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Abstract Evaluation of object detection algorithms is a
non-trivial task: a detection result is usually evaluated by
comparing the bounding box of the detected object with the
bounding box of the ground truth object. The commonly
used precision and recall measures are computed from the
overlap area of these two rectangles. However, these mea-
sures have several drawbacks: they don’t give intuitive infor-
mation about the proportion of the correctly detected objects
and the number of false alarms, and they cannot be accu-
mulated across multiple images without creating ambiguity
in their interpretation. Furthermore, quantitative and quali-
tative evaluation is often mixed resulting in ambiguous mea-
sures.

In this paper we propose a new approach which tack-
les these problems. The performance of a detection algo-
rithm is illustrated intuitively by performance graphs which
present object level precision and recall depending on con-
straints on detection quality. In order to compare different
detection algorithms, a representative single performance
value is computed from the graphs. The influence of the test
database on the detection performance is illustrated by per-
formance/generality graphs. The evaluation method can be
applied to different types of object detection algorithms. It
has been tested on different text detection algorithms, among
which are the participants of the ICDAR 2003 text detection
competition.
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1 Introduction

In the past, computer vision (CV) as a research domain has
frequently been criticized for a lack of experimental culture
[4, 8, 10, 17], which has been explained by the young age of
the discipline. However, experimental evaluation of the the-
oretical advances is indispensable in all scientific work. We
are currently trying very hard to establish a real experimen-
tal culture, and the need of strict experimental procedures
in applying and evaluating algorithms is widely recognized
[16, 17].

An important obstacle is the lack of common test
databases and ground truth, which makes the comparison
of different algorithms difficult. In some areas common
test databases did emerge, as for instance the Brodatz test
database for texture analysis, the NIST database for charac-
ter recognition etc. However, the tuning of image processing
algorithms to a small set of test databases is not undisputed.
As Bowyer et al. put it [4], “the world is rich enough to pro-
vide infinitely interesting imagery.”

For this reason, and because of their success in other dis-
ciplines, scientific competitions made their appearance dur-
ing the last years. We may cite for example the TREC Video
Track,1 a competition in the field of content based video in-
dexing organized by NIST and held annually. The goal of
the conference series is to encourage research in informa-
tion retrieval from large amounts of text and video sequences
by providing a large test collection, uniform scoring proce-
dures, and a forum for organizations interested in comparing
their results. The test collections are changed each year in
order to avoid specialization to a single test database.

In the field of document image analysis, the ICDAR page
segmentation competitions [3], the ICDAR text detection
competitions [13] and the GREC competition for line and
arc detection [21] should be mentioned (see Sect. 3).

The introduction of the evaluation problem coincides
largely with the emergence of the field of visual information
retrieval. As a consequence, the first techniques have been

1 http://www-nlpir.nist.gov/projects/trecvid
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naturally inspired by tools from this domain, as for instance
precision/recall graphs which are frequently used in infor-
mation retrieval. However, visual information has its own
specificities, which need to be taken into account. This is
the goal of this work.

In this paper we concentrate on the evaluation process,
more specifically on the design of evaluation measures.
Evaluation is a process which is often neglected by scien-
tists, who spend most of their valuable time conceiving the-
ories and designing solutions. However, in computer vision,
a successful evaluation algorithm is rarely simple to design.
Often it is necessary to conceive non-trivial algorithms in
order to ensure an evaluation satisfying scientific require-
ments:

• A simple and intuitive interpretation of the obtained
measures.

• An objective comparison between the different algo-
rithms to evaluate.

• A good correspondence between the obtained measures
and the objective performance of the algorithm to evalu-
ate, taking into account its goal.

The latter point is particularly important. Aloimonos and
Rosenfeld emphasize the purpose in CV [1]: “If we con-
sider biological organisms that possess vision, we find that
the visual system tends to be well matched to the environ-
ment of the organism and to the tasks that the organism per-
forms. The paradigm purposive vision suggests that pur-
pose should be a guiding principle in our study of vision.” If
we design CV systems according to a specific purpose, then
it should be natural that we evaluate their performance ac-
cording to this same purpose. This is the objective of “goal
oriented evaluation.”

A particular problem in computer vision, which has al-
ready given birth to a multitude of solutions is the problem
of detecting objects in images. In this document, we intro-
duce a new performance measure designed for the evaluation
of object detection algorithms. In this context, by detection
we also mean localization, thus tackling a two-part problem.
We keep the general evaluation framework independent of
the object type, defining an object as a visual entity with a
spatial reality, and illustrate the concepts with experiments
and examples from the field of text detection.

In the context of document image analysis, a similar
problem is the one of document page segmentation. As in
object detection, or more specifically in text detection, lists
of rectangles need to be compared in order to evaluate these
algorithms. However, although the two evaluation problems
may be similar from a theoretical viewpoint, practically we
need to emphasize some differences between page segmen-
tation and text/object detection:

• The density of relevant information (“generality”, see
Sect. 5) is higher for page segmentation problems. In text
detection, on the other hand, text areas are not so much
“classified” as “detected”, i.e. that there can be and will
be large areas which do not contain relevant material.
This difference results in different evaluation techniques,

which differ for instance in the way how the algorithms
treats detection quality and detection quantity.

• In the page segmentation context, regions are possi-
bly non-rectangular. The proposed evaluation algorithm,
based on a rectangle representation of object reasons, is
not applicable in this case.

The second point restricts the proposed evaluation systems
to objects which are well represented by rectangles, which
is the case for text, faces, people, generally speaking, com-
pound objects. We therefore focus on these kind of prob-
lems, which are mostly encountered when evaluating sys-
tems working on natural scenes and video, but also systems
which extract text from complex journals.

However, this is not the case for some other problems
encountered in document image analysis, notably curves as
lines and arcs. These objects may overlap, therefore a single
rectangle may contain several objects. While the general phi-
losophy of the proposed system is applicable, i.e., the sep-
aration of detection quality and quantity and its representa-
tion as graphs, the object matching part itself is restricted to
rectangle based representations.

The main contribution of this paper concerns the follow-
ing issues:

• The separation of detection quality and detection quan-
tity. New performance graphs allow us to easily perceive
the detection quantity (“how many objects have been
detected?” and “how many false alarms have been de-
tected?”) as well as detection quality (“how accurate is
the detection of the objects?”).

• The influence of the data base is evaluated, i.e., the rela-
tionship between the performance of the detection algo-
rithms and the structure of the image test database is put
forward. This makes it easier to grasp the advantage an
object detection algorithm might have when it is tested
on an image collection which a larger percentage of rel-
evant information.

• The derivation of a single performance value which does
not depend on quality related thresholds. Although this
performance value, by definition, does not allow us to
fully comprehend the behavior of a detection algorithm,
it makes it easier to create a ranking of the algorithms to
evaluate.

