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Abstract The replacement of textual units by synonymous
canonical forms is an important prerequisite for many
variants of automated text analysis. In scientific texts, one
common normalization step is the consistent replacement
of acronyms by their definitions. For many acronyms, the
definition is found at a certain position of the text where the
acronym is introduced and “expanded” to a synonymous
sequence of full words. A recent approach to detecting
acronym-expansion pairs by Park and Byrd [19] describes
possible graphical correspondences between acronyms and
expansions by means of fine-grained rules. Here we show
how rule sets as used in [19] can be translated into hidden
Markov models that abstract from details of the graphical
correspondence and improve recall in a significant way. Sta-
bility in terms of precision is ensured by exploiting simple
properties of the expansion with an optional reinforcement
of linguistic knowledge. With this extension of the original
formalism, the introduction of large rule sets can be avoided
and a fixed model can be applied to a large variety of texts
without retraining, with good values both for recall and
precision.

Keywords Acronym recognition · Biomedical texts ·
Automated text analysis · Terminological expressions ·
Hidden Markov models

1 Introduction

Terminological expressions [2, 4, 11, 27] play a crucial role
in document indexing and information retrieval [6, 22], text
classification [3, 13], machine-assisted translation [7, 8], and
computational lexicology [20]. They yield a more precise
picture of the contents of a given document and a more
succinct description of a specific concept than general key-
words. In domain-specific scientific and technical texts, ter-
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minological expressions are often replaced by acronyms. For
automated text understanding, normalization techniques are
important that expand acronyms and lead to a unique sym-
bolic representation of a fixed concept or entity.

Fortunately, acronyms used in a text are often introduced
at some position: the meaning of the acronyms is explained
in a corresponding sequence of words, the expansion, or def-
inition. In this paper we consider methods for automatically
detecting acronym-expansion pairs in texts. These methods
help to normalize the given text, and they may also be used
for constructing acronym dictionaries for narrow domains
where ambiguities can be controlled.

Automated text analysis, indexing, annotation, and text
mining are particularly relevant for the field of biomedi-
cal texts [1, 9, 10, 24]. The current interest in genetics and
biomedicine has recently led to an enormous number of pub-
lications. For example, more than 12 million publications are
now available in the PubMed (Medline) database [15], and
460,000 references were added in 2002 [18]. Since the use
of acronyms in biomedical texts is very popular, automated
detection of acronyms and their definitions represents one
important step toward improved methods for automated text
analysis in this genre.

Techniques for finding acronyms and their expansions
originated in [25] and have been studied by various authors
[12, 17, 19, 21, 26, 29]. In our own work, we chose rule-
based approaches [12, 19, 26] as a starting point. In these
approaches, only a modest set of linguistic background re-
sources is needed, which simplifies implementation. For our
initial experiments, we implemented and evaluated the ap-
proach described in [19]. This method models the creation
of an acronym in a declarative, flexible, and natural way as a
kind of rewriting process, improving ideas from earlier work
[12, 26].

When using a rule-based approach to acronym recogni-
tion, the central problem is the selection of a good rule set
on the basis of a given training corpus. If the set of rules
is too small, then many acronym definitions in the evalua-
tion/application corpus are not captured appropriately. The
manual collection of rule sets with sufficient coverage on



2 E. Torres Schumann, K. U. Schulz

the basis of training data is costly, in particular in situations
where most rules have a low frequency. Large rule sets, on
the other hand, may give rise to ambiguities that are difficult
to resolve and lead to reduced precision. Hence the question
arises as to whether the selection of rule sets is convergent
in the sense that after a series of training experiments a sta-
ble rule set can be found that leads to good results on any
(realistic) evaluation corpus.

In our experiments with the method from [19], we found
it difficult to obtain a fully satisfactory recall on test cor-
pora. An error analysis showed that most of the rules needed
for training or test corpora are very specific. This explains
why rules derived on training corpora often do not help for
test corpora. We then developed a new method that can be
considered as a modification and extension of the original
formalism.

In this paper we show how rule sets such as are used
in Park’s and Byrd’s approaches can be directly translated
into hidden Markov models (HMMs) of a particular type.
Roughly speaking, transition sequences in these HMMs rep-
resent “generalized rules” where we abstract from details of
the graphical correspondence between acronyms and expan-
sions. States and probability parameters for the HMMs are
directly obtained from the corresponding rule sets, so no ad-
ditional training is needed. In general, the derived HMMs al-
low for many transition paths that are “new” in the sense that
they do not correspond to a rule already seen in the training
corpora. This explains why translated HMMs are more flex-
ible and able to find many acronym-expansion pairs where a
new rule would be needed in the original approach.

The graphical correspondence between acronyms and
expansion candidates, which in the hybrid approach was
mainly expressed in the rules, is now more strongly con-
trolled and evaluated in the preference scheme. Combining
HMMs with these methods, a loss of precision can be
avoided and we end up with a method that is stable in the
above sense and leads to satisfactory values for precision
and recall. Since trained HMMs can be directly obtained
by translating rule sets as those used in [19], our formalism
inherits most advantages of the latter method, such as
declarativity, flexible user customization, adaptivity to new
styles, and editorial conventions.

The paper is structured as follows. In Sect. 2 we briefly
look at typical acronyms occurring in biomedical texts and
introduce the terminology that is used in the remaining sec-
tions. In Sect. 3 we briefly summarize the algorithmic prob-
lem considered in this paper and formally define variants
of precision and recall that are used later. Section 4 gives
a compact description of the hybrid approach [19]. Evalua-
tion results that measure the stability (in the aforementioned
sense) of this approach are given in Sect. 5. We also analyze
the errors that typically occur when applying the method to
a new class of documents. In Sect. 6 we describe our tech-
nique for translating rule sets into HMMs. Evaluation results
for our own method are given in Sect. 7. Section 8 comments
on related work. Some points for future work are summa-
rized in the conclusion.

2 Acronyms in biomedical texts

Using examples from biomedical texts we briefly review dis-
tinct ways in which acronyms and their explanations are in-
troduced in texts and examine in more detail the possible
graphical relationship between an acronym and its expan-
sion.

2.1 Terminology

Acronyms can be described as short sequences of sym-
bols that represent abbreviations for compound technical ex-
pressions and concepts. The acronym and its expansion are
treated as synonyms. We may distinguish between proper
acronyms, where we have a purely graphical correspon-
dence between the acronym and its expansion, and pseu-
doacronyms, where the relationship between the abbrevia-
tion and the underlying expression is more indirect. In this
paper, by acronym we always mean a proper acronym unless
noted otherwise.

Example 1 The sequence “uPA” represents a possible
acronym for “urokinase-type plasminogen activator” since
each letter of “uPA” occurs in the expansion. In contrast,
“H2O” is not a proper acronym for “water” since the associ-
ation between both expressions is not graphical but rather
based on special encoding conventions for chemical sub-
stances.

