |S j |}si = wi . That is, the two strings
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are equal if they are the same length and all corresponding
characters are equal. So

σexact(b j )=
{

1 |S j |=|W j |, ∀i : {1 ≤ i ≤ |S j |} si =wi

0 otherwise
(3)

Exact matching is very strict. For a perfect score, it re-
quires algorithms to not only give a reasonable alignment,
but to trim words from the transcript to fit poorly segmented
words and split words if a segmentation splits the word.
This type of measure is probably best used when evaluat-
ing alignments for use as training data for other retrieval
methods.

6.2 Edit distance matching (σED)

Exact match is a rigorous evaluation measure, and might
not be suited to all applications of the alignment algorithm.
We therefore propose a more relaxed definition of what
it means to get an alignment for a bounding box correct.
If we concatenate the strings in both our annotation for
a bounding box and the aligned text for the box we can
then use the value returned by Eq. (4) for the two result-
ing strings to judge if a bounding box has the correct text in
it.

σED(s1, s2) =
{

1 max(|s1|, |s2|)/2 > ED(s1, s2)

0 otherwise
(4)

where ED(s1, s2) is the edit (Levenshtein) dis-
tance [6] between the two strings (s1 and s2). The
edit distance between two strings is given by the
recurrence:

ED(“”, “”) = 0

ED(s, “”) = ED(“”, s) = |s|

ED(s1 + c1, s2 + c2) = min




ED(s1, s2) + ε(c1, c2),

ED(s1 + c1, s2) + 1,

ED(s1, s2 + c2) + 1




where c1, c2 are characters, s is a string and ε(c1, c2) re-
turns zero if the characters are equal and 1 otherwise.
Edit distance matching is more relaxed then exact match-
ing. By counting bounding boxes as correct if the words
mostly match (the edit distance is less than half of the max-
imum of the lengths of the strings which are compared),
it better reflects the case of using alignments for direct re-
trieval. It also give a little bit of leeway in case of an-
notation and transcript discrepancies caused by typograph-
ical errors in the creation of either set. So if we define
κ({st1, . . . , stn}) to be the concatenation of a set of strings
then

σED(b j ) = σED(κ(S j ), κ(W j )) (5)

6.3 Precision-recall and F-measure
(σPrecision, σRecall, σF-measure)

Recall and precision are measure commonly used in the in-
formation retrieval domain. We can extend them to align-
ment evaluation by calculating each of the metrics on a
bounding box level. Precision is then defined as:

precision(S j , W j ) = |S j ∩ W j |
|W j | (6)

(the proportion of the words in the assignment that match
the annotation) and recall as:

recall(S j , W j ) = |S j ∩ W j |
|S j | (7)

the proportion of the words in the annotation that are
matched. So σPrecision(b j ) = precision(S j , W j ) and σRecall
(b j ) = recall(S j , W j ).

The F-measure is another commonly used metric used
for information retrieval. It was proposed to make compari-
son of systems easier by combining recall and precision into
a single number. The general F-measure is defined as:

σF-measure(b j ) = 1

α 1
σPrecision(b j )

+ (1 − α) 1
σRecall

where α is a constant that weights either precision and recall
depending on their relative importance in the evaluation. In
our case we use the standard setting of α = 0.5 so that:

σF-measure(b j ) = 2σPrecision(b j )σRecall(b j )

σPrecision(b j ) + σRecall

6.4 Tomai et al. evaluation

The evaluation metric that is used by Tomai et al. [14],
is slightly different in flavor then any of our proposed
evaluation metrics. Instead of looking at bounding boxes
and determining which words are placed correctly within a
given box, they look at each transcript word and determine
if the box it is mapped to contains the correct image. More
formally for each word-box pair (wi , bauto

j ), the mapping is

considered correct if wi = Sk ∈ A[βhand(Di )] and

Ytop
(
bauto

j

) ≤ Ytop
(
bhand

k

)
Ybottom

(
bauto

j

) ≥ Ybottom
(
bhand

k

)
Xstart

(
bauto

j

) ≤ Xstart
(
bhand

k

)
Xend

(
bauto

j

) ≥ Xend
(
bhand

k

)

Their score is calculated as the number of correct map-
pings divided by the size of the transcript. After careful con-
sideration we believe that Tomai et. al’s evaluation method
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does not provide a good metric for how we have defined
our task. Specifically, the constraints of the evaluation metric
that ensure boxes are placed correctly directly conflicts with
our notion of trying to determine which segments contain
multiple words. When we integrate our alignment and seg-
mentations systems (see Section 9) then this metric would
be directly applicable to give us more a more complete eval-
uation of the new system.