The reminder of this document is organized as follows.
Section 2 gives an introduction to the problem and presents
different evaluation modes on a hierarchy of different levels,
which is formed by the different possible result represen-
tations. Section 3 presents a survey on the previous work
on the evaluation of object detection algorithms. Section 4
introduces new performance graphs for an easy and intu-
itive interpretation of the detection performance as well as
a new performance measure. Section 5 demonstrates the de-
pendence of evaluation algorithms on the structure of the
test database and introduces a new evaluation graph which
illustrates this dependence. Section 6 applies the evaluation
measure to two different text detection algorithms and illus-
trates its intuitive usage. Finally, Sect. 7 concludes.
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2 Evaluation levels

Traditionally, object detection algorithms are evaluated us-
ing techniques developed for information retrieval systems.
More specifically, the measures of precision and recall are
widely used, since they intuitively convey the quality of the
results:

RIR = No. of correctly retrieved items

No. of relevant items in the database

PIR = No. of correctly retrieved items

Total no. of retrieved items

(1)

In order to have a single performance value for the ranking
of methods, the two measures are often linearly combined.
The harmonic mean of precision and recall has been intro-
duced by the information retrieval community [19]. Its ad-
vantage is that the minimum of the two performance values
is emphasized:

PerfIR = 2
PIR RIR

PIR + RIR
(2)

For the object detection problem, the measures of recall
and precision are not directly applicable, since the decision
whether an object has been detected or not is not a binary
one. Object detection algorithms may be evaluated at dif-
ferent levels w.r.t. the representation of the detection results,
corresponding to different phases of the detection algorithms
(see Fig. 1). The evaluation measures of the different levels
differ in their relevance to the goal of the application and in
their coverage, i.e., in the detection phases which are evalu-
ated by the measure:

– Feature discriminance at pixel level: At this level, the
quality of the chosen features is evaluated without taking
into account the classification decision taken in a later
phase. Therefore, the result evaluated for each pixel p is
not a binary decision but a feature vector x p. Splitting
the pixels into two populations, where the first popula-
tion consists of the pixels labeled as “object” according
to the ground truth, and the second population consists of
the “non-object” pixels, the goal of the evaluation mea-
sure at this level is to assess whether the features are well
separated between the two populations.

Assuming Gaussian distributions in both cases, an ex-
ample of such a statistical separation measure is the
Bhattacharyya distance [6]:

B = 1

8
(µ2 − µ1)

T
(

�1 + �2

2

)−1

(µ2 − µ1)

+1

2
ln

∣∣∣�1+�2
2

∣∣∣
√|�1|√|�2| (3)

where the µ j , j = 1, 2 are the mean vectors of the two
distributions and the � j are the covariance matrices.

Note, that the Bhattacharyya distance measures the sep-
arability of the features under the assumption of a lin-
ear decision function. If a non-linear decision function
is used, e.g., by employing a MLP or kernel based clas-
sifier, then other distance measures are necessary. How-
ever, this is beyond the scope of this article.

– Classification at pixel level: Once the classification de-
cision for each pixel is available, i.e., we know for each
pixel whether it belongs to the object or not, the mea-
sures of recall and precision may be applied on pixel
level:

RP X = No. of correctly detected object pixels

No. of object pixels

PP X = No. of correctly detected object pixels

Total no. of pixels classified as “object”

(4)

Alternatively, the classification error might be used for
evaluation.

We note, that if the performance is evaluated at pixel
level, then the ground truth must be very precise in order
to get robust measures. This is rarely the case as ground
truth is mainly obtained through interaction between the
images and a human observer, which can easily detect an
object but can rarely locate it with 1-pixel precision.

– Detection at rectangle level: From the end user’s point of
view, a more natural way is to ask the question whether
an object has been detected correctly or not. On this level
we still ignore domain specific knowledge from process-
ing steps following the detection step, but we neverthe-
less evaluate the detection on a per object/rectangle ba-
sis. This assumes objects of compact shape, for which
the rectangle approach makes sense. This is not appropri-
ate for textures, or objects like snow, falling water, shad-
ows, but does make sense for objects like humans, faces,
text, tools etc. The reminder of this document deals with
this evaluation level.

– Goal oriented evaluation: In many applications, object
detection is performed for a specific reason which is be-
yond the pure localization of the object. For instance,
face detection might be a preliminary step for face recog-
nition, text detection might be a preliminary step for text
recognition, etc.

In this case, in order to take into account the specific
goal, the evaluation algorithm should resort to the results
of the application specific processing. In the context of
text detection, a goal oriented evaluation scheme for a
system which exploits the text content (as opposed to its
position) should penalize lost text characters as well as
additional characters which are not present in the ground
truth. Possibilities are recall and precision on character
level, or the string edit distance [20].

In the case of text detection for indexing video broad-
casts, one might consider evaluation on an even higher
level by weighting words according to their usefulness
for the indexing process [11].
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Fig. 1 The different levels of evaluation for the example of text detection: (a) evaluation of the non-thresholded filter results; (b) evaluation of
the pixel classification results; (c) evaluation on object level; (d) goal oriented evaluation (depends on the application)

The evaluation level to choose depends on the application
and the purpose of the evaluation. The pixel based evalu-
ation measures are easy to calculate and easy to interpret.
However, they lack relevance to the goal of the process and
are not very accurate. Very often they are used to guide the
choice of features used for detection, since they are not in-
fluenced by later steps of the detection algorithm.

The goal directed approaches are natural methods to em-
ploy for the final evaluation of the algorithm’s performance.
They directly measure the success which can be expected
by the algorithm. However, very often the localization of the
object is the final goal of the application. For instance, in
the case of face detection or text detection, recognition of
the object might be impossible because of low data quality.
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In image and video indexing applications, the presence of
a face or of text is valuable information which can be ex-
ploited. In this context, goal directed evaluation is equivalent
with evaluation on rectangle level (Fig. 1c).

Evaluation levels (a), (b) and (d) are easy to calculate
and easy to interpret, since they treat “items” which are
directly comparable (pixels and characters, respectively).
On the other hand, rectangle based evaluation (level (c)) is
a non-trivial task: as the detection result is rarely exactly
equivalent to the object as specified in the ground truth, we
cannot easily say whether an object has been correctly de-
tected or not. In the reminder of this work, we concentrate
on the problem of evaluation on rectangle level.