The acronyms in a given text can be partitioned into two
classes. For some acronyms, the proper expansion is given
in the text. Other “popular” acronyms are used without any
explanation, assuming that the reader knows how to interpret
the sequence.

Example 2 Figure 1 depicts an abstract from the Med-
line [15] database. Occurrences of acronyms and pseu-
doacronyms are written in bold. Acronyms where the ex-
pansion can be found somewhere in the abstract are written
in Roman letters. “Popular” acronyms not defined in the text
are written in italics.

TI: Inhibition of NF-kappa B-Rel A expression by antisense oligodeoxynucleotides suppresses
synthesis of urokinase-type plasminogen activator (uPA) but not its inhibitor PAI-1.

AB: The essential role of urokinase-type plasminogen activator (uPA) in tumor invasion and
metastasis stresses the necessity of a fine-tuned cellular control over its expression. It has been
shown that changes in uPA directly correlate with changes in cell invasiveness. We examined the
role of Rel-related proteins in uPA synthesis by human ovarian cancer cells by inhibiting their
expression using the antisense (AS) oligodeonynucleotide (ODN) technology. Exposure of
OV-MZ-6 cells to 10 microM phosphorothioate (PS)-derivatized AS-ODN directed to Rel A led
to a maximal 50% decrease of uPA antigen in cell lysates and a 70% reduction in cell cultures
supernatants accompanied a significant transient decline in uPA mRNA levels.
Antisense-PS-ODN directed to NF-kappa B1 (p50) or c-rel had no effect on uPA protein
expression. AS-PS-ODN directed to Rel A also affected the proteolytic capacity of OV-MZ-6
cells reflected by an approximately 70% decrease in the fibrinolytic capacity of the cells within 24
h compared to untreated controls. AS-PS-ODN directed to I kappa B alpha expression increased
uPA in cell culture supernatants up to 50%. uPA receptor (uPAR) production and synthesis of
plasminogen activator inhibitor type-1 (PAI-1) were not altered by either AS-PS-ODN
applied. Western blot and gel retardation analysis revealed contitutuve expression of Rel-related
proteins in nuclear protein extracts of OV-MZ-6 cells. Thus these proteins seem to be impliciated
in uPA regulation and may thereby contribute to tumor spread and metastasis.

Fig. 1 Acronyms in a Medline abstract
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Remark 1 Biomedical texts, as well as other texts, use a
considerable number of acronyms without explicitly ex-
plaining their meaning in the text. Even with special
background dictionaries, the correct interpretation of these
“alien” acronyms is difficult due to a large number of ambi-
guities. Acronyms are introduced for an enormous number
of distinct entities and concepts. Often a given entity can
be referred to using different terminological expressions. A
given terminological expression may be encoded using dis-
tinct acronyms. Since short sequences are preferred, most
acronyms can be associated with a substantial number of
concepts or entities. When interpreting a given text, the con-
text and domain may be used to obtain a partial disambigua-
tion. However, often a complete disambiguation is not pos-
sible.

The problem of how to correctly interprete acronyms that
are not defined in the text is ignored for the rest of this paper.
In order to analyze text passages where the meaning of an
acronym is explained, we distinguish between the following:

1. The acronym;
2. The expansion of the acronym;
3. The introduction context, i.e., the minimal window of the

text where we find both the expansion and the acronym,
possibly additional intermediate text;

4. The graphical relationship between acronym and expan-
sion. This relation ship can typically be described as a
mapping from the symbols of the acronym to occurrences
of symbols in the expansion.

Example 3 Figure 2 illustrates these concepts using two
introductions for the acronym “PAI-1” from the Medline
database. The acronym is written in bold. Its expansion
“plasminogen activator inhibitor type-1” is highlighted us-
ing a bright window. The introduction context is highlighted
using a dark window.

2.2 Introduction contexts

The recognition of introduction contexts for acronyms is one
important subtask in the automatic collection of acronyms
and their expansions. In texts, the following techniques for
introducing acronyms may be distinguished.

Implicit synonymy. In many cases the acronym is sim-
ply written in brackets. The situation where the acronym
is written immediately after the expansion can be seen as a
standard case. Since deviations are possible, difficulties may
arise:

...synthesis of plasminogen activator inhibitor type-1 (PAI-1) were not...

... plasminogen activator inhibitor type-1, also known as PAI-1,...

Fig. 2 Acronym, expansion, graphical relationship, and introduction
context

. . .plasminogen activator inhibitor type-1 (PAI-1). . .

. . .plasminogen activator inhibitor (PAI-1) type-1. . .

Explicit synonymy. In a few cases, the synonymy be-
tween the acronym and its expansion is explicitly stated
using natural language terms such as in the following
examples:

. . .plasminogen activator inhibitor type-1, also
known as PAI-1,. . .
. . .PAI-1 stands for plasminogen activator inhibitor
type-1,. . .
. . .PAI-1, or plasminogen activator inhibitor type-
1,. . .
Plasminogen activator inhibitor type-1, also denoted
PAI-1,. . .

It is straightforward to collect a list of “typical” natural
language expressions that are used to express synonymy.
Still, such a list will necessarily be incomplete. Furthermore,
problems may be caused by multifunctional expressions
like “or.”

In a way, these two classes only cover the simplest exam-
ples. The automated mapping from acronyms to expansions
is complicated by a number of further phenomena.

Distributive introduction. In Fig. 1 we find the intro-
duction “. . .antisense (AS) oligodeoxynucleotide (ODN)
technology. . ..” Later the combined acronym “AS-ODN” is
used. In order to find its expansion, we have to combine the
distributed expansions for “AS” and “ODN.”

Use of acronyms within expansions. Often a given
acronym is further extended in a new introduction.
In Fig. 1 we find “. . .phosphorothioate (PS)-derivatized
AS-ODN. . .,” which explains the expressions “Antisense-
PS-ODN” and “AS-PS-ODN” used below. Similarly, “uPA”
is extended to “uPA receptor (uPAR).”

Enumerative contexts. Sometimes several related
acronyms are explained in an enumerative context. To
find the correct expansion, special mechanisms for these
constructions have to be taken into account: “. . .total body
(TBW) and extracellular (ECW) water. . ..”

2.3 Graphical correspondence

The most obvious graphical relationship is given if the
acronym is composed of initial letters of words of the ex-
pansion and if the order of initial letters is preserved in the
acronym. However, we often find a more complex situation.