6.5 Averaging

For any of the measures above, we can average the evalu-
ation in three different ways. The first is over documents:
(10).

∑|D|
x=1

(∑|β(Dx )|
i=1 σ(bi )

|β(Dx )|
)

|D| (8)

That is, each page Di is weighted equally. Recall that D is
the set of handwritten document, Di is a page, λl(β(Di )) is
a line and bi is a word image. We can also weight each line
equally:
∑|D|

x=1

∑|λ(Dx )|
i=1 (

∑
by∈λi (βi (Dx )) σ (by))∑|D|

x=1 |λ(Dx )|
(9)

or each word image equally:

∑|D|
x=1

∑|β(Dx )|
i=1 σ(bi )∑|D|

x=1 |β(Dx )|
(10)

6.6 Stop words and evaluation

Evaluation depends upon the end-goal for our algorithm.
We must decide which word alignments are important to
us. For instance, when doing retrieval it is not important to
match stop words correctly (because most retrieval systems
remove them from a query in a preprocessing step). On
the other hand, when creating ground truth data, it is more
desirable to do well on all words in the document. We
therefore analyze not only the overall system performance,
but the performance after removing stop words from the
evaluation as well.

7 Dynamic time warping

Dynamic Time Warping (DTW) is an algorithm for aligning
two time series by minimizing the “distance” between them.
A time series is a list of samples taken from a signal, ordered
by the time that the respective samples were obtained. For
our alignment task, we view each ASCII word in a transcript
and each box in a segmentation as the samples that make up
the two time series we are concerned with.

Fig. 4 Two similar time series aligned via Dynamic Time Warping.
The lines between the two time series depict the assignment of corre-
sponding points between the two time series

Rather than mapping samples that have the same time
index to each other, DTW allows for the fact that one time
signal may be warped with respect to the other. An exam-
ple of an alignment for two series can be seen in Fig. 4.
The name Time Warping is derived from the fact that this
alignment “warps” the time axes of the two series so that
the corresponding samples more closely relate to our intu-
ition of what a good alignment should be. Intuitively what
this means is for each possible assignment of some wi to
b j we try to determine whether we should move forward in
one or both of the time series to make an optimum assign-
ment (one that minimizes cost) between subsequent sample
points. The actual set of positions we can move to in one
step of the algorithm is known as the local continuity con-
straint. In [5] we assumed that at each point we could either
move forward a single step in both the word images (β(Di ))
and in transcripts (Ti ), or one of them individually. This re-
quired that no word or word-image would be left out of the
alignment. In this work, we expand the local continuity con-
straint to allow for moves of both one and two in any direc-
tion (see Fig. 5 for a graphical depiction of this constraint).
Intuitively, this new constraint relaxes the original constraint
by allowing the algorithm to skip a box, word, or both in the
assignment process. This has the ability to aid in alignment
by possibly detecting if a word was never segmented or if
a word image contains garbage. Such occurrences are rare.

Fig. 5 A graphical depiction of the new local continuity constraint for
DTW (�). To find the minimum cost path for word-image i and a tran-
script word j the algorithm examines previous points along the path
that are a maximum of two units away along either axis
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For example, less than 1% of the words in a page are missed
for the word segmentation algorithm used here [7]. Consec-
utive occurrences–which would require two skips–are even
rarer and hence are not considered.

Let the DTW cost between two time series b1 . . . bM and
w1 . . . wN be DTW(M, N ). DTW(M, N ) is calculated us-
ing the following recurrence relation:

DTW(i, j) = min




DTW(i, j − 1) + ρ1

DTW(i − 1, j) + ρ2

DTW(i − 1, j − 1) + ρ3

DTW(i, j − 2) + ρ4

DTW(i − 2, j) + ρ5

DTW(i − 2, j − 2) + ρ6

DTW(i − 1, j − 2) + ρ7

DTW(i − 2, j − 1) + ρ8




+ d(bi , w j ) (11)

where d(bi , w j ) is our sample-wise cost measure:

d(bi , w j ) =
|δ|∑

k=1

ηk ∗ δk(bi , w j ) (12)

δk(b, w) is the kth word-box cost feature used (see Sect. 7.2)
and ηk is a weight for the feature. The ρ’s are costs associ-
ated with moving in the given direction of the warp. The
directional costs (ρx ) are present to protect against the DTW
algorithm skipping as many points as possible to minimize
cost. Additionally, the directional costs can be useful in both
the original and new continuity constraints, by biasing the
algorithm to move in a given direction. Both the ηs and ρs
are determined by training (see Sect. 7.1).