3 Previous work

The goal of a rectangle based object detection evaluation
scheme is to take a list G of ground truth object rectangles
Gi , i = 1, . . . , |G| and a list D of detected object rectangles
D j , j = 1, . . . , |D| and to measure the quality of the match
between the two lists. The quality measure should penalize
information loss, which occurs if objects or parts of objects
have not been detected, and it should penalize information
clutter, i.e., false alarms or detections which are larger than
necessary.2

Most algorithms are based on an extension of the recall
and precision measures which are calculated on the area of
two rectangles Gi and Di and on the area of the overlapping
region:

RAR(Gi , Di ) = Area(Gi ∩ Di )

Area(Gi )

PAR(Gi , Di ) = Area(Gi ∩ Di )

Area(Di )

(5)

Recall illustrates the proportion of the ground truth rectangle
which has been correctly detected, and precision decreases if
the amount of additional incorrectly detected area increases.
In the reminder of this work, we call these measures “area
recall” and “area precision,” respectively.

Whereas calculating these figures for a single pair of re-
sult and ground truth rectangles is straightforward, the ex-
tension to the realistic case of two lists of rectangles is not
as easy. The existing evaluation methods differ in the way
they treat the correspondence problem between the two rect-
angle lists, i.e., whether they consider single matches only or
multiple matches, and in the way they combine the figures
in order to generate a single measure for multiple rectangles
and multiple images.

2 We should emphasize, that a comparison of the rectangles repre-
senting objects is not the same as comparing the objects themselves,
since the rectangle based algorithm assumes that the object is identi-
cal to its bounding rectangle. In reality, a missed part of Gi may not
contain object pixels, or a part of a false alarm in Di may not contain
detected pixels.

Doermann et al. present a configurable ground-truthing
and evaluation system with a graphical java interface [5] for
video segmentation. Their system also takes into account
temporal matching of objects in videos and provides differ-
ent temporal matching levels. However, the spatial matching
algorithms supported by the tool are rather simple.

In Ref. [15], Mariano et al. propose a set of evaluation
measures, among which are the area measures on rectan-
gle bases given in Eq. (5) as well as measures on pixel
level. Several extensions to multiple rectangles are sug-
gested: summing up thresholded values of these measures,
which introduces a dependence on a threshold, and directly
calculating the measures on sets of rectangles by combining
the rectangles to larger surfaces, which gives rise to ambigu-
ity problems (see Sect. 4).

Antonacopoulos et al. propose an algorithm capable of
comparing lists of rectangles [2] in the context of document
page segmentation. Each ground truth rectangle or poly-
gon is extended up to the borders of the surrounding rect-
angles or the page border and checks whether segmented
rectangles fall into these “maximized ground truth poly-
gons.” “partial misses,” “misses” and “merges” are consid-
ered. However, this approach may pose problems in the
case of text/object detection, where there are not always
surrounding text/object rectangles. Furthermore, the evalu-
ation algorithm focuses on reporting the accuracy the de-
tection/classification of each rectangle, the authors do not
provide performance measures for a whole document.

A simple evaluation scheme has been used to evaluate
the systems participating at the text locating competition in
the framework of the 7th International Conference on Doc-
ument Analysis and Recognition (ICDAR) 2003 [13]. Each
rectangle in one list is matched with the best match in the
opposing list:

RICD(G, D) =
∑|G|

i=1 BestMatchG(Gi )

|G|

PICD(G, D) =
∑|D|

j=1 BestMatchD(D j )

|D|

(6)

where BestMatchG and BestMatchD are functions which de-
liver the quality of the closest match of a rectangle in the
opposing list:

BestMatchG(Gi ) = max
j=1,...,|D|

2 × Area(Gi ∩ D j )

Area(Gi ) + Area(D j )

BestMatchD(D j ) = max
i=1,...,|G|

2 × Area(D j ∩ Gi )

Area(D j ) + Area(Gi )

(7)

If a rectangle is matched perfectly by another rectangle in
the opposing list, then the match functions evaluate to 1, else
they evaluate to a value <1. Therefore, the original measures
taken from the information retrieval community, given by
(1), are upper bounds for the new measures given by (6).
Both, precision and recall given by (6), are low if the overlap
region of the corresponding rectangles is small.
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A disadvantage of the ICDAR evaluation scheme is that
only one-to-one matches are considered. However, in real-
ity sometimes one ground truth rectangle is “split” into sev-
eral object rectangles or several ground truth rectangles are
“merged” into a single detected object rectangle. This is a
problem the authors themselves report in [13]. The prob-
lem is generally encountered in detection evaluation frame-
works, which is due to the fact that we are interested in eval-
uating the solution of a detection problem but the ground
truth is specified as the “correct” solution of a segmenta-
tion problem. However, an over- or under segmented solu-
tion may very well be a correct detection.

Liang et al. present a method for the evaluation of docu-
ment structure extraction algorithms [12]. From the two lists
G and D of detected rectangles and ground truth rectan-
gles, they create two overlap matrices σ and τ . The lines
i = 1, . . . , |G| of the matrices correspond to the ground
truth rectangles and the columns j = 1, . . . , |D| correspond
to the detected rectangles. The values of these matrices cor-
respond, respectively, to area recall and area precision be-
tween the row rectangle Gi and the column rectangle D j :

σi j = RAR(Gi , D j )

τi j = PAR(Gi , D j )
(8)

Matching rectangles is done by thresholding the values in
the two matrices and clustering them into groups. Differ-
ent match types are supported: one-to-one matches, one-to-
many matches (splits) and many-to-one matches (merges).
See Fig. 2 for an illustration of these concepts.

Hua et al. [7] also take into account splits and merges.
They introduce two measures: “detection quality”, which re-
lates to recall, and ”false alarm rate” which relates to (1-
precision). However, each measure is calculated as product

Fig. 2 Different match types between ground truth rectangles and de-
tected rectangles: (a) one-to-one match; (b) a split: a one-to-many
match with one ground truth rectangle; (c) a merge: a one-to-many
match with one detected rectangle

of two factors: a factor which depends on the surface
ratios—similar to the ICDAR solution—and a factor which
measures the rectangle fragmentation. The latter factor de-
creases in the case of splits and merges.

The measures are normalized according to a detection
difficulty value, which is estimated from the ground truth
image. It takes into account the rectangle size and the vari-
ance of the character height. The overall detection perfor-
mance is weighted by a detection importance value, which
is part of the ground truth.

The evaluation protocol used for the ICDAR 2003 Page
segmentation contest [3] is based on the same principles
as Liang’s method. The overlap matrices (they call them
“MatchScore tables”) are used to match ground truth enti-
ties to detected entities, where an entity (i.e., a region) may
contain text, graphics, line-art, a separator or noise, which
makes an adaptation of the overlap matrices necessary in or-
der to evaluate the classification of each region. Splits and
merges are supported. For each match, a performance value
is calculated as the harmonic mean of a recall type measure
and a precision type measure. The global performance value
for all entities is a computed as a weighted sum of the indi-
vidual scores.