One phenomenon is the distinct number of letters in a
word of the expansion that are used in the acronym. Fur-
thermore, symbols from distinct words may be separated
or written in a directly consecutive way. For example, in
the Medline corpus the acronyms “AS-ODN,” “AsOdn,” and
“AS ODN” are used for “antisense oligodeoxynucleotide.”
Generally, the use of uppercase and lowercase letters in
acronyms does not follow any systematic scheme, which
may be seen from introduction contexts such as “Recombi-
nant interferon (rIFN)”. Another phenomenon is deviations
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concerning the expected order of symbols: “horseradish per-
oxidase conjugated cholera toxin B (CB-HRP).” The latter
two examples show that often inner symbols from tokens
are selected for creating acronyms. Other acronyms copy
prefixes.

Acronym composition may interact with morphol-
ogy. For example, “ODNs” may indicate a plural, and a
derivation “anti-ODN” may result in “aODN.” Variants of
acronyms are used for pragmatic reasons to add emphasis
or to suppress parts of the expansion that are clear from
the given context (e.g., “AS-PS-ODN” as “PS-AS-ODN,”
“Antisense-PS-ODN,” or “PS-ODN”).

3 Algorithmic problem and evaluation parameters

The algorithmic problem studied in this paper is the follow-
ing: given a text T , find the acronyms defined in the text and
their expansions. The quality of an algorithm A for solving
the above problem may be measured in terms of standard no-
tions of precision and recall. To formalize these notions we
assume that the output set of A contains pairs of the form
〈A, E〉, where A represents a sequence of symbols treated
as an acronym by the algorithm and E represents portions of
text treated as the expansion of A. The pair 〈A, E〉 is correct
if in fact A is an acronym and E is its expansion. The preci-
sion of A (w.r.t. T ) is defined as the percentage of all correct
answer pairs among the number of all answer pairs, and re-
call is defined as the percentage of all correct answer pairs
w.r.t. the total number of all acronym-expansion pairs in T .

In our experiments, the large majority of all acronyms
were introduced using implicit synonymy. To search texts
for acronyms, we used a regular expression, � (see below for
details). Matches for � in a given text that are surrounded by
brackets are treated as acronym candidates. We first search
for occurrences of acronym candidates and then calculate
the most plausible expansion in the neighborhood of a given
occurrence. By �-restricted recall we mean the modified
recall value where we only refer to those acronym-expansion
pairs in the given text where the acronym is parenthesized
and matches �.

Most approaches to acronym extraction use a similar no-
tion of acronym candidates and the same kind of search
strategy. “Recall” values in the literature very often repre-
sent values for some form of restricted recall. These “re-
call” values are not directly comparable; their significance
strongly depends on the generality of the pattern used for
finding acronym candidates. Note that in order to measure
absolute recall we have to find all acronym-expansion pairs
of the evaluation corpus, which is difficult if the corpus is
large. In the conclusion, we briefly comment on absolute re-
call values for the methods discussed below.

It should also be noted that for measuring �-restricted
recall we only consider the top-ranked expansion candidate
for a given acronym candidate. Related recall values based
on top-n expansion candidate sets would make sense for in-
teractive systems but are ignored here.

One natural strategy for improving (recall and) precision
values relies on improved methods for correctly recogniz-
ing introduction contexts. To analyze distinct sources of er-
ror and to measure the relevance of improved methods for
context recognition, we sometimes look at “idealized” pre-
cision values where the answer set is restricted in the sense
that only proper acronyms in real introduction contexts are
taken into account. The idealized precision value then says
in which percentage of all these cases the proper expansion
was found. The value can be seen as an upper limit for the
improvements that can be expected from better methods for
recognizing real introduction contexts.

As indicated in the introduction, the algorithmic
metaproblem faced here is the following: find a stable
method for extracting acronym-expansion pairs, i.e., a
method that is applicable to a large variety of texts without
retraining and leads to good values for precision and recall.

4 The hybrid approach

“Hybrid text mining” [19] represents a sophisticated rule-
based method for extracting acronyms and building up on
and refining techniques from earlier approaches [12, 26].
The graphical relationship between acronym and expansion
is described by a special set of matching operators. For
searching expansion candidates and for selecting a preferred
candidate, morphological and syntactic properties of words
are taken into account. The approach is called “hybrid” since
it uses a variety of linguistic background knowledge bases
(prefix list, replacement table, dictionary, see below) and
since each rule comes with an application probability that is
used for selecting the preferred expansion candidate. In the
remainder of this section, we introduce the variant of hybrid
text mining that we used in our experiments with biomedical
texts. Our own HMM-based method uses this variant as an
ingredient for parameter estimation at the end of the initial
training phase. Some places where we deviate from the orig-
inal approach were motivated by our experiments. All major
modifications are mentioned below.

In our implementation, a given input text is first seg-
mented into sentences using some simple heuristics similar
to those described in [16]. Each sentence is then split into
tokens. Token delimiters are tabulators, white spaces, occur-
rences of the symbols “;”, “:”, “,” followed by white space,
and periods marking a sentence end.

4.1 Acronym candidates and skeletons

Acronym candidates are expressions A that occur in a paren-
thesized form in the text and match the following regular
expression,1 �.

([a − z A − Z ]\−?[a − z A − Z ]) |
([a − z A − Z ](\−?[a − z A − Z ]){2}) |

1 Here \−? denotes an optional occurrence of “−”, and (α){n}
means exactly n consecutive occurrences of matches for a, “+” means
at least one occurrence.
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([a − z A − Z ](\−?[a − z A − Z ]){3}) |
([a − z A − Z ](\−?[a − z A − Z ]){4}) |
([a − z A − Z ](\−?[a − z A − Z ]){2}\−?[1 − 9]+)

� captures tokens that may contain hyphens and have 2–5
(uppercase or lowercase) letters, or three letters followed by
a number. Letters of the acronym candidate are said to have
type c, and maximal connected sequences of digits are said
to have type n. In this way, each candidate is split into a
sequence of acronym units and associated with a unique se-
quence over the alphabet {c, n}, which is called the skeleton
of the acronym candidate. The “-” symbol is ignored in the
structural description.

Example 4 The units of SN-1999 are “S,” “N,” and ‘1999,”
which means that the skeleton is ccn.

Remark 2 In [19] acronym candidates are all tokens of
length l, 2 ≤ l ≤ 10, that start with a letter or a digit
and contain at least one uppercase letter. Excluded are the
initial words of sentences, uppercase words from a general
background dictionary, and words in a predefined list of stop
words and false positives.

