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Abstract. Finding efficient, effective ways to compare
graphs arising from recognition processes with their cor-
responding ground-truth graphs is an important step to-
ward more rigorous performance evaluation.

In this paper, we examine in detail the graph probing
paradigm we first put forth in the context of our work on
table understanding and later extended to HTML-coded
Web pages. We present a formalism showing that graph
probing provides a lower bound on the true edit distance
between two graphs. From an empirical standpoint, the
results of two simulation studies and an experiment us-
ing scanned pages show that graph probing correlates
well with the latter measure. Moreover, our technique is
very fast; graphs with tens or hundreds of thousands of
vertices can be compared in mere seconds. Ease of imple-
mentation, scalability, and speed of execution make graph
probing an attractive alternative for graph comparison.

Keywords: Graph comparison – Edit distance – Per-
formance evaluation – Document recognition – Layout
analysis

1 Introduction

Graphs arise as a fundamental representation through-
out much of computer science and engineering, including
the field of document analysis. Finding efficient, effective
ways to compare graphs is important to areas ranging
from basic pattern recognition to sophisticated models
for information retrieval.

One potential application lies in the area of perfor-
mance evaluation, which is crucial to the development
of robust document analysis systems. Unfortunately, it
is not unusual for researchers to treat this step as some-
what of an afterthought, placing more emphasis on the
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proposal of new recognition techniques. As a result, eval-
uation methods often are ad hoc (e.g., manually counting
the errors that seem to have arisen or, worse, presenting
a few examples for the reader of a paper to inspect visu-
ally), employ measures that are specialized to one partic-
ular application, or are of mostly theoretical interest and
not computationally feasible for realistically sized prob-
lem instances.

While it is difficult to draw general conclusions about
a field that is so diverse, one point of commonality is the
frequent use of graph-oriented data structures to hold
the intermediate and/or final results of recognition pro-
cesses. For example, algorithms for higher-level document
understanding tasks often use graphs to encode the log-
ical structure of a page. Given the graph that is output
by a document analysis algorithm and its correspond-
ing ground-truth graph, having a measure for compar-
ing them would give us a mechanism for evaluating the
performance of the algorithm in question. Because most
problems relating to graph comparison have no known
solution that is both efficient and guaranteed to be opti-
mal, researchers have devised a wide range of heuristics.

Recently, we have begun to explore an intuitive, easy-
to-implement scheme for the problem of performance
evaluation when document recognition results are repre-
sented in the form of a graph. As shown in Fig. 1, graph
probing places each of the two graphs under study inside a
“black box” capable of evaluating a set of graph-oriented
operations (e.g., counting the number of vertices labeled
in a certain way) and then poses a series of simple queries
derived from the graphs themselves. A measure of their
dissimilarity is the degree to which their responses to the
probes disagree.

In this paper, we examine in detail the graph probing
paradigm we first put forth in the context of our work
on table understanding [9–11], where it played an impor-
tant role in evaluating the performance of the recognition
techniques under development. We later extended the ap-
proach to the analysis of HTML-coded Web pages from
the perspective of information retrieval [16,17]. The pre-
liminary experimental results reported in a short confer-
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Fig. 1. Overview of graph probing

ence paper [18] are substantially augmented herein and
accompanied by more extensive explanations and new
analyses.

We begin with a discussion of past work relating to
the problem of graph comparison. In Sect. 3, we present
a formalism showing that graph probing provides a lower
bound on the true edit distance between two graphs. To
see how well the approach might work in practice, we ex-
amine the results from two simulation studies in Sect. 4,
one employing a graph model for hierarchical page layout
and the other for the logical structure of tables. We also
describe an experiment using scanned page images drawn
from a standard dataset to demonstrate the feasibility of
applying graph probing to real recognition algorithms.
An empirical timing analysis shows that the procedure is
extremely efficient; graphs with a million vertices can be
compared in less than 10 s. Finally, we offer our conclu-
sions and topics for future research in Sect. 5.

2 Related work

Graph comparison is a widespread yet challenging prob-
lem, so it should come as no surprise that many re-
searchers have proposed heuristics and/or solutions de-
signed for special cases. It is not our intent to survey
the field exhaustively, but rather to identify certain rep-
resentative papers, especially those most closely related
to the approach we are about to describe. A more com-
prehensive overview can be found in a recent paper by
Bunke [3]. Jolion offers opinions on research trends in
graph matching [12].