This page segmentation protocol is very similar to the
other rectangle methods described above, in particular to
Liang’s method, the difference being the evaluation of the
region type classifier and some details in the computation of
the recall and precision measures. However, it suffers from
the same drawbacks: the lack of intuitivity and the ambigu-
ity of the response due to the mixture of detection quality
and detection quantity.

Landais et al. propose an evaluation measure which is
not based on the overlap information [11]: they consider a
pair of detected/groundtruth rectangles as matching if and
only if the centroid of one rectangle is contained in the other
rectangle. Although this solution is tempting since it avoids
the usage of parameters, it tends to accept matches with very
low area recall and/or precision and it does not give an in-
formation on the quality of the detection.

In the context of the Graphics Recognition Workshop
(GREC) competitions, algorithms for the detection of lines
and arcs are evaluated. Although these graphics objects
are different from rectangles, the proposed evaluation algo-
rithms do share common features with the algorithms de-
signed for rectangle matching. In [21], the GREC organizers
describe two evaluation types, one on pixel level and one on
vector level. The latter matches lines and arcs by compar-
ing their endpoints and placing thresholds on the distances
between these endpoints and the curves. For each matching
pair of line/arc segments, a complex quality measure is pro-
posed, which combines measures of endpoint distance, line
overlap, line with quality, line style quality and line shape
quality. For the ensemble of lines and arcs these measures
are combined in order to form two classical measures: vec-
tor detection rate, which corresponds to a sort of recall mea-
sure, and vector false alarm rate, which relates to a sort of
precision measure.
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Like the classical rectangle based protocols, this algo-
rithm combines detection quality and detection quantity in a
single measure, which makes it hard to understand the be-
havior of the algorithm to evaluate. Furthermore, the com-
plexity of the quality measure is at the same time its main
drawback: the performance values are difficult to under-
stand.

4 Object count/area graphs

Area recall and area precision are easy to interpret as long as
there are only two rectangles involved: a single ground truth
rectangle and a single detection result rectangle. However,
in the case of multiple images or a single image with mul-
tiple text rectangles, a combination of the measures is not
straightforward.

This is the main drawback of the existing evaluation
schemes described in the previous section: the way the over-
lap information is accumulated during the calculation of
the evaluation measures leaves room for ambiguity. For in-
stance, a recall of 50% could mean that 50% of the ground
truth rectangles have been matched perfectly, or that all
ground truth rectangles have been found but only with an
overlap of 50%, or anything in between these two extremes.
As a consequence, these recall and precision measures are
not very intuitive: it is impossible to determine, how many
text rectangles have been detected. Similarly, the quality of
the detection is not apparent.

4.1 Requirements of an evaluation algorithm

We developed an evaluation scheme which addresses these
problems. Its design has been guided by the following goals:

1. The approach should provide a quantitative evaluation:
the evaluation measure should intuitively tell how many
text rectangles have been detected correctly, and how
many false alarms have been created.

2. The approach should provide a qualitative evaluation: it
should give an easy interpretation of the detection qual-
ity.

3. It should support one-to-one matches, one-to-many
matches and many-to-one matches (splits and merges).

4. The measure must scale up to multiple images without
losing its power and ease of interpretation.

The most important constraint of our design goals is the con-
tradiction between goal (2), to be able to count the number of
detected rectangles, and goal (2), to be able to measure de-
tection quality. Indeed, the two goals are related: the num-
ber of rectangles we consider as detected depends on the
quality requirements which we impose for a single rectan-
gle in order to be considered as detected. For this reason we
propose a natural way to combine these two measures: two-
dimensional plots which illustrate their dependence. More
precisely, on the y-axis we plot the two measures which are

the most interesting for us: object counts, i.e., the measures
related to goal (4.1):

ROB = No. of correctly detected rectangles

No. of rectangles in the database

POB = No. of correctly detected rectangles

Total no. of detected rectangles

(9)

As stated above, these two measures depend on the qual-
ity requirements, which are imposed using two measures:
area recall and area precision. In other words, the detec-
tion performance is illustrated using two diagrams, where
the first shows the dependence on area recall and the sec-
ond shows the dependence on area precision. Each diagram,
on the other hand, contains two graphs: one plots object re-
call, the other one object precision (see Fig. 5 in the results
section for an example).

The reminder of this section describes in detail how ob-
ject recall and object precision are calculated given fixed
constraints on area recall and area precision.

4.2 Rectangle matching

The computation of the measures given in (9) requires for
each ground truth rectangle Gi the determination whether it
has been detected or not, and for each rectangle Di in the de-
tection result the determination whether its detection is cor-
rect or not. These decisions are taken based on constraints
imposed on the detection quality, i.e. the overlap between
detection result and ground truth. In order to take into ac-
count one-to-one as well as one-to-many matches (splits)
and many-to-one matches (merges), we calculate the over-
lap matrices σ and τ introduced by Liang et al. in [12], as
described in Sect. 3.

The matrices are analyzed in order to determine the cor-
respondences between the two rectangle lists. In general, a
non zero value in an element with indices (i, j) indicates,
that ground truth rectangle Gi overlaps with result rectan-
gle D j . However, the two rectangles are matched only if the
overlap satisfies the quality constraints, i.e., if area recall and
area precision are higher than the respective constraint:

(a) σi j > tr
(b) τi j > tp

(10)

where tr ∈ [0, 1] is the constraint on area recall and tp ∈
[0, 1] is the constraint on area precision. In detail, the differ-
ent matches are determined as follows:

one-to-one matches: one ground truth rectangle Gi matches
with a result rectangle D j if row i of both matrices con-
tains only one element satisfying (10) and column j of
both matrices contains only one element satisfying (10).
This situation is shown in Fig. 2a.

one-to-many matches (splits): one ground truth rectangle
Gi matches against a set So of result rectangles D j , j ∈
So if



Object count/area graphs for the evaluation of object detection and segmentation algorithms 287

• a sufficiently large proportion of the ground truth
rectangle has been detected (condition (10a) in a
“scattered” version):

∑
j∈So

σi j ≥ tr , and
• each contributing result rectangle overlaps enough

with the ground truth rectangle to be considered a
part of it (condition (10b) in a “scattered” version):
∀ j ∈ So : τi j ≥ tp.

Figure 2b illustrates this match type.
many-to-one matches (merges): one result rectangle D j

matches against a set Sm of ground truth rectangles if
• A sufficiently large portion of each ground truth rect-

angle is detected (condition (10a) in a “scattered”
version): ∀i ∈ Sm : σi j ≥ tr , and

• Each ground truth rectangle has been detected with
enough area precision (condition (10b) in a “scat-
tered” version):

∑
i∈Sm

τi j ≥ tp
Figure 2c illustrates this situation.

many-to-many matches (splits and merges): this match
type is currently not supported by our algorithm. Our
experiments showed, that this situation does not occur
very often in the case of text detection.