4.2 Search windows, morphemes, expansion candidates

The search for expansion candidates takes place within a
window in front of a given acronym candidate A.2 The win-
dow length (number of tokens) is L +10, where L = 2· | A |
if | A |< 5 and L =| A | +5 otherwise. Here | A | denotes
the number of symbols of A. Text analysis in the search win-
dow is based on a simplified morphological analysis where
tokens are split into units called morphemes3 using the back-
ground dictionary. For splitting tokens into morphemes we
use the following borders: (1) transitions from letters to dig-
its and vice versa and (2) the symbols “/”, “\”, “·”, “(“,”)”,
“[“,”]”, and “-”. From the resulting units words with prefixes
from the list

anti, bi, electro, inter, pre, sub, trans, un, hex, ex,
cross, mono, di, tri, tetra, penta, hexa

are split into two parts, the prefix and the rest, if the rest
is found in an English general dictionary used for this pur-
pose. Both parts are then treated as independent morphemes.
Eventually five types of morphemes are distinguished:

s: stop words (of, the, and, in, to, a, with, by),
p: prefixes from the aforementioned predefined list,
h: rest of a word obtained after deleting a prefix (the rest

must be in the dictionary),
n: sequences of digits,
w: other words.

2 In [19] two windows surrounding A are used.
3 In general, these “morphemes” are not morphemes in a proper lin-

guistic sense.

...synthesis of plasminogen activator inhibitor type-1 (PAI-1) were not...

w w w w n c cc n

F
F

F
E

Fig. 3 Rewriting expansion “plasminogen activator inhibitor type-1”
into the acronym PAI-1 using the rule wwwwn → [F(1): c][F(2): c]
[F(3): c][E(5): n]

Each subsequence of consecutive morphemes in the
search window represents an expansion candidate. As with
acronym candidates, the sequence of morpheme types of an
expansion candidate is used as a simplified representation.

Example 5 The morphemes of “10% transplantation rate”
are “10” (type n), “trans” (type p), “plantation” (type h),
“rate” (type w), which means that the representation is
nphw.

4.3 Rule-based correspondence between acronym
and expansion

Acronym construction is described as a process whereby
certain rewrite operators are applied to the morphemes of the
expansion. The resulting string, after an optional additional
permutation, yields the acronym (cf. Fig. 3). The possible
ways of deriving acronyms from expansions are described
by means of a finite collection of rules. The left-hand side
of a rule specifies the sequence of morpheme types of the
expansion. The right-hand side describes the form of the
acronym and encodes the graphical correspondence.

Example 6 The rule

wwwsw → [F(1): c][F(2): c][F(3): c][F(5): c]
is applicable to any expansion E consisting of a sequence
of morphemes respectively of type w,w, w, s, w (left-hand
side). The first unit of the acronym, which has type c, is ob-
tained from applying the operator F to the first morpheme
of E (right-hand side, [F(1): c]). Operator F selects the
first letter of a given morpheme. The remaining units of
the acronym are the letters obtained by applying operator
F respectively to the second, third, and fifth morphemes of
the expansion.

Right-hand sides of rules may have subsequences of the
form [Op( j): x][Op(i): y], where i < j , which means that
in the acronym the original order of symbols in the text is
permuted.4 The operators used in the original approach [19]
are the following.

F : (First match) Defined as above.
I : (Inner match) This operator nondeterministically selects

an inner letter of the given morpheme of type c of the
expansion.

4 In [19] the first atom of the right-hand side of a rule must be of the
form [Op(1): x].
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Table 1 Some acronym-building rules with examples from Medline

wwwn → [F(1): c][F(2): c][I (2): c][E(3): c][E(4): n]
secretory phospholipase A2 → sPLA2
nwwww → [E(1): n][E(2): c][F(3): c][F(4): c][F(5): c]
20K human growth hormone → 20K-hGH
wwwwww → [F(4): c][E(6): c][F(1): c][I (1): c][F(2): c]
horseradish peroxidase conjugated cholera toxin B → CB-HRP
wwww → [E(1): c][F(2): c][E(3): c][F(4): c]
N-methyl-D-asparate → NMDA

L: (Last match) This operator selects the last letter of a
morpheme of type c.

E : (Exact match) This operator completely selects a mor-
pheme of type n or w. In [19] the operator E may only
be applied to morphemes of type n. Our extension is
motivated by acronyms occurring in expansions that are
copied as subacronyms into the defined acronym.

R: (Replacement) This operator replaces a morpheme by
an abbreviation or placeholder, using the following list
of possible replacements:

x hex, ex, trans, cross
1 one, first, 1st
2 two, second, 2nd
· · · · · ·
9 nine, ninth, 9th
0 zero, null

Example 7 Figure 3 illustrates the rewriting operations en-
coded in the rule wwwn → [F(1): c][F(2): c][F(3): c]
[E(5): n], which is applied to the expansion “plasmino-
gen activator inhibitor type-1” from Fig. 2 and produces the
acronym PAI-1 with skeleton cccn.

Motivated by various acronyms that we found in the
training corpus, we add a new operator:

C : (Contiguous match) This operator may only be used im-
mediately after applying one of the operators F , I , or
C . Assume that the latter application selects a symbol σ
from a morpheme m of the expansion, copying it to a
fixed position of the acronym. The operator may be ap-
plied to the symbol σ ′ following σ in m. The operator
just copies σ ′ to the next position of the acronym. In a
rule, permutations that would split the sequence σσ ′ in
the acronym are excluded.5

Operator C takes into account that often a sequence of
consecutive letters of an expansion morpheme is directly
copied into the acronym.

Example 8 The acronym Chr-22, which is split into units C,
h, r, 22, has the skeleton cccn. It is used for “chromosome
22,” which is of the form wn (morphemes “chromosome”
and “22”). Our rule describing the relationship has the

5 Clearly, with the original definition of I there is overlap in the uses
of C and I . Thus we restrict the use of I in the rules to the cases where
the use of C is not possible.

form

wn → [F(1): c][C(1): c][C(1): c][E(2): n].
After F selects c, the two applications of the C-operator re-
spectively select the letters h and r.

Table 1 gives some additional examples for rules as used
within the hybrid approach for describing the derivation of
acronyms from expansions.

Remark 3 In some of our experiments we also looked at an-
other operator. The operator I ns (Insertion) inserts a unit
of type n or c into the acronym that does not have a cor-
respondence in the expansion. It enables a correspondence
between an acronym and an underspecified expansion. For
example, the acronym ODN, which has the skeleton ccc, is
used in one particular Medline abstract as short for “oligonu-
cleotides,” which is of the form w. Our rule describing the
graphical relationship for this case is as follows:

w → [F(1) : c][I ns : c][I (1) : c].
Many other Medline abstracts provide evidence of ODN
usually standing for “oligodeoxynucleotides,” and it is
natural to assume that the letter D comes from the missing
“deoxy” rather than corresponding to the letter “d” at
the end of the expansion. The use of the operator I ns is
controversial. On the one hand, we found a nonnegligible
number of examples in the Medline corpus where I ns is in
fact needed to obtain the correct graphical correspondence
between acronym and expansion. On the other hand, I ns
is too powerful since it can “explain” any symbol in any
acronym. Hence an uncontrolled use leads to many ambi-
guities and decreased precision. In practice, the use of I ns
has to be controlled in some suitable way. For simplicity,
we describe all our experiments in a variant where the
use of I ns is completely excluded. For the rule-based
approach, this generally leads to better results. For the
HMM-based method, an interesting variant tolerates one
single application of I ns, adding linguistic conditions on
expansion candidates in the preference scheme as a kind of
additional control. Details are described below.