To begin with, it is important first to distinguish be-
tween the exact and approximate matching problems.
The former is typically called graph isomorphism, while
the latter is often phrased in terms of a minimum-cost
sequence of basic editing operations (e.g., the insertion
and deletion of vertices and edges) that accounts for the
observed differences between the two graphs and that de-
fines the notion of edit distance. These viewpoints are in
fact complementary; it should be clear how a solution to
the approximate matching problem could be helpful in

solving the isomorphism problem. Moreover, since graphs
that are sufficiently similar most likely contain subgraphs
that are identical, subgraph isomorphism can be seen as
facilitating approximate matching. A formal connection
between these two concepts was established by Bunke [2].

In the context of graph editing, another vital dis-
tinction arises with respect to two particular quantities
that may be of interest: the actual sequence of operations
needed to edit one graph into the other and the cost of
such a sequence. The former is useful in attempting to
understand the differences between the graphs and why
they may have arisen, while the latter provides a concrete
measure of similarity. Given a minimum-cost sequence of
editing operations, calculating the corresponding edit dis-
tance is straightforward. While the converse is not true,
edit distance by itself is still extremely valuable, espe-
cially if it can be computed much more rapidly or for
larger graphs than would otherwise be possible using pro-
cedures that return the operations.

Much prior work has focused on the graph isomor-
phism problem (i.e., finding an exact correspondence be-
tween two graphs) and its variants. The complexity of
graph isomorphism remains unresolved, and, unfortu-
nately, all known algorithms for its solution have worst-
case exponential running times [7]. Heuristics for deter-
mining isomorphism often rely on the concept of a vertex
invariant , that is, a value f(v) assigned to each vertex
v such that under any isomorphism I, if I(v) = v′, then
f(v) = f(v′). One such invariant is the degree of a vertex
(or the in- and out-degrees, if the graph is directed). In-
deed, nauty, an effective software package for computing
graph isomorphism ([19,20]), relies on vertex invariants.

In general, such heuristics can fail in a catastrophic
manner [5]. On the other hand, it has been shown that
for random graphs, there is a simple linear time test for
checking if two graphs are isomorphic based on the de-
grees of the vertices, and this test succeeds with high
probability [1].

Other research aims at speeding up the computation
for database searches. Lazarescu et al. propose a machine
learning approach to building decision trees for eliminat-
ing from further consideration graphs that cannot pos-
sibly be isomorphic to a given query graph [15]. While
they employ a similar set of features to the ones we use,
they do not consider the approximate matching prob-
lem. Bunke and Messmer present a decision-tree-based
precomputation scheme for solving the subgraph isomor-
phism problem, although their data structure can be ex-
ponential in the size of the input graphs in the worst
case [4,21].

Valiente and Mart́ınez describe an approach to sub-
graph pattern matching based on finding homomorphic
images of every connected component in the query [30].
Again, the worst-case time complexity is exponential, but
such features could also perhaps be incorporated in the
measure we are about to present.

Turning to graph edit distance, we note there have
been a large number of papers written on the subject
and its many applications. These can be divided into two
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categories. In the first, we have procedures that are guar-
anteed to find an optimal solution but may, in the worst
case, require exponential time, such as the early work
by Fu and colleagues [27,29]. The second category in-
cludes heuristics that may not necessarily return an opti-
mal match but that have polynomial running times as in,
for example, the Bayesian framework posed by Myers et
al. [22]. Frequently these papers focus on search strate-
gies intended to speed up the computation when certain
conditions are satisfied, making the understanding and
implementation of the algorithms more difficult.

Papadopoulos and Manolopoulos discuss an idea that
is philosophically quite similar to the one we are explor-
ing [25]. However, they focus on a single invariant: vertex
degree. It is clear this is not sufficient for catching all
of the interesting differences that can arise among docu-
ment representations. We would like to determine a range
of possible graph features that can be used to distinguish
the sorts of effects seen in practice.