If a situation occurs which requires simultaneous
splits and merges, then the algorithm translates this situ-
ation into several splits or a set of splits and one-to-one
matches: each ground truth rectangle in the matching set
is either part of a split if it is matched against several
detected rectangles, or it is part of a one-to-one match
if it is matched against a single detected rectangle. The
drawback of this implementation is a slight unjustified
punishment of combined splits and merges, since de-
tected rectangles may be part of several sets of splits. In
each set, the part of the detected rectangle which covers
a ground truth rectangle of another set, is falsely reported
as “missing” in the original set.

Based on this matching strategy, the recall and precision
measures which we intuitively described in (9), can be fi-
nally defined as follows:

ROB(G, D, tr , tp) =
∑

i MatchG(Gi , D, tr , tp)

|G|

POB(G, D, tr , tp) =
∑

j MatchD(D j , G, tr , tp)

|D|

(11)

where MatchG and MatchD are functions which take into
account the different types of matches described above and
which evaluate to the quality of the match:

MatchG(Gi , D, tr , tp)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if Gi matches against
a single detected rectangle

0 if Gi does not match against
any detected rectangle

fsc(k) if Gi matches against
several (→ k) detected rectangles

MatchD(D j , G, tr , tp)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if D j matches against
a single detected rectangle

0 if D j does not match against
any detected rectangle

fsc(k) if D j matches against
several (→ k) detected rectangles

where fsc(k) is a parameter function of the evaluation
scheme which controls the amount of punishment which is
inflicted in case of scattering, i.e., splits or merges. If it eval-
uates to 1, then no punishment is given, lower values punish
more. In our experiments we set it to a constant value of 0.8.

Another possibility could be to use two different func-
tions in the expressions MatchG and MatchD in order to
punish over segmentation differently than under segmenta-
tion. This might be useful if text detection is followed by
text recognition. Furthermore, more scattering might be pun-
ished more severely by adding a dependence to the num-
ber of rectangles k, for instance by setting fsc(k) = 1

1+ln(k)
,

which corresponds to the fragmentation index suggested by
Mariano et al. [15].

As a final remark, please note, that text which is only
partly detected and therefore not matched against a ground
truth rectangle, will correctly decrease the precision mea-
sure, in contrast to the ICDAR evaluation scheme described
in Sect. 3.

4.3 Multiple images

In the case of N images, we compare several lists Gk ∈
G, k = 1, . . . , N of ground truth rectangles with several
lists Dk ∈ D, k = 1, . . . , N of result rectangles. As in in-
formation retrieval, the results on multiple images may not
be accumulated by summing the recall or precision values.
Instead, object recall and object precision are defined as fol-
lows:

ROB(G, D, tr , tp) =
∑

k
∑

i MatchG(Gk
i , Dk, tr , tp)∑

k |Gk |
(12)

POB(G, D, tr , tp) =
∑

k
∑

j MatchD(Dk
j , Gk, tr , tp)∑

k |Dk |

4.4 Constructing the graphs

As explained before, the object related measures introduced
in Eq. (12) depend on two constraints tr and tp which impose
constraints on the detection quality. The performance dia-
grams are produced by fixing one constraint to a set value,
varying the second one (assigned to the x-axis) and plot-
ting object recall and object precision on the y-axis of two
graphs.

Figure 5 in the experimental section shows an example
of the two diagrams obtained this way. The diagram shown
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in Fig. 5a is generated by varying the constraint on area
recall, tr , while constraint tp is held to a fixed value. The
diagram is composed of three graphs: object recall, object
precision and the harmonic mean of the two measures.
Similarly, Fig. 5b is created varying constraint tp while
constraint tr is fixed.

The diagrams are easily interpreted by looking at the dy-
namics of the graphs: in this particular example, the fact that
object recall never drops to zero when area recall approaches
1 means, that most of the text rectangles are detected with
an area coverage of 100%, i.e., the detection rarely cuts
parts of the ground truth rectangle. On the other hand, the
fact that object recall does drop to zero when area preci-
sion approaches 1, means that all result rectangles exceed
the ground truth boundaries. The particular amount of area
which is detected additionally can be seen by the point/range
where the object recall dramatically drops when area preci-
sion increases.

As stated above, during the creation of the graphs one of
the two constraints is held fixed. The particular values as-
signed to the fixed constraints have been chosen empirically.
However, we decided to pick different values for the two dif-
ferent constraints: while tr is fixed to 0.8, we chose the lower
value of 0.4 for constraint tp. This decision is motivated by
the fact that a detection result which cuts parts of the text
rectangle is more disturbing than a detection which results
in a too large rectangle. The value of 0.4 might seem very
low, but keep in mind that the area of a rectangle grows with
the square of the its side lengths. This fact is illustrated in
Fig. 3, which shows a detection result with 50% area preci-
sion. The detected rectangle is twice as large as the ground
truth rectangle, although the difference in the corner coor-
dinates is quite small. Please refer to the discussion section
for some remarks on the implications of this situation to text
detection algorithms.

4.5 Three-dimensional graphs

An alternative presentation of the performance measures are
three-dimensional plots of the three object related measures
(recall, precision and the harmonic mean), respectively, on
the z-axis, whereas tr is assigned to the x-axis and tp is as-

Fig. 3 An example rectangle detected with area recall = 100% and
area precision = 50%

signed to the y-axis. Figure 6 shows an example of such a
set of plots.

The advantage of a 3D plot is a gain in information:
for each combination of thresholds tr and tp, i.e., for each
conceivable combination of quality constraints, we are able
to read the performance of the detection algorithm. How-
ever, this advantage is bought with several drawbacks, which
severely hamper the usability of the plot:

• The 3D plots are more difficult and less intuitive to read.
In particular, the actual performance value on one point
of the performance is difficult to read.

• The different object related performance measures can-
not be displayed in a single diagram comprising several
plots, as in the 2D case, since the surfaces would be un-
readable. Therefore, several diagrams need to be created,
resulting in unnecessary need of space. This is illustrated
in Fig. 6, which shows the plots for two detection algo-
rithms, one column corresponding to one algorithm.

• The interpretation of a 3D graph is only possible if the
function is smooth enough against changes of the quality
parameters. This might not always be the case, depend-
ing on the behavior of the evaluated detection algorithm.

• The complexity of the calculations needed for the 3D
plots is much higher. More precisely, complexity rises
from O(N ) to O(N 2).

In general, we think that the gain in additional information
is small compared to the drawbacks of the 3D plots.

4.6 A single performance value

The performance diagrams introduced above are an easy and
intuitive way to illustrate the performance of an object detec-
tion algorithm. However, very often it is useful and desirable
to determine a single performance value for an algorithm, ei-
ther for direct comparison of the performances of different
algorithms, or to optimize the parameters of the detection
algorithm, or to control the algorithm, for instance in a rein-
forcement learning environment [18].