4.4 Selection of preferred expansion candidate

Given an acronym candidate A, the skeleton of A determines
a unique subset M of rules where the right-hand side has the
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Table 2 Corpora statistics

Introduction
Candidates Acronyms contexts Rules

Training (year 1999) 500 464 449 107
Test (year 2000) 500 465 436 118

appropriate form. For each rule in M , for each consecutive
sequence of morphemes in the search window we check if
the morphemes have the appropriate type as specified in the
left-hand side of the rule. Some conditions must be consid-
ered when selecting expansion candidates in this way. All
morphemes of an expansion candidate E have to belong to
the same sentence of the text. The first and the last mor-
pheme of E must not be a preposition, a form of the verb be,
a conjunction, or a determinant. This can be regarded as a
simplified recognition of noun phrase borders.6

Distinct expansion candidates are first sorted by distance
to the acronym candidate. The candidate that is nearest to the
acronym and was obtained with the most frequent rule in the
training corpus is chosen as the expansion for A in the out-
put. The preference scheme used in [19] is slightly distinct.
We also tested it and other preference schemes, without im-
proving results.

5 Evaluating convergence and stability

In the original paper [19], the hybrid approach is used in an
interactive environment where the user may add new rules
suggested by the system during a session. In such a context,
new rules are added by demand, and recall can be controlled
by the user. We are interested in methods that, after initial
training, work in a fully automated way, which seems more
useful when analyzing large corpora with many acronyms. A
formalism is needed where training is convergent and leads
to a stable procedure in the sense explained in the introduc-
tion.

In order to study convergence and stability of the hybrid
approach in the area of biomedical texts, we conducted a se-
ries of experiments on the Medline corpus. As mentioned
above, we focused on experiments that disregarded the op-
erator I ns. The precision and recall measurements were per-
formed on two corpora with sentences from the Medline
database.

The training corpus contained sentences occurring in
texts from 1999. A subcorpus with 500 acronym candi-
dates was singled out using the regular expression � in
parenthesized form. After inspecting the acronym candi-
dates, we found that 464 candidates represented proper
acronyms. Among those, 449 were defined in the same sen-
tence before the acronym. Hence we had a total of 449
acronym-expansion pairs. We manually derived the rules

6 In [19], the first and last morphemes of a candidate must not be
prepositions, be verbs, modal verbs, conjunctions or pronouns. A can-
didate is also excluded if it contains symbols such as “(”, “)”, “[”, “]”,
“{”, “}”, “=”, “!” “?”. Besides, the condition in footnote 4 is effective,
and, like here, all expansion words have to belong to the same sentence.

Table 3 Number of rules vs. rule frequency

Training Test

# Rules Freq. of use # Rules Freq. of use

1 111 1 94
1 50 1 49
1 30 1 31
1 24 1 26
1 21 1 21
2 12 1 14
1 9 1 8
1 8 1 7
1 7 2 6
5 5 1 5
3 4 6 4
9 3 10 3
8 2 13 2

72 1 78 1

that correctly describe the graphical correspondence be-
tween acronyms and expansions and annotated all acronym-
expansion pairs as well as pseudoacronyms for evaluation
purposes. Table 3 shows the frequency distribution for the
107 rules that were obtained. For the training corpus, we
achieved a �-restricted recall of 96% and a precision value
of 99%.

For the test corpus we used a similar collection of sen-
tences using Medline texts from 2000. We again added sen-
tences until we obtained 500 acronym candidates. In this
case the number of proper acronyms (acronym-expansion
pairs) was 465 (436). In order to support an automated
evaluation of precision and recall, we again annotated all
acronym-expansion pairs as well as the pseudoacronyms.
Using the rule set R derived from the training corpus, we
then automatically retrieved acronym-expansion pairs from
the test corpus. A �-restricted recall (precision) of 78%
(96%) was obtained.

The loss of recall when applying the rules from the train-
ing corpus to the test corpus is considerable and raises two
obvious questions:

1. Can we expect a better recall on the test corpus when
deriving a larger rule set from a larger training corpus?
In the negative case, what are the reasons?

2. How is precision affected when we add more rules dur-
ing the training phase?

As a first step, we manually derived all rules needed for
the test corpus. We found 118 rules, only 35 of which were
from the rule set R! Besides, these rules in the intersection
were accompanied by a large set of rules with just one ap-
plication. The high number of rules with very low frequency
gave a first hint that the derivation of a sufficiently large rule
set during training might be difficult.

To see in more detail how recall and precision values
reached in the test corpus depend on the number of rules
that are derived in the training corpus, we imitated an “ide-
alized” training process where the most frequent rules are
found first. Starting with the subset R1 of R that contains
the 10 most frequent rules found on the training corpus, an
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Fig. 4 Hybrid approach. Precision (solid lines) and �-restricted recall,
values for rounds 1–12 on training and test corpora. The “idealized”
precision (dashed lines) represents a hypothetical value that could be
reached with a perfect recognition of introduction contexts

experiment with 12 rounds was designed. The rule set Ri+i
for round i+1 contained Ri and in addition the 10 most fre-
quent rules from R\Ri . In the final round 12, the last 9 rules
were added. In each round, we measured the �-restricted re-
call and precision values that were achieved for the (training
and) test corpus using the rule set Ri . The results are shown
in Fig. 4 (solid lines).

For the training corpus, the addition of rules during the
12 rounds had the expected effect: we gradually improved
recall, the precision was not affected. On the test corpus,
however, recall – after a significant initial improvement –
did not exceed a limit of 78%. The numbers in rounds 6–
12 suggest that no significant gain in recall can be expected
when adding new rules from a larger training corpus. Fur-
thermore, the addition of new rules is likely to reduce preci-
sion values initially raised. Obviously, the use of the system
as a tool for automated extraction becomes suboptimal with
such a behavior.

For a more thorough analysis, four kinds of errors should
be distinguished:7

1. False positives. A pseudoacronym is erroneously treated
as an acronym and some sequence of letters from the

7 In our experiments, another case could be neglected in which the
window is too small to contain the expansion.

search window is treated as its expansion. This kind of
error only affects precision.

2. Wrong rule. For a proper acronym, the wrong rule was
selected and an incorrect expansion was derived. The
correct rule was available. This kind of error affects both
precision and recall.

3. Missing rule 1. For a proper acronym, the correct rule
was not in the rule set. Another rule was selected and the
wrong expansion derived. This kind of error affects both
precision and recall.