Instead of trying to solve the problem for graphs in
general, some leeway can be had by limiting the discus-
sion to trees, for which efficient comparison algorithms
are known. Schlieder and Naumann consider a problem
closely related to ours: error-tolerant embedding of trees
to judge the similarity of XML documents [28]. Likewise,
Dubois et al. write about tree embedding for searching
databases of semistructured multimedia documents and
for query-by-example [6].

3 A formalism for graph probing

In this section, we formalize the concept of graph probing
as a way of quantifying graph similarity. Our goal is to
relate probing to more rigorous but harder-to-compute
graph edit distance models.

While ultimately we are interested in a more gen-
eral class of graphs, to begin with let Gu

1 = (V1, E1)
and Gu

2 = (V2, E2) be two undirected graphs. Consider a
graph editing model that allows the following basic oper-
ations: (1) delete an edge, (2) insert an edge, (3) delete an
isolated vertex, (4) insert an isolated vertex. It should be
clear that such operations can be used to edit any graph
into any other graph. The minimum number of operations
needed to edit Gu

1 into Gu
2 is the undirected graph edit

distance, distu(Gu
1 , Gu

2 ). There is no known algorithm for
efficiently computing this distance in general.

Now consider a probing procedure that, for a specific
vertex degree n, asks the following question: “How many
vertices with degree n are present in graph Gu = (V, E)?”
Let PR1a collect the responses for all vertex degrees rep-
resented in the graph (the response for all other vertex
degrees is, of course, implicitly zero):

PR1a(Gu) ≡ (n0, n1, n2, . . .) (1)
where ni = |{v ∈ V | deg(v) = i}|

Then define probeu(Gu
1 , Gu

2 ) ≡ PR1a(Gu
1 )−PR1a(Gu

2 ) as
the L1 norm of the two vectors; that is, probeu is the mag-
nitude of the difference between the two sets of probing
results.

Theorem 1. Under the undirected graph model and its
associated edit model, probeu is a lower bound, within a
factor of four, on the true edit distance between any two
graphs. That is, probeu(Gu

1 , Gu
2 ) ≤ 4 · distu(Gu

1 , Gu
2 ).

Sketch of Proof: The proof of this theorem follows
from a simple case analysis. The operations that cause
the largest possible disparity between edit distance and
the graph probing measure are the deletion or insertion
of an edge. In particular, consider a pair of vertices, v1
and v2, where v1 has degree δ1 and v2 has degree δ2.
Now add an edge between them. Since the degree of v1
increases from δ1 to δ1 + 1 and the degree of v2 increases
from δ2 to δ2 + 1, this edit can result in there being one
more vertex with degree δ1 +1 and one more with degree
δ2 + 1. It can also result in there being one fewer vertex
with degree δ1 and one fewer with degree δ2. Thus, this
one operation may cause as many as, but no more than,
four of the probes to differ by one.

An example is illustrated in Fig. 2a, where the compari-
son of the two probe vectors PR1a yields a value of four
as opposed to the true edit distance, which is one (corre-
sponding to the insertion of a single edge). This demon-
strates the tightness of the lower bound.

The time needed to perform the above probing pro-
cedure is O(max(|V1|, |E1|, |V2|, |E2|)). In the offline case,
we can precompute the probes and their responses for
one of the graphs. While the worst-case time complexity
remains unchanged, the precomputation and an efficient
coding of its output can yield a substantial savings.

Unfortunately, there is no guarantee that the above
bound is always tight. Indeed, it is not even as tight as
the bound that can be derived for the measure described
in [25]. It does appear to be easier to generalize, however,
and the importance of this will become apparent shortly.

To proceed to the case of directed graphs, we can
consider the same set of editing operations (recognizing
that the edges are now directed) and change the probes to
be: “How many vertices with in-degree m and out-degree
n are present in graph Gd?” As before, let PR1b collect
the responses for all vertex in- and out-degrees present
in the graph,

PR1b(Gd) ≡ (n0,0, n0,1, n1,0, . . .) (2)
where ni,j = |{v ∈ V | indeg(v) = i, outdeg(v) = j}|

Then define probed(Gd
1, G

d
2) ≡ PR1b(Gd

1) − PR1b(Gd
2),

leading to an analogous result:

Theorem 2. Under the directed graph model and its as-
sociated edit model, probed is a lower bound, within a
factor of four, on the true edit distance between any two
graphs. That is, probed(Gd

1, G
d
2) ≤ 4 · distd(Gd

1, G
d
2).