7.1 Training

We used the Downhill-Simplex Algorithm ([9]) for training
all the weights in our system (η and ρ). Downhill-Simplex
is essentially a form of hill-climbing. It seemed well suited
to our task for two reasons. First, it does not require explicit
knowledge of the gradient. Second, it converges relatively
quickly when compared with other learning techniques such
as genetic algorithms. We used the F-measure (see Sect. 6)
evaluation technique as an objective function for Downhill-
Simplex.

An important aspect of DTW is that we constrain how
much each of the time axes can be warped. This has a
twofold effect. First, it reduces computation time for the al-
gorithm. Second, it disallows large warps. By a large warp,
we mean either assigning a single word to a large num-
ber of boxes, or a large number of words to a single box.
This constraint is known as a global path constraint. There
are a variety of ways that the global path constraint can be
implemented. We chose to use the Sakoe–Chiba [13] band
constraint that simply limits how far off the diagonal an
alignment can move (see Fig. 6). The algorithm must sat-
isfy both the global path constraint and the local continuity
constraints. So for example, positions which satisfy the local

Fig. 6 Sakoe–Chiba path constraint with width r on the dynamic pro-
gramming table. (1, 1) indicates the first point evaluated in the dynamic
program. (|Ti |, |β(Di )|) is the final point evaluated in the dynamic pro-
gram (i.e. the end of both the text transcript and the segmentation).
Only points within the shaded regions are evaluated in the dynamic
program

continuity constraints will be eliminated from consideration
if they lie outside the Sakoe–Chiba band.

Pseudocode for the algorithm is given in Fig. 7. Assign-
ments are made by back tracking through the dynamic pro-
gramming table starting at point (|Ti |,|β(Di )|) and finding
the preceding minimum point as defined by the recurrence.

7.2 Word-box features

Word-box features are used in calculating the cost of assign-
ing a word to a given bounding box in DTW. Any combina-
tion of the features listed below can be used when running
dynamic time warping. We used two distinct types of fea-
tures. The first type relies on computing scalar features over
the word images and ASCII text. Once we have feature val-
ues corresponding to each word in the transcript and image
in the segmentation, we can then calculate the cost of any
word-box pair using a suitable cost measure. In this case δk
from Eq. (12) is defined as cost( fk(wi ), fk(b j )) where fk is
a feature below and cost is a cost function. There are many
possible cost functions that can be used. [5] determined that
in general an absolute difference (cost(x, y) = |x − y|)
works best.

Aspect ratio For an image b we calculate the aspect ratio as
Ybottom(b)−Ytop(b)

µ(b)
. There are two possible ways to calculate

aspect ratio for text. The first is by rendering the text
in a script font and performing the computation on the
bounding box of the rendered word. The second is to
take the height of a word to be constant and divide by
the number of characters in the word.

Width For a word image width is calculated as
µ(b j )∑

b∈β(D) µ(b)
.

Similar to aspect ratio, there are two methods for calcu-
lating the width of ASCII words. The first is by rendering
all the words and performing the computation on the ren-
dered text images. The second is to use character count
as the width, and perform the normalization based upon
the total number of characters in the transcript.
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Fig. 7 Pseudocode for DTW (adapted from [15])

Character position We use Eqs. (1) and (2) to compute
character positions. An alternative to calculating ASCII
character position is to render all the words and use the
analogue of Eq. (2) on the rendered words.

Ascender count Some characters have ascenders that ex-
tend above other characters. For instance capital letters,
“l” and “d” have ascenders. An estimation technique
[3] is used to try to determine the number of ascen-
ders for a word image. Characters with ascenders can be
directly counted for words from the transcript. All val-
ues are normalized to be between 0 and 1 with a mean
of 0.5.