4. Missing rule 2. For a proper acronym, the correct rule
was not in the rule set. No other rule was applied and no
expansion derived. This kind of error only affects recall.

We investigated which improvements could be expected
from a better recognition of introduction contexts. Since
candidates not occurring in an introduction context were
marked in the corpus, we could easily measure the “ideal-
ized” precision values where only candidates occurring in
proper introduction contexts are taken into account and er-
rors of type 1 (false positives) are thus excluded (cf. Sect. 3).
The corresponding curves are represented in Fig. 4 with
dashed lines. The results show that even with a perfect
recognition of introduction contexts, precision values on the
test corpus are only lifted by about 1% but still decrease with
the number of rules.

Figure 5 shows the number of errors of types 2 and 3 and
helps to explain the reasons for the difference in precision

Fig. 5 Error types of extracted incorrect expansions
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between training and test. The total height of each bar
gives the number of false expansions extracted for proper
acronyms in a round and for a corpus. When rules are added
during the rounds, more proper acronyms are retrieved and
found in the answer set, which explains why the number of
errors of both kinds may grow. The lower part (in darker
gray) corresponds to type 2 errors (proper rule available,
wrong rule selected), the upper (in lighter gray) to type 3
errors (proper rule not available, wrong expansion selected).
In the training corpus, where adequate rules are derived, er-
rors of type 3 are eventually eliminated in round 12, where
all needed rules are available. Some errors of type 2 persist
where the preference schema selects the wrong rule and ex-
pansion. In the test corpus, in contrast, the majority of errors
are of type 3. Note that most of the 107 rules that are at our
disposal are in fact inappropriate since they do not yield a
correct explanation for any example of the test corpus. The
presence of these useless rules increases the probability of
selecting the wrong rule, and during the 12 rounds we ob-
tain an almost constant number of false expansions. In this
sense the system is overtrained for the test corpus.

We conclude that extending the recall for a specific cor-
pus by adding new rules can only be done at the risk of a loss
of precision when moving to another corpus. Most rules only
cover a few very specific cases. When adding these rules, the
danger of errors of type 2 increases.

Remark 4 A parallel series of experiments were conducted
allowing the use of I ns (cf. Remark 4) in the rules. Twelve
additional rules could then be written for the training corpus,
covering 3% of the introduction contexts. The results look
very similar to those in Fig. 4. Recall is improved by 3%
in the training corpus and by one point in the test corpus.
The major difference is the negative evolution of precision
in the test corpus, which decreases after round three (98%)
and reaches a final value of 94% after round 12.

6 Replacing rule sets by Hidden Markov Models

The numbers seen in the previous section show that the
high specificity of rules represents the main obstacle to ob-
tain a fully satisfactory recall in the application phase. We
now introduce the hidden Markov models (HMMs) used
in our approach and show how parameters are directly es-
timated from an existing rule set.8 Afterwards we show
how the HMM is actually used given an acronym candi-
date and a search window. In a third step we show how
the probabilistic information obtained from the HMM and
additional parameters from the expansion candidates are
combined in the preference scheme to select a preferred
expansion candidate. In our experiments the remaining
setup (tokenization routine, morpheme determination, def-
inition of acronym candidates, search window, etc.) was as
before.

8 Readers not familiar with HMMs are referred to [5, 23].

6.1 Converting rule sets into HMMs

The basic idea behind the use of HMMs can be described
as follows. Given an acronym candidate A, each letter of
the skeleton is treated as an emission of a matching oper-
ator. Matching operators are treated as states. Our HMMs
are “hidden” in the sense that the sequence of all emissions
(the skeleton) is visible, but we cannot see the underlying
sequence of states (matching operators). From the HMM,
we obtain different suggestions for plausible operator se-
quences, which in a second step are compared with the mor-
phemes found in the search window.9 Details are given be-
low; see also Fig. 7.

The set of states S of the HMM contains the operators
used in the hybrid approach and two additional states, b and
0:

S = {b, C, F, I, L , E, R, 0} .10

The operator b is only used for technical reasons: state b
is the first state of any transition through the HMM; it is not
accessible from the other states. State b always emits the null
symbol ε. State 0 is needed because the application of oper-
ator E can result in more than one symbol in the acronym
skeleton, but in our HMM there is a one-to-one correspon-
dence between operators (states) and emitted symbols. We
modified E , allowing it to produce just the first symbol. All
the following symbols formerly produced by E are now pro-
duced by state 0, which is accessible only from E or from 0.

The set of emission symbols is

K := {ε, c, n} .

The vector of initial state probabilities � = {πi }, i ∈ S
is defined as πb := 1 and πi = 0 for all states i ∈ S distinct
from b.

We estimated the transition probabilities ai, j (i, j ∈ S)
and the emission probabilities bik (i ∈ S, k ∈ K directly
from a set of rules obtained from the hybrid approach using a
maximum-likelihood estimator (MLE). As a preparation, the
rules were automatically converted into a different format
in a first step, in which the states b and 0 are used in the
aforementioned way.

Example 9 Rule wphww → [F(2): c][F(4): c][E(5): ccc]
is converted into the sequence εb, cF, cF, cE, c0, c0.

Each pair ki s j represents the emission of symbol ki from
state s j . With the MLE the emission probability for such
an event is estimated from the relative frequency of events
where s j is emitted when the HMM is in state s j :

PM L E (ot = ki | Xt = s j ) = C(ki s j )/C( s j ) .

Here C(ki s j ) represents the absolute frequency of the event
ki s j , and indicates that the symbol is not specified for the
count.

9 Note that we do not calculate the most likely path using the Viterbi
algorithm.

10 Of course, I ns is included in S in the experiments that use this
operator.
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Fig. 6 HMM obtained from the maximal rule set with 107 rules

The transition probabilities are estimated from the rela-
tive frequency of a transition with respect to all transitions
starting from the same state:

PM L E (Xt+1 = sk | Xt = s j ) = C( s j , sk)/C( s j , ) .

No kind of smoothing was performed that tried to reserve
probability space for unseen events.

Figure 6 shows the HMM that was obtained when using
the final rule set for round 12 in the experiment from the
previous section for the hybrid approach. Accidentally, the
operator R was not used in the rules derived for the train-
ing corpus, so all probabilities for transitions to this state
are null. Nevertheless, from other experiments we know
that this operator is useful. In general, in experiments with
larger rule sets the probability distribution also became more
complex.

Remark 5 Our HMM only formalizes the sequence of oper-
ations that are used to built an acronym and the letter type
c or n of the acronym skeleton that results from the appli-
cation of the operator. The HMM does not specify to which
morpheme in the search window a given operator is applied.
This point, which is illustrated in Fig. 7, will become clearer
below, when we explain how the HMM is used for search.