Moreover, probeu(Gd
1, G

d
2) ≤ probed(Gd

1, G
d
2).

As before, an example is shown in Fig. 2b. Note that in
this case probed is identical to the edit distance.

The same observations made above concerning com-
putation time apply here as well. As stated in the theo-
rem, the bound returned by the new, more specific class
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insert edge
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Fig. 2a–c. Probing examples for the
three graph models

of probes is at least as good as the original class and
sometimes better: probeu(Gd

1, G
d
2) ≤ probed(Gd

1, G
d
2).

1

Now generalize the graph model further so that ver-
tices and edges are potentially labeled by a type. For ex-
ample, vertices might be labeled as corresponding to log-
ical structures within a document (e.g., zone, line, word)
along with any associated content, while edges are labeled
to represent relationships between structures (e.g., con-
tains, next). To handle such attribute graphs, the edit
model previously defined must be expanded to include
additional operations: (5) change the type of an edge,
(6) change the type of a vertex. The edges and vertices
created through insertion operations can be assigned any
type initially.

In terms of probing, note that now two graphs can be
different (in terms of the types of their vertices and edges)
and yet appear to be structurally identical. To deal with
this, the probes for counting in- and out-degrees are made
specific to edge type. Suppose there are α different edge
labels l1, . . . , lα. The edge structure of a given vertex can
then be represented as a 2α-tuple of nonnegative inte-
gers, (x1, . . . , xα, y1, . . . , yα), if the vertex has exactly xi

incoming edges labeled li and exactly yj outgoing edges
labeled lj for 1 ≤ i, j ≤ α. Then a typical probe will
have the form: “How many vertices with edge structure
(x1, . . . , xα, y1, . . . , yα) are present in graph Ga?” We also
need to add a new class of probes focusing on just the ver-
tices and their types: “How many vertices labeled vtype
are present in graph Ga?” Let PR1c collect the responses
for vertex in- and out-degrees and their respective edge
types, and let PR2 collect the responses for vertex types.

1 The function probeu is applied to directed graphs Gd
1 and

Gd
2 by simply ignoring the directions on the edges.

Define

probea(Ga
1 , Ga

2) ≡ (3)
(PR1c(Ga

1) − PR1c(Ga
2)) + (PR2(Ga

1) − PR2(Ga
2))

We then have:

Theorem 3. Under the attribute graph model and its as-
sociated edit model, probea is a lower bound, within a
factor of four, on the true edit distance between any two
graphs. That is, probea(Ga

1 , Ga
2) ≤ 4 · dista(Ga

1 , Ga
2).

Moreover,

probeu(Ga
1 , Ga

2) ≤ probed(Ga
1 , Ga

2) ≤ probea(Ga
1 , Ga

2)

This is depicted in Fig. 2c.
The precomputation needed for each graph is as fol-

lows. Computing the edge structures of all the vertices
takes total time O(|E| + α|V |). These |V | 2α-tuples can
then be lexicographically sorted in O(α(δ + |V |)) time,
where δ is the maximum number of edges incident on
any vertex. Then a simple pass through the sorted list
allows us to compute the number of vertices in each of
the (nonempty) classes in additional time O(α|V |). Thus
the total precomputation time is O(α(δ + |V |) + |E|).
Since α and δ are likely to be small constants, the time is
essentially the same as for the case of undirected graphs.

We refer to the quantity probea(Ga
1 , Ga

2) defined by
Eq. 3 as the graph probing distance between Ga

1 and Ga
2 .

It provides an approximation to the true edit distance
between two graphs, which would be too expensive to
compute in the most general case. Table 1 summarizes
the results of this section.