Descender count Some letters have descenders that extend
below the baseline. For instance, “g” and “y” have de-
scenders. The same techniques for finding ascenders is
used for finding descenders in images and words. All val-
ues are normalized to be between 0 and 1 with a mean of
0.5.

The second type of cost feature does not explicitly ex-
tract two scalar values that can be compared with a simple
cost function. Instead the cost for assigning a given word to
an image is more complex. Two features we looked at were:

Stop word matching Stop word matching (SWM) gives a
fixed penalty if we believe a word image contains a
stop word (“a”, “the”, etc.) and the corresponding ASCII
word is not aligned with the image. We target stop words
because a relatively small number occur with a high fre-
quency through out English documents. Our belief of the
contents of a word image is based on trained clustering
of all word images offline. More specifically we have a
set of labeled clusters C such that c ∈ C has a label rep-
resenting the words in the cluster (i.e. “the”, “a”, etc). c
is composed of a set of word images. δS(wi , b j ) is de-
fined as follows: if ∃c ∈ C such that b j ∈ c then if
wi �= label(c) add a fixed penalty. Otherwise add zero.
Clustering for stop word matching was done as follows:

1. Randomly arrange all word images we wish to clus-
ter.

2. Using training data, build a cluster for each of the
words we are interested in recognizing. We choose
the most frequently occurring words that comprise
50% of the corpus. This is feasible due to the Zipfian
distribution of documents in the English language.

3. Take the next image, bi , to calculate its distance
from each cluster: Find minc∈C (dist(bi , ψ(c))) and
argc minc∈C (dist(bi , ψ(c))). Where dist is the DTW
distance [10] between the centroid of the cluster,
ψ(c), and the image.

4. If the distance in step 3 is less then a threshold γ (ob-
tained through experimentation) then assign the im-
age bi to cluster c and update the centroid. Otherwise
discard the example.

5. If there are more images to cluster go to step 3.

Word co-occurrence model We attempt to model the co-
occurrences between word images and transcript words
as an additional feature for our DTW algorithm. We
adapt the algorithm proposed by Kay and Röscheisen [4]
for our task. The original algorithm is meant for align-
ing sentences in a pair of parallel corpora of text in two
different languages. To adapt the algorithm for our pur-
poses we first need a vocabulary of visterms (a labeling
of word images that allows us to refer to similar word
images by the same label) to describe the word images.
Creating visterms was accomplished by using untrained
clustering. The untrained clustering algorithm is the
same as that used for SWM with the exception that if
the word image is not added to an existing cluster, a new
cluster is added to the pool of clusters with its centroid
set to the value of the word-image. Our visterm vocabu-
lary then consists of cluster labels (each label is an arbi-
trarily assigned number for each cluster).

A second consideration when adapting the algorithm
for our needs was how to determine sentence boundaries.
A priori we have no knowledge of sentence boundaries
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in β(Di ) With transcripts we might have the necessary
punctuation but it is possible that some documents may
have been transcribed without punctuation. Another pos-
sibility might be to consider a line as a sentence, but in
general as mentioned above transcripts might not have
line boundary information. To solve this problem we say
that every sentence is simply a unigram from either the
transcript (a single word) or the document image (a sin-
gle segment).

The algorithm [4] is an iterative process where in each
iteration we make a hypothesis about which words from
the parallel corpora correspond to one another. We then
use these assignments to narrow down the choice of
other possible assignments in the next iteration. The al-
gorithm works as follows:

1. Enumerate all of the possible assignments of words
to word images subject to a skew constraint and fixed
points.

The skew constraint limits the range of possible
assignments by making the assumption that words
and their corresponding word images are less then a
certain distance away. Specifically the constraint en-
forces that for a possible assignment of a word wi to
a word image b j the following must hold | j −i | ≤ µ.
µ is the possible skew between the two corpora. The
constraint is analogous to the global path constraint
in DTW.

Fixed points include page boundaries and corre-
spondences between words and word images deter-
mined in an earlier iteration of the algorithm. Fixed
points add an additional limitation on possible as-
signments. The limiting is achieved by further prun-
ing possible assignments subject to the constraint
that an assignment does not cross a fixed point. For
example, consider a fixed point (x, y) (where x and y
are indices of a word and visterm respectively) there
are no possible assignments wi , b j where i ≤ x and
j > y or vice versa.