For the reasons laid out in Sect. 4.1, an objective compar-
ison of the algorithms by a single scalar value is difficult, up
to impossible. A single value is hardly able to characterize
the complex behavior of a detection algorithm, which makes
it necessary to resort to compromises. At first sight, a simple
solution might be to hold the quality constraints tp and tr at
fixed values, calculate object recall and object precision and
combine them in a harmonic mean. However, this evalua-
tion would depend heavily on the particular chosen values.
One algorithm could outperform another one for given qual-
ity constraints, while it could show a weaker performance
for other constraints.

A special case of this solution would be the end points of
the curves (tp = 1 and tr = 1, respectively). As for any other
fixed value of tp and tr , this solution ignores the behavior of
the algorithm for other detection quality constraints. It is im-
mediately clear that this behavior is important when we look
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at Fig. 8. H.W. David’s algorithm (displayed in the top row)
and Todoran’s algorithm (displayed in the 4th row) share the
same end point in the right diagram: Recall = Precision =
0 for tr = 1. This means, that both algorithms detect rectan-
gles which are larger than the ground truth rectangles, since
not a single rectangle is considered as found if a precision of
100% is required. However, looking at the rest of the curve,
we can see the difference in the behavior of the two detec-
tion algorithms: H.W. David’s algorithm features a Recall
of almost 60% across a large section of the precision qual-
ity constraint. Recall only drops rather sharply when a qual-
ity constraint of about 55% is reached. Summing it up, we
might say that H.W. David’s algorithm detects 60% of the
rectangles with realistic assumptions on detection precision.
On the other hand, Todoran’s algorithm shows an almost lin-
ear dependance of Recall on detection quality. This tells us,
that the differences in size between the ground truth rectan-
gles and the detected rectangles are more equally distributed,
the algorithm’s behavior is therefore less predictable.

A good indicator should cover the performance of the
evaluated algorithm across a whole range of quality con-
straints. We therefore propose the proportion of the graph
area which is beneath the performance graphs as a reliable
and objective measure, which is equivalent to the mean value
of object measures over all possible constraint values.

More precisely, we first calculate the area proportion
separately for object recall and object precision:

ROV = 1

2T

T∑
i=1

ROB(G, D, i/T, tp)

+ 1

2T

T∑
i=1

ROB(G, D, tr , i/T )

(13)

POV = 1

2T

T∑
i=1

POB(G, D, i/T, tp)

+ 1

2T

T∑
i=1

POB(G, D, tr , i/T )

The final performance value is the harmonic mean of the
two measures:

PerfOV = 2
POV ROV

POV + ROV
(14)

The parameter T is a granularity parameter which controls
the trade-off between the computational complexity of the
evaluation algorithm and the precision of the integration ap-
proximation. However, it is not likely that the object re-
lated measures change sharply after changing the quality
constraints in very small steps. Consequently, in our experi-
ments, we set the parameter to T = 20.

5 Evaluating the influence of the test database

As for information retrieval (IR) tasks, the measured perfor-
mance of an object detection algorithm highly depends on

the test database. It is obvious, that the nature of the images
determines the performance of the algorithm. As an exam-
ple we could think of the object type (different poses for face
detection, artificial text or scene text for text detection), its
size, the image quality, noise, compression artifacts etc. For
this reason, an objective comparison between different algo-
rithms will only be possible if the respective communities
decide on shared common test databases. Alternatively, we
recommend tackling this problem partly by performing dif-
ferent experiments for different test databases with different
difficulties.

On the other hand, the nature of the images is not the
only variable which determines the influence of the test
database on the detection performance. The structure of the
data, i.e., the ratio between the relevant data and the irrele-
vant data, is a major factor which influences the results. This
simple but important fact has been overlooked by the infor-
mation retrieval community for a long time.

In [9], Huijsmans et al. call attention to this fact and
adapt the well known precision/recall graphs in order to link
them to the notion of generality for an IR system, which is
defined as follows:

GeneralityIR = No. of relevant items in the database

No. of items in the database
(15)

Very large databases with low generality, i.e., much irrele-
vant clutter compared to the relevant material, produce re-
sults with lower precision than databases with higher gen-
erality. This makes sense, since the probability to retrieve a
relevant item is lower if there is more irrelevant noise present
in the database. A standard IR system presents the retrieved
items to the user in a result set of predefined size. Since this
size is fixed, with falling generality the amount of relevant
material in the result set—thus the recall—will tend to be
smaller. Thus, recall and precision depend on the general-
ity of the database. In IR one is interested in the retrieval
performance with respect to the generality as well as with
respect to the size of the result set, which determines the
search effort for the user. The dependence on two parame-
ters makes three-dimensional performance graphs necessary.
Alternatively, Huijsmans proposes two-dimensional graphs,
which corresponds to a plane of the 3D space defined by
Precision = Recall. Therefore, the graph plots Precision =
Recall on the y-axis against generality on the x-axis.

However, unlike IR tasks, object detection algorithms do
not work with items (images, videos or documents). Instead,
images (or videos) are used as input, and object rectangles
are retrieved. Nevertheless, a notion of generality can be de-
fined as the amount of objects which are present in the im-
ages of the database. We define it to be

Generality = No. of object rectangles in the database

No. of images in the database
(16)

Note, that using this definition, generality may attain val-
ues � 1. This is not a problem since the value is interpreted
by humans or used in plots (see Sect. 6.1).
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Fig. 4 Some detection examples: (a) detection algorithm 1 [23]; (b) detection algorithm 2 [22]

Another difference to IR systems is the lack of a re-
sult set window, because all detected items are returned to
the user. Therefore, the generality of the database does in-
fluence precision, but not recall. Thus, the influence of the
database structure on the system performance can be shown
with simple two-dimensional precision/generality graphs.
The graphs introduced by Huijsmans are displayed on a log-
arithmic scale, since the generality in very large IR databases

may attain very low values. On the other hand, the amount
of objects per image (or per video frame) should remain rel-
atively high, therefore we decided to display the graphs on a
linear scale.

A decision needs to be made concerning the generality
level of the database when result tables or graphs are dis-
played which contain a fixed level of generality. In other
words, it is necessary to decide how many images with zero
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Fig. 5 Results on the images shown in Fig. 4. Top: detection algorithm 1 [23], bottom: detection algorithm 2 [22]; Left: varying constraint tr
(area recall) while tp is constant and equal to 0.4, right: varying constraint tp (area precision) while tr is constant and equal to 0.8

ground truth (no object present) should be included in the
database. The exact amount depends on the particular appli-
cation. The a priori probability of an image to contain ex-
otic objects, as for instance water falls or fire might be very
low. Another determining factor is the type of medium. In
most cases, for applications working on single images the
probability is higher than for applications working on video
sequences. In this document, where experiments were per-
formed on images containing text objects (see Sect. 6), we
chose a mixture of 50% images with relevant objects and
50% images without relevant objects.