Before concluding this portion of the presentation,
we note that the various graph probing measures satisfy
the triangle inequality. In other words, probe(G1, G2) ≥
probe(G1, G3)+probe(G3, G2) for all graphs G1, G2, and
G3 of the appropriate class. Graph probing distance is
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Table 1. Summary of the various models

Graph model Edit model Probe model Bound

Undirected (1) Delete edge
(2) Insert edge
(3) Delete vertex
(4) Insert vertex

(a) Vertex degree probeu(Gu
1 , Gu

2 ) ≤
4 · distu(Gu

1 , Gu
2 )

Directed As above (a) Vertex in- and out-
degree

probed(Gd
1, G

d
2) ≤

4 · distd(Gd
1, G

d
2)

Attribute As above, plus
(5) Change edge type
(6) Change vertex type

(a) Vertex in- and out-
degree by edge type
(b) Vertex type

probea(Ga
1 , Ga

2) ≤
4 · dista(Ga

1 , Ga
2)

also nonnegative and symmetric (i.e., probe(G1, G2) =
probe(G2, G1)), thus satisfying three of the four condi-
tions of a metric space. The remaining condition, separa-
tion, is violated, however, as probe(G1, G2) = 0 does not
imply that G1 and G2 are identical (isomorphic). Hence,
graph probing distance forms what is commonly referred
to as a “pseudometric” space.

4 Experimental results

Based on the preceding formalism, two probe classes are
applicable to the kinds of attribute graphs that arise in
document analysis applications:
Class 1c These probes examine the vertex and edge

structure of the graph by counting in- and out-
degrees, tabulating different types of incoming and
outgoing edges separately. An example is: How many
vertices with one incoming edge labeled “contains”
and another labeled “next,” along with two outgoing
edges labeled “contains” and one labeled “next,” are
present in the graph?

Class 2 These probes count the occurrences of a given
type of vertex in the graph. Recall that “type” refers
both to a logical label as well as any content that
may be associated with the vertex. A representative
Class 2 probe might be paraphrased as: How many
vertices labeled “Word” with content “pentagon” are
present in the graph?

For implementing such a protocol, we have developed
a graph probing library as an extension to a general-
purpose programming language, Tcl/Tk [24].

To test these ideas, we designed a series of simula-
tion studies as well as an experiment using results from
a well-known page segmentation algorithm. As previ-
ously noted, we would like to be able to equate graph
probing distance (i.e., Eq. 3) with some formal notion
of correspondence. Unfortunately, there is no measure
that is both universal and easy to compute that we can
use for comparison purposes (indeed, this point is a pri-
mary motivation of our research). Hence, we have chosen
to work “backwards” by randomly generating a ground-
truth graph and then simulating recognition “errors” by

editing the graph in various ways: adding and deleting
vertices, altering labels and content, etc. The number of
edits we perform is an approximation (an upper bound,
in fact) of the actual distance between two graphs.

4.1 Entity graph model simulation

The entity graph model reflects a standard document hi-
erarchy: vertices labeled as Page, Zone, Line, or Word
(see, e.g., [13]). The edge structure represents two rela-
tionships: contains and next . A small example of such
an entity graph is shown in Fig. 3, corresponding to the
nonsense document fragment given below:

satisfactory extrinsic inexpert frankfurter

abutting tarantula
grillwork pentagon attribution bilharziasis

The random entity graphs used in our study are, on av-
erage, eight times larger than this.

We begin by creating a graph for a page with a ran-
dom number of zones. For each zone, we then generate
a random number of lines, and for each line a random
number of words. Content for Word vertices is chosen to
be a word randomly selected from the Unix spell dic-
tionary. The editing operations used to simulate recog-
nition errors are guaranteed to yield another legal en-
tity graph. These include altering the content of a Word
vertex, deleting an existing Word , Line, or Zone vertex
(and its associated edges and children), or inserting a new
Word , Line, or Zone vertex along with the corresponding
content (if any) that lies below it in the hierarchy.

The entire simulation involved generating a total of
2500 “ground-truth” entity graphs, performing a ran-
domly selected number of edits on each, synthesizing and
evaluating Class 1c and 2 probes, and gathering relevant
statistics. The results for this experiment are presented in
Table 2 and Fig. 4. As can be seen from the upper table,
there was a wide range in the size of the graphs under
consideration. On average, approximately one probe was
generated per vertex. Overall, the average graph prob-
ing distance was 26.3, and the minimum was 2 (i.e., the



224 D. Lopresti, G. Wilfong: A fast technique for comparing graph representations

Page

Zone

contains

Zone

contains

next

Line

contains

Line

contains

Line

contains
Word

satisfactory

Word
extrinsic

next

Word
inexpert

next

Word
frankfurter

next

contains

contains

contains

contains
Word

abutting

Word
tarantula

next

contains

contains

next

Word
grillwork

contains

Word
pentagon

contains

Word
attribution

contains

Word
bilharziasis

contains

next

next

next

Fig. 3. An instance of an entity graph

probes always captured the fact that one of the graphs
contained errors).