2. For each word-visterm pair find the likelihood that
the word and visterm correspond. Afterwards prune
unlikely word-visterm pairs and create a list sorted
by descending correspondence likelihood.

For every word-visterm pair, (lm, vn), where lm is
a word in the lexicon of T and vn is a visterm created
by clustering, calculate the statistical similarity of the
pair. Similarity is calculated by:

ω(lm, vn) = 2ξ

NT (lm) + Nβ(vn)
(13)

where ξ is a count of the number of times the word
and its visterm might co-occur throughout the entire
corpora (as determined by the possibilities that were
enumerated in Step 1), and NJ (x) is the frequency of
x in corpus J .

Eliminate all word-visterm pairs which are below
a threshold. In order to find high-quality correspon-
dences we use a threshold of τ standard deviations

from the mean similarity of all word pairs, where τ
is an adjustable parameter of the algorithm.

In addition to the thresholding we impose the re-
quirement that all word pairs (lm, vn) satisfy the fol-
lowing condition: Nβ(vn) > 1, NT (lm) > 1. This
constraint eliminates singleton pairs. This is neces-
sary because every singleton word-visterm pair has
a similarity (ω) of 1.0, so by including them one is
almost guaranteed to generate spurious matches.

After calculating and culling word-visterm pairs
we group them together by the frequency of words
(NT (lm)). In our implementation we had three
groups, one for NT (lm) ≥ 35, one for 35 >
NT (lm) ≥ 10 and one for 10 > NT (lm) The num-
bers are estimated by looking at a Zipfian distribu-
tion of the words in the transcript. 35 is close to the
knee. The 10 is much lower down and is a conserva-
tive estimate since some of the corresponding boxes
in the word image may be broken up. Within each
group word-visterm pairs are sorted by descending
similarity. Intuitively the different groups are a mech-
anism for providing different levels of confidence in
the similarity score. For words with high frequencies
we are more confident that our estimates of their sim-
ilarities are accurate. In contrast, words with lower
frequencies are more likely to co-occur as a random
event. Therefore, the final step in making the list is to
simply order the groups from highest to lowest fre-
quency and save the result.

3. Extract possible assignments from the list created in
Step 2.

Read through the list sequentially, for each word-
visterm pair identify the possible assignments from
Step 1 that correspond to the pair. Specifically for
a word-visterm pair (lm, vn) find all assignments
(wi , b j ) such that wi = lm and vn is the visterm for
b j . If all the assignments do not conflict (conflicting
means that an assignment crosses a fixed point as de-
fined in step 1) with any previous assignments, keep
the assignments for (lm, vn) .

4. Make all the assignments kept in Step 3 fixed points.
5. Iterate through steps 1 through 4 until no new entries

are added as alignments in Step 3. Once this occurs
lower τ . For our implementation we use 1.0 ≤ τ ≤
2.0.

After running this algorithm, we have a list of word-
visterm pairs. We then assign penalties using the same
method from Stop Word Matching for each word image
that is described by a visterm in the list.

8 Experiments and results

Our experiments consisted of performing alignments for
each transcript with both βauto and βhand. For each com-
bination of transcript and segmented image we tested line-
by-line (using line break information) alignment as well as
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Table 2 A comparison of evaluation metrics illustrated via several baselines

Upper bound Linear alignment (from front) Character position (β → T )

Exact match 81.6 55.0 45.3
Recall 81.9 54.3 45.8
Precision 81.9 57.8 48.4
F-measure 81.9 55.4 46.4
Edit distance 87.9 64 48.9

Table 3 A comparison of rendered and unrendered features using the F-measure

Rendered Unrendered

Line by line Page at a time Line by line Page at a time

Aspect ratio 56.0 35.1 45.9 8.8
Character position 62.4 6.8 61.9 6.7
Width 62 50.2 61.9 48.8

page at a time alignment (ignoring line break information).
We first determined which method (character based or ren-
dered) of computing aspect ratio, character position, and
width provided better features for DTW alignment. We con-
tinued by comparing Stop Word Matching and the Word Co-
occurrence Model as features. Afterwards, we attempted to
train weights (η) for each feature in the cost function. Fol-
lowing the training of weights we looked at the effects of
training directional path costs (ρ) in both the original con-
tinuity constraint (see [5]) and the extended constraint de-
scribed in Sect. 7. For all experiments we used fivefold cross
validation on 100 pages. We had separate training runs for
cases where we used line break information and those in
which we ignored line break information.