6 Experimental results

We tested our new evaluation metric on two different sets of
text detection algorithms which have been applied to differ-
ent image test databases, respectively.

6.1 Evaluating text detection in video frames

The first test dataset contains two algorithms, which have
been developed by the authors. Details are given in [22, 23],
respectively. For the sake of brevity, in the reminder of this
paper we call them algorithm 1 and algorithm 2. The two
methods have been applied to a small set of video frames in
the CIF format (384 × 288 pixels), which have been pro-
vided by INA3 and France Télécom. This small database
contains only 14 images, which makes it possible to visually
show the detection results superimposed on the images (see
Fig. 4). Thus, a direct comparison can be made between the
detected object rectangles and, respectively, the object/area
performance graphs (Fig. 5) and the performance/generality
graphs (Fig. 7).

3 The Institut National de l’Audiovisuel (INA) is the French national
institute in charge of the archive if the public television broadcasts. See
http://www.ina.fr
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Fig. 6 Results on the images shown in Fig. 4. From top to bottom: recall, precision, harmonic mean. Left: detection algorithm 1 [23], right:
detection algorithm 2 [22];

The left column of Fig. 5 shows object recall and pre-
cision depending on the constraints imposed on area recall.
Object recall and precision decrease only slowly when tr ap-
proaches 1, which means that most of the object rectangles
are detected with their entire area. Note, that the object re-
call graph drops faster for algorithm 2, illustrating a lack
of the algorithm to detect the whole area of each rectangle.
This can be confirmed looking at the superimposed results
in Fig. 4a and b, respectively.

The right column of Fig. 5 shows object recall and preci-
sion depending on the constraints imposed on area precision.
Object recall and precision drop to zero when tp approaches
1, illustrating the fact that all object rectangles are larger than
the corresponding ground truth rectangles. We can see that
algorithm 1 is more precise, since object recall drops slower

when the tp is increased. Again, this is confirmed looking at
the superimposed results in Fig. 4.

Figure 7 shows the dependence of the performance on
the database structure. In order to create graphs falling with
lower generality, inverse generality has been assigned to
the x-axis. More precisely, the left most value of the graph
(1/Generality = 0.2) corresponds to a set with seven im-
ages containing text only, whereas the right most value of
the graph (1/Generality = 0.4) corresponds to a set with
seven images containing text and 7 images not containing
text. In order words, the left most value is calculated using
only the first column of images in Fig. 4, and as we traverse
the x-axis to left, lowering generality, more and more non-
text images taken from column 2 of Fig. 4 are added to the
dataset. As we can see, object recall stays constant, since
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Fig. 7 Results on the images shown in Fig. 4, with varying generality: (a) detection algorithm 1 [23] (b) detection algorithm 2 [22]

adding non-text images does not add any new ground truth
images. However, precision decreases due to false alarms.
We note that the graphs for algorithm 2 are flatter, illustrat-
ing the fact that this algorithm produces less false alarms in
images not containing text—confirmed by the fact that algo-
rithm 1 is based on the hypothesis that the images used do
contain text [23].

Let us recall, that the values plotted on the y-axis of
the generality graphs are consolidated performance values.
For each value on the x-axis, i.e., for each generality value,
and for each performance measure, i.e., precision, recall and
their harmonic mean, we calculate a single value as given in
Eqs (13) and (14).

6.2 The ICDAR 2003 text detection competition results

The second dataset consists of the text detection algorithms
participating at the text detection competition organized
in the framework of the 7th International Conference on
Document Analysis and Recognition (ICDAR), 2003 [13].
Simon Lucas, the organizer of the competition, kindly pro-
vided results of the participants in XML format. The test
image database consists of various images taken with digital
cameras. In contrast to the first database, these images have
been acquired in relatively high resolution: the image dimen-
sions range between 1600 × 1200 pixels and 1000 × 800
pixels.

Four participants have been evaluated: Ashida’s al-
gorithm, H.W. David’s algorithm, Wolf’s algorithm, and
Todoran’s algorithm [14]. The third algorithm, developed
by the authors of this document, corresponds to algorithm
2 evaluated in the last section. A fifth virtual participant
combines the results of the other four methods using an

algorithm proposed by the organizers of the competition.
Descriptions of the methods can be found in [14].

Figure 8 shows the performance graphs for the five con-
testants. The clear winner seems to be Ashida’s algorithm,
which shows superior recall and precision across the whole
range of quality requirements. Applying the same reasoning
as in the last sub section, we clearly see the two leading al-
gorithms differ in their detection approach: while Ashida’s
detected rectangles tend to be too small, H.W. David’s de-
tected rectangles tend to be too large.

In general, the performance characteristics of the detec-
tion algorithms are well illustrated by the graphs: the propor-
tion of “recalled” objects and the proportion of false alarms
is immediately visible for the quality a user might want to
impose. Inflection points in the performance curves show the
precision of the detection algorithm. For instance, the inflec-
tion at point tr = 0.8 of the object recall graph of Ashida’s
algorithm (top row, left column), illustrates the fact that most
objects are detected with about 80% of the object area. If the
quality constraints are further increased, the number of ob-
jects considered as detected drops.

Table 1 presents the performance values for each algo-
rithm compared to the original metric used during the IC-
DAR competition, introduced in Sect. 3. The ranking of
the algorithms stayed the same, although there are differ-
ences in the different performance values. More important,
the interpretation of the values changes: recall according
the ICDAR metric corresponds to the area recall, averaged
across all images, which results in the ambiguity described
in Sect. 4. On the other hand, the new recall value cor-
responds to averaged object recall and may thus be inter-
preted as the proportion of correctly detected objects, av-
eraged across the whole range quality constraints a user
might want to impose. Precision is interpreted in a similar
manner.
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Fig. 8 Results on the ICDAR 2003 data set. Top row: Ashida’s algorithm, 2nd row: H.W. David’s algorithm; 3rd row: our algorithm; 4th row:
Todoran’s algorithm; Bottom row: combined result; Left: varying constraint tr (area recall) while tp is constant and equal to 0.4, right: varying
constraint tp (area precision) while tr is constant and equal to 0.8
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Table 1 Single performance values on the ICDAR 2003 data set

ICDAR Metric (Eq. (6)) New Metric (Eq. (13))

Method Recall Precision H.Mean Recall Precison H.Mean

Ashida 46.0 55.0 50.0 41.7 55.3 47.5
H.W. David 46.0 44.0 45.0 46.6 39.6 42.8
Wolf et al. 44.0 30.0 35.0 44.9 19.4 27.1
Todoran 18.0 19.0 18.0 17.9 14.3 15.9
All combined N/A N/A N/A 50.1 53.1 51.7

Fig. 9 Ground truth rectangle and detected rectangles for an example image. Precision and recall for figures (a) and (b) are equivalent

7 Discussion and conclusion

In this paper we have presented a novel method to evaluate
object detection algorithms. The proposed method is appli-
cable to any kind of object, as long as the detection result
may be represented by a list of rectangles.