Remark 6 An alternative, more fine-grained working model
results from creating a state in the HMM for each combi-
nation of an operator with an expansion morpheme type.
The training costs, however, would be much higher since the
number of transitions is given by the square of the number
of states.

Remark 7 The fact that we do not consider the rule use fre-
quency in our estimations for the different parameters can
be seen as a way of factoring out noise introduced by the ex-
pansion skeleton that is used in the rule. Rules can only have
a high frequency if they use a frequent expansion skeleton.
However, when applying the HMM we do not want to make
any assumption on the expansion.

...synthesis of plasminogen activator inhibitor type-1 (PAI-1) were not...

w w w w n
c cc n

FF F E
?
?
?
?

possible
state sequence

emission sequence

HMM

b

? ? ? ? ?

Fig. 7 Recovery of expansion “plasminogen activator inhibitor type-
1” from acronym PAI-1. Given the skeleton cccn, the HMM suggests
operator sequences such as bFFFE that correspond to possible paths.
For each candidate path, the correspondence between the operator se-
quence and morphemes of expansion candidates is checked in another
step (question marks)

6.2 Applying the HMM

The HMM acts as a network with an infinite set of possi-
ble transition paths. For each observed acronym candidate
A, there are different paths through states of the HMM that
can produce the skeleton of A. When looking for an ex-
pansion for A, the HMM produces alternative paths (oper-
ator sequences) based on the form of the skeleton, which
we can check against the search window, selecting suitable
morphemes for applying the operators. The correspondence
between acronym and expansion is thus not driven by a finite
set of rules but emerges dynamically.

In practice, operator sequences produced by the HMM
are deterministically grouped into subsequences, each sub-
sequence corresponding to a set of operators that are all ap-
plied to the same expansion morpheme. We use the fact that
operator F marks the beginning of a new morpheme and
that each of the operators E and R11 “stands for” a whole
morpheme. In an operator sequence we can draw a border
in front of these operators. Sequences between borders are
applied to the same morpheme.

Example 10 EFCCRFI is divided into the subsequences E |
FCC | R | F I .

The border partition can be used to discard operator se-
quences that are not compatible with some structural prop-
erties of the acronym not visible in the skeleton. Dashes ap-
pearing in the acronym usually indicate morpheme divisions
in the expansion. We can thus ignore operator sequences
where the number of borders is smaller than the number of
dashes found in the acronym.

Example 11 The operator sequence F I I | F I cannot gen-
erate the acronym P-CH-R.

Other characteristics of the acronym like transitions from
lowercase to uppercase turned out to be unreliable as divi-
sion markers and were not used in our experiments.

Given an acronym candidate A and a search window,
operator subsequences are matched against the morphemes
in the window. There is a match for the whole operator se-
quence if each subsequence matches at least one morpheme
in the window such that all matched morphemes are dif-
ferent. Each possible combination of expansion morphemes

11 As well as I ns.
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that matches the operator sequence is treated as an expan-
sion candidate. Each candidate encloses the words between
the two outermost matched morphemes.

From the HMM we obtain a first parameter for the pref-
erence scheme. Consider an expansion candidate associated
with an operator sequence X that generates an observed
acronym skeleton O . Given the model n, the probability of
producing O on path X is

P(O, X | µ) = P(O | X, µ) · P(X | µ) (1)

=
T∏

t=1

C(oi Xt )

C( Xt )
·

T∏

t=1

C( Xt , Xt+1)

C( Xt )
. (2)

In order to be able to directly compare the probabilities of all
operator sequences X ′ that generate the same skeleton O , we
associated to each sequence X the normalized probability N :

N (O, X | µ) = P(O, X | µ)∑
X ′ P(O, X ′ | µ)

.

6.3 Preference scheme and graphical correspondence

As the preference schema used for the hybrid approach
worked well, we developed a similar one for the HMM ver-
sion. Again, expansion candidates are first ordered by as-
cending distance to the acronym candidate. From among all
candidates with minimal distance we select the one where a
second parameter, NM,F , is maximal. The parameter

NM,F : = N (O, X | µ) · M · P

modifies the normalized probability N (O, X | µ) of the op-
erator sequence suggested by the HMM, introducing two
weakening factors, M and P . M takes into account how
many expansion morphemes appear as a letter or number
in the acronym. It is given by

M :=





1 if m = 0

(1 − m/ | E |) · 1

4
if m > 0

,

where m is the number of candidate morphemes not repre-
sented in the acronym (“missing” morphemes) and | E | the
total number of morphemes of the candidate. Note that M
decreases with the number of missing morphemes.

P reflects how drastically the order of the morphemes in
the expansion candidate differs from the order of the corre-
sponding letters/numbers in the acronym. We used the for-
mula

P :=





1 if lcs =| A |
(lcs/ | A |) · 1

8
if lcs <| A | ,

where lcs denotes the longest subsequence of nonpermuted
positions in the graphical correspondence between expan-
sion morphemes and acronym symbols.

For example, for the graphical correspondence expressed
by a rule with right-hand side [F(2): c][F(3): c][F(4): c]
[F(1): c], we have lcs = 3 since in the subsequence
[F(2): c][F(3) : c][F(4): c] the order of expansion mor-
phemes is completely copied to the corresponding order of
acronym letters.

Motivated by linguistic studies on the typical form of ter-
minological expressions [4, 11], we tried to refine the pref-
erence scheme with linguistic filters that help to recognize
good expansion candidates. In the above variant of the HMM
approach, these filters did not improve results. In the variant
where HMMs use the operator I ns, the use of linguistic fil-
ters in the preference scheme helped to improve precision
(see below).

7 Evaluation results for the HMM-based method

To evaluate the HMM-based method, we repeated the
experiments designed for the hybrid approach using
the same training and test corpora. The effect of training the
model on different rule sets was observed, translating the
rule sets obtained after the 12 rounds into 12 corresponding
HMMs.

Results are given in Fig. 8. Already after the first round
the recall of 82% reached with the translated HMM was bet-
ter than the highest recall reached with the hybrid method

Fig. 8 Precision and �-restricted recall for the HMM-based method.
The rule sets used for generating a HMM in each round correspond to
the rule sets used for the rounds in the hybrid approach. The star marks
the best result achieved with the hybrid method
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after round 12. In the final round, the recall reached with the
HMM-based method was 94%. In terms of precision, the
HMM-based method achieves 95% and is comparable to the
hybrid approach (96%). Summing up, the main advantage of
the HMM-based method is the improved recall coupled with
stability with respect to precision.

HMMs with I ns and linguistic filtering of expansion
candidates. In the parallel experiment where we used
HMMs with state I ns, we only considered paths with at
most one occurrence of I ns. We obtained a better recall, and
the improvement was 1%. At the same time, precision de-
creased by 4–5%. With a sophisticated linguistic preference
scheme, this loss of precision could be reduced.