8.1 Metric comparison

Before discussing our experimental results an examination
of our different evaluation methods is in order. When exam-
ining the range of values of the different metrics discussed
in Sect. 6 we see some general trends. Experimental data
confirms our intuition about exact match and edit distance
metrics. Across the board the edit distance metric evaluates
alignments with the highest percentage correct. Also, the ex-
act match measurement tends, in general, to give the mini-
mum score for an alignment. In addition, precision, recall
and the F-measure techniques tend to be fairly close to one
another and end up being someplace within the range of ex-
act match and edit distance. For the remainder of the pa-
per we report results using the F-measure. The choice of
F-measure stems from two reasons. First, it is fair in the
sense that it is a median of our algorithm’s performance. It
is neither the maximum or minimum measure in any of our
experiments. Secondly, it encompasses both recall and pre-
cision giving a better idea of what can actually happen in the
system. Table 2 shows the different results that occur when
applying different metrics to three baseline alignment types.
Out of the different averaging methods we chose to use box
level averaging. The motivation for using this type of av-

eraging is ultimately we care most about how well we can
align the words with the boxes.

8.2 Rendered vs. unrendered features

In order to test which methods for calculating DTW fea-
tures, rendered or unrendered, were superior we tried run-
ning DTW using only a single feature. For each type of fea-
ture we tried both an unrendered and rendered version. The
results of these runs are summarized in Table 3. It is clear
that rendering text and calculating features based on the ren-
dering performs equal to or better than using the simpler
character based computations. We believe the difference is
particularly pronounced in the case of aspect ratio due to as-
cenders and descenders affecting the height component of
the measurement significantly.

8.3 Stop word matching vs. co-occurrence model

To evaluate the impact our two features that depend on clus-
tering we ran DTW using aspect ratio, width and character
position as features combined with either stop word match-
ing or co-occurrence features. We also performed alignment
runs using both stop word matching or co-occurrence fea-
tures and using neither, to evaluate how complementary the
two features are, and how much impact each provides.

As we can see from Table 4 stop word matching im-
proves performance by a higher degree (49.1 vs. 48.8). But
there is some benefit to using both models (an additional
0.4 of accuracy). We believe the overall impact of both fea-
tures is low due to poor clustering performance. Intuitively
the poor clustering also explains why stop word match-
ing performs better. Without accurate clustering the co-
occurrence algorithm would have a more difficult time find-
ing likely matches. However, inaccurate clustering would
simply cause some spurious identification of stop words,
which can be corrected by the other features included in
DTW.
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Table 4 A comparison of stop word matching and the co-occurrence model as features using the F-measure

Line by line Page at a time

Neither stop word or co-occurrence 67.1 48.2
Co-ocurrence 67.1 48.8
Stop word 67.2 49.1
Both 67.2 49.5

Table 5 F-Measure evaluation of basic alignment algorithms on aligning transcripts with automatically segmented pages

Normal Non stop words only

Line by line Page at a time Line by line Page at a time

Linear alignment (from front) 46.6 3.6 39.1 1.6
Linear alignment (from back) 43.1 7.1 33.3 1.9
Character position (T → βauto) 52.0 7.9 48.3 5.9
Character position (βauto → T ) 55.4 8.1 52.4 9.1
Upper bound 81.9 81.9 67.6 67.6

Table 6 Results (F-measure) of training on DTW

Normal Non stop words only

Line by line Page at a time Line by line Page at a time

No training 67.2 55.4 57.7 46.9
Feature weight training 67.2 56.3 57.5 47.5
Feature and path training 67.2 57.8 57.4 48.7
Feature and extended path training 68.3 55.8 56.4 48.1

8.4 ASCII (T ) to automatic segmentation (βauto)

The results of aligning transcripts with an automatically seg-
mented page using the base-line algorithms described in
Sect. 5 are presented in Table 5. These results are similar
with those presented in [5].

In [5] we noted that when using line break informa-
tion the character position feature helps performance but
if we do not have the information character position be-
comes a hindrance. Keeping this result in mind for the
rest of our experiments we include all features discussed
in Sect. 7.2, including character position when doing line
by line alignment. When doing alignment on pages with-
out line break information the same features are used except
that we omit character position. Where applicable we ap-
ply results from Sect. 8.2 and use rendered estimation for
features.