We introduced diagrams containing two dimensional
graphs which depict measures on object level depending on
quality constraints, making easy a clear and intuitive inter-
pretation. A clear distinction is made between a quantitative
evaluation of the detection algorithm and a qualitative eval-
uation. The dynamics of the graphs illustrate the behavior of
the detection algorithm against different quality constraints
which might be imposed by a user, where inflection points
correspond to the fundamental characteristics of the detec-
tion algorithm. The proposed evaluation method overcomes
several shortcomings of the existing approaches, notably the
ambiguity problem which follows from the direct accumu-
lation of overlap proportions. Since the performance values
are calculated on object level, a user can directly see the
number of correctly detected objects and the amount of false
alarms.

For the comparison of different detection algorithms we
have proposed a single performance measure which is di-
rectly derived from the performance graphs. The integral of
the object level performance across the full range of quality
constraints gives an intuitive and objective measure of the
detection algorithm’s performance.

Additionally, a graph displays the dependence of the
detection algorithm’s performance on the generality of the
test database, i.e., the amount of relevant information in the
database. This often overlooked criterion significantly influ-
ences the measured performance of any object detection or
information retrieval algorithm.

Our evaluation method is based on the amount of over-
lap between the ground truth rectangles and the result rect-
angles, not on the location of this overlap. In many applica-
tions, e.g., in the case of text detection, however, the amount
of overlap between two rectangles is not a perceptively valid
measure of quality, as can be seen in Fig. 9. Precision and
recall are equivalent for both detection examples, but the de-
tection shown in Fig. 9a might be considered as better, since
the additional detected space is distributed over all sides of
the ground truth rectangle.

As specified in Sect. 4.4, in order to prevent the rejec-
tion of detection results as the one in Fig. 9a, the preci-
sion constraint tp is set to a very low value. This is nec-
essary because the error surface grows with the square of
the additional rectangle length (or height). However, we
still might want to reject detections as the one illustrated in
Fig. 9b.

One possibility to check whether the error space is
equally distributed could be to estimate the distribution of
the angles of the error pixels against the center of the ground
truth rectangle. Unfortunately, the angle distribution of a
perfectly aligned detection, e.g., the detection shown in
Fig. 9a, is not a uniform distribution but a distribution result-
ing after a piecewise application of a tangent function. A sta-
tistical test (e.g., a Kolmogorov–Smirnov test) against such
a distribution after an estimation of its parameters would be
possible but not very robust.

Furthermore, a statistical test using all error pixels would
be overkill given the fact that the functional form of the error
distribution is known and that it depends on four parameters
only: the absolute differences of the left (respectively right,
upper and lower) coordinates of the rectangle pair. We chose
therefore a simpler yet more effective method, which di-
rectly checks these parameters: the 4 values described above
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are checked against thresholds, which are calculated from
the size of the rectangle.

In the more specific case of text detection, we are more
interested in detecting a horizontal disequilibrium. There-
fore, we concentrate on two of the differences measures: the
absolute differences of the left (respectively right) coordi-
nates of the rectangles to match need to be smaller than a
constraint which depends on the width of the ground truth
rectangle. This constraint, which does not depend on the
overlap information, makes sure that a situation depicted in
Fig. 9b is unlikely to occur.
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puter vision systems. CVGIP: Image Understanding 53(1), 112–
117 (1991)

11. Landais, R., Vinet, L., Jolion, J.-M.: A goal directed methodol-
ogy for groundtruthing and evaluating a commercial OCR. Pattern
Recognition (submitted) (2004)

12. Liang, J., Phillips, I.T., Haralick, R.M.: Performance evaluation
of document layout analysis algorithms on the UW data set. In
Document Recognition IV, Proceedings of the SPIE, pp. 149–160
(1997)

13. Lucas, S.M., Panaretos, A., Sosa, L., Tang, A., Wong, S., Young,
R.: ICDAR 2003 robust reading competitions. In: Proceedings of
the Seventh International Conference on Document Analysis and
Recognition, vol. 2, pp. 682–687 (2003)

14. Lucas, S.M., Panaretos, A., Sosa, L., Tang, A., Wong, S., Young,
R., Ashida, K., Nagai, H., Okamoto, M., Yamamoto, H., Miyao,
H., Zhu, J., Ou, W., Wolf, C., Jolion, J.-M., Todoran, L.,
Worring, M., Lin, X.: ICDAR 2003 robust reading competitions:
entries, results and future directions. International Journal on Doc-
ument Analysis and Recognition - Special Issue on Camera-based
Text and Document Recognition 7(2–3), 105–122 (2005)

15. Mariano, V.Y., Min, J., Park, J.-H., Kasturi, R., Mihalcik, D., Li,
H., Doermann, D., Drayer, T.: Performance evaluation of object
detection algorithms. In: Proceedings of the International Confer-
ence on Pattern Recognition, vol. 3, pp. 965–969 (2002)

16. Nagy, G.: Candide’s practical principles of experimental pattern
recognition. IEEE Trans. Pattern Anal. Machine Intell. 5(2), 199–
200 (1983)

17. Snyder, M.A.: REPLY: a commentary on the paper by Jain and
Binford. CVGIP: Image Understanding 53(1), 118–119 (1991)

18. Taylor, G.W., Wolf, C.: Reinforcement learning for parameter con-
trol of text detection in images and video sequences. In: Proceed-
ings of the International Conference on Information & Communi-
cation Technologies (IEEE), 2004. IEEE Section France (2004)

19. van Rijsbergen, C.J.: Information retrieval, 2nd edition. Butter-
worths, London (1979)

20. Wagner, R.A., Fisher, M.J.: The string to string correction prob-
lem. J. Assoc. Comp. Mach. 21(1), 168–173 (1974)

21. Wenyin, L., Dori, D.: A protocol for performance evalution of line
detection algorithms. Machine Vision and Applications: Special
Issue on Performance Evaluation 9(5–6), 240–250 (1997)

22. Wolf, C.: Text Detection in Images taken from Videos Sequences
for Semantic Indexing. PhD thesis, INSA de Lyon, 20, rue Albert
Einstein, 69621 Villeurbanne Cedex, France (2003)

23. Wolf, C., Jolion, J.-M.: Extraction and recognition of artificial
text in multimedia documents. Pattern Anal. Appl. 6(4), 309–326
(2003)



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