A final remark addresses efficiency. Our algorithm first
computes for a given acronym skeleton O the normalized
probability N (O, X | µ) for all paths X . In a second step,
for each such operator sequence X we try to find admissi-
ble matches on the basis of the morphemes found in the
search window. This matching step consumes most of the
time. Hence a speedup can be obtained by excluding from
the matching all paths X where the normalized probability
is below a given threshold. We found that we could safely ig-
nore all paths X with a normalized probability below 1/10·l,
where l is the number of acronym letters, without major
changes for precision and recall.

8 Related work

An early and influential contribution to acronym-expansion
detection is Taghva’s Acronym Finding Program (AFP)
[25, 26]. Acronym candidates are defined as “uppercased”
words of length l, 3 ≤ l ≤ 10, excluding sequences from
a given list of false positives (e.g., FIGURE, TABLE). Any
occurrence of a candidate A triggers a search for the asso-
ciated expansion within a text window surrounding A with
two parts, the pre- and the postwindow. Each subwindow
contains 2 | A | consecutive words (| A | denotes the num-
ber of symbols of A). For each subwindow W a confidence
level c f (W, A): = lcs(I (W ),A)

|A| + error - rate is computed.
Here I (W ) denotes the sequence of all initial letters of W ,
lcs(A′, A) denotes the length of a maximal common subse-
quence of two sequences A′ and A, and error rate is a con-
figurable parameter with default value 0.2. If c f (W, A) < 1,
the search for an expansion of A in W stops. Otherwise,
all longest common subsequences of A and I (W ) are com-
puted. Each longest subsequence defines a unique subse-
quence of (not necessarily consecutive) words of W . Filling
the holes between these words (i.e., adding skipped words)
we obtain an expansion candidate. The preference scheme
for selecting a best expansion candidate basically tries to
maximize the number of content words in an expansion that
contribute to the acronym.

The main advantage of the model is its simplicity and
computational efficiency. Drawbacks are the simplicity of
the search pattern and the fact that only matches correspond-
ing to the operator � described above are formalized. Other

possibilities are only taken into account by accepting subop-
timal matches between acronym and expansion, which leads
to a loss of precision.

Acrophile [12] is a dictionary of acronym definitions
extracted from documents on the Web. For the construc-
tion of the dictionary, four acronym-finding algorithms have
been designed and evaluated. While the base algorithm uses
conventional search in arbitrary text windows surrounding
acronym candidates, three refined versions take the structure
of possible introduction contexts into account. In contrast to
AFP, detailed descriptions of possible acronym candidates
in terms of regular patterns and additional restrictions are
given. Each of the four Acrophile algorithms comes with
its own definition of expansion candidates. Generalizing the
acronym-building principle of AFP, several letters of one
word may contribute to a given acronym in the Acrophile ap-
proach. Matching basically means checking different com-
binations of F and I operator sequences on the search win-
dow. In this sense, the hybrid approach [19] refines both AFP
and Acrophile with its richer set of matching operations.
Acrophile’s four algorithms use distinct preference schemes
for selecting a best candidate. For the refined variants, oc-
currences in admissible introduction contexts are preferred.

A different approach relying on a deeper linguistic anal-
ysis of the text is reported in [21]. In the more improved ver-
sion, introduction contexts are described as a nominal phrase
standing for the expansion and an acronym candidate deter-
mined by a regular expression, which can appear in different
configurations, e.g., NP (acronym-candidate) or acronym-
candidate (NP). For processing, the text is split into sen-
tences. Each sentence is analyzed by a shallow parser, which
marks chunks of words in the sentence as phrases of vari-
ous types. A finite-state automaton scans the outputted sen-
tence for the patterns defined for the introductory contexts.
If one is found, a simple matching procedure is used to val-
idate the NP and the acronym candidate. They are consid-
ered an expansion-acronym pair if the ratio of the matchable
expansion words (not including stop words) to the number
of acronym characters remains below a specified threshold.
The method is very accurate (99% for some introduction
context patterns) with an acceptable recall (60%–70%), but
the resource overhead (parsing procedure, corpus-dependent
lexica) is considerable.

Other methods are designed as classification tasks.
Yeates [29] uses machine learning techniques to develop
a naive Bayes classifier that distinguishes acronyms from
nonacronyms. In [28] acronyms are detected by comparing
the performance of a special compression model developed
for acronyms with the performance achieved with other stan-
dard compression models for natural language.

9 Conclusion

In this paper we developed an extension of a rule-based
approach for extraction of acronym-expansion pairs, trans-
lating a given set of extraction rules into a hidden Markov
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model and using a preference schema based on properties
of the graphical correspondence between acronym and
expansion.

In our experiments, a maximal recall of 78% reached on
the test corpus with the original approach [19] could be lifted
to 94% with the HMM-based extension of the formalism,
while the precision remained stable.

The HMM formalism is stable in the sense that a given
HMM can be used for new corpora. The flexibility of the
matching process and the richness of the used set of opera-
tors guarantee that special graphical relationships can be de-
tected that have not been observed in the training corpus. As
a matter of fact, it is possible to (re)translate a successful run
of the HMM for some acronym-expansion pair into a rule.
In this way, the given HMM can also be used for suggesting
rules. The translation of enlarged rule sets into HMMs can
then be considered as a form of additional training.

A hint is provided on the usefulness of adding linguistic
techniques for recognizing introduction contexts when the
graphical correspondence is only approximate and the oper-
ator I ns (cf. Remark 4.7) is used.

One actual weakness of our approach is efficiency. The
process whereby an operator sequence produced by the
HMM is matched with the morphemes in the search window
is complex. Since the HMM produces several sequences,
search times are longer than for the original approach. Im-
provements on the efficiency side represent one point for fu-
ture research.

A final remark addresses the difference between �-
restricted recall (as defined in Sect. 3 and measured above)
on the one hand and absolute recall on the other. The search
pattern “(�)” for detecting acronym candidates described
in Sect. 4 simplified the above experiments where we
compared the original method with our extension. When
the new approach is used in practice, absolute recall can be
further improved using a more general set of patterns. In an
experiment with Pustejovsky’s Acronym/Alias Identification
Corpus [14] we found that 123 of 149 acronyms occurring
in actual introduction contexts could be identified using the
pattern “(�).” The method gives a detection rate of 82.5%.
The 149 introduction contexts had the following form and
distribution:

139 Expansion (Acronym)
4 Acronym (for Expansion)
2 Expansion [Acronym]
2 Acronym (Expansion)
1 Expansion-prefix (Acronym-for-prefix) Exp.-rest

(Acronym-for-whole-exp.)
1 Expansion (Acronym) Expansion-rest

Hence, for 16 missing acronyms a more general regu-
lar expression � was needed. Most of the remaining 10
cases can be covered with a straightforward modification of
the search pattern “(�).”
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