Table 6 summarizes the results of training. Using nor-
mal evaluation (evaluating all words) the results indicate
that training only helps the performance of the line by line
alignment when we use the extended continuity constraint.

Contrastingly, for alignment without line break informa-
tion training we see performance gains using training, but
the smallest gain is realized when using the extended path.
Whether we used line break information or not, the perfor-
mance on non-stop word alignment seems to be independent
of increases in overall system performance.

We also wished to determine to what extent our cluster-
ing performance affects our system performance. To deter-
mine this we eliminated cluster performance issues by using
perfect clustering (based on box labels). Table 7 shows the
results of retraining weights using features based upon the
perfect clustering. The results seem to indicate that when we
have line break information, an increase in clustering per-
formance will help only a small amount. However, when
aligning entire documents at a time we see a much larger
increase. Intuitively, this makes sense because with line by
line alignment we have break points which allow us to restart
the alignment from scratch. However, when aligning a page
at a time stop word matching and the co-occurrence model
serve as pseudo-breakpoints with which that algorithm can
in some sense restart itself from scratch.

Table 7 Results (F-measure) of training on DTW using perfect clustering for stop word matching and co-occurrence model

Normal Non stop words only

Line by line Page at a time Line by line Page at a time

No training 68.3 63.2 58.4 53.0
Feature weight training 70.0 65.5 59.7 54.7
Feature and path training 70.2 66.0 59.9 55.0
Feature and extended path training 70.0 65.9 59.4 54.9
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Table 8 Results (F-measure) of basic alignment algorithms on aligning transcripts with hand segmented pages

Normal Non stop words only

Line by line Page at a time Line by line Page at a time

Linear alignment (from front) 100.0 100.0 100.0 100.0
Linear alignment (from back) 100.0 100.0 100.0 100.0
Character position (T → βauto) 69.8 7.7 79.0 10.2
Character position (βauto → T ) 84.8 17.9 92.3 23.0
Upper bound 100.0 100.0 100.0 100.0

Table 9 Results (F-measure) of training on DTW with hand segmented pages

Normal Non Stop Words Only

Line by line Page at a time Line by line Page at a time

No training 99.8 93.8 99.8 93.6
Feature weight training 99.8 95.3 99.8 94.8
Feature and path training 99.8 98.9 99.8 98.6
Feature and extended path training 99.8 98.5 99.7 98.1

8.5 ASCII (T ) to manual segmentation (βhand)

When aligning transcripts to hand-segmented pages (see
Table 8) we did not retrain any parameters. If we had done
so we would expect that training weights on the path con-
straints would have simply forced the algorithm to take the
diagonal path on every occasion. DTW as before performs
very well on this task (see Table 9). Training enables page at
a time alignment to achieve an F-measure of 98.9 accuracy.

9 Conclusion and future work

Our DTW algorithm still outperforms any of the baseline
measures by a fair margin. Training helps increase this mar-
gin slightly more in the case of page at a time alignment.
But it seems that we need to augment the model to get
further system performance. It is possible that a different
local continuity constraint than the one presented in this pa-
per might help. In addition, different machine learning algo-
rithms might be able to find better feature and path weights.
More investigation is needed into both of these possibilities.

Our results show that for the page at a time approach
performance increases significantly with improvements in
clustering performance. Further investigations into cluster-
ing or other methods for recognizing very common words
will help improve our results further. In addition, it would
be helpful to start investigation into methods for splitting
words between boxes.

Ultimately, we still foresee the segmentation and align-
ment system working as an iterative process where each it-
eration refines the output, until no changes occur.

Further areas of research exist in trying to leverage im-
perfect transcripts of documents. For instance, it might be
more expedient to read historical documents out loud and
have an automatic speech recognition (ASR) system pro-
duce an ASCII transcript. Of course, ASR is not perfect and
will introduce errors in the transcript. Developing algorithms

to deal with the noisiness from both transcripts and segmen-
tations will be even more challenging than the problem ad-
dressed in this paper.

Another challenging task to be addressed in the area
of alignment is non-standard documents. For instance, it is
not clear that our techniques that assume documents consist
of prose, will also adapt to mathematical formulas and
diagrams.
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