The ability of the two probe classes to differentiate
the two graphs is shown in the lower part of Table 2.
Class 2 probes never failed in this experiment. Note that
Class 1c probes will always miss differences that involve
only content, but offsetting edits have the potential to
confuse either of the classes. The last column in this ta-
ble indicates that there were 91 graph-pairs that were
distinguished only by using Class 2 probes.

The number of graph editing operations as a func-
tion of graph probing distance is displayed in Fig. 4. The
datapoints show the average at each step along the x-
axis, while the vertical bars give the min/max range. Also
displayed are the theoretical lower bound and the least
squares error fit to the data points; the average error in
the latter case is 4.41. Hence, the graph probing distance
(i.e., Eq. 3) provides a reasonably dependable measure of
the difference between two graphs.

4.2 Table graph model simulation

Entity graphs encode document page structure in a very
general way. A more restricted type of graph is the ta-
ble graph, as defined in our past work on table recogni-
tion [9–11]. Here we employ a slightly simplified version
of that model. Tables consist of lower-level cells grouped
in terms of logical rows and columns. Hence, vertices in
table graphs can be labeled Cell , Row , Column, and, ul-
timately, Table. Edges encode the contains relationship.
An example of a table graph is shown in Fig. 5, as de-
rived from the following randomly generated table with
four rows and three columns:

regression radiant 474383991 sima Nostrand
clubroom incuse 593134723 ant Sussex

ascribe gam 1813217419 opulent
shovel registrable 615003753 astride Peru

Along the same lines as the previous simulation, we
begin by generating a ground-truth graph containing a
random number of rows and columns. Each column is
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Table 2. Statistics for the entity graph simulation
(2500 random graphs)

Attribute Min Max Avg

Zones 1 8 4.4
Lines 1 53 19.8
Words 2 277 98.8
Total vertices 5 337 124.0
Edits 1 178 23.4
Class 1c probes 10 52 34.2
Class 1c distance 0 121 16.3
Class 2 probes 10 555 203.4
Class 2 distance 1 72 10.1
Overall probes 20 595 237.5
Overall distance 2 193 26.3
Probes/vertex 0.869 2.000 1.014

Probes Detected Missed Rate Unique

Class 1c 2,409 91 96.4% 0
Class 2 2,500 0 100.0% 91
Overall 2,500 0 100.0% n/a
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Fig. 4. Results for the entity graph simulation (2500 random
graphs)

randomly designated as being either alphabetic or nu-
meric. For the former, table cells are selected to be a
string of one or more words, while for the latter the con-
tents of cells are assigned to be random integers. Cells in
the first column are always set to be alphabetic (to rep-
resent row headers). Editing operations include changing
the contents of a Cell vertex or deleting or inserting a
Row or Column.

Table 3 and Fig. 6 present the results of running this
simulation for 2500 random tables. These graphs were
somewhat smaller than those for the entity graph exper-

Table 3. Statistics for the table graph simulation
(2500 random graphs)

Attribute Min Max Avg

Rows 4 20 12.1
Columns 4 8 6.0
Total vertices 25 189 91.8
Edits 1 79 25.5
Class 1c probes 6 8 7.9
Class 1c distance 0 102 29.7
Class 2 probes 38 326 151.2
Class 2 distance 2 46 13.7
Overall probes 44 334 159.1
Overall distance 2 132 43.4
Probes/vertex 0.828 0.900 0.867

Probes Detected Missed Rate Unique

Class 1c 2,112 388 84.5% 0
Class 2 2,500 0 100.0% 388
Overall 2,500 0 100.0% n/a

iment. As Table 3 indicates, the Class 2 probes never
failed, but the Class 1c probes missed 388 of the edited
tables. This is probably because they compare vertex in-
and out-degrees, and any two tables with the same num-
bers of rows and columns will appear to be identical in
this regard. Errors that involve only content will create
such confusion, as can offsetting edits. For example, delet-
ing one row and inserting a new row at another location
will result in a table with the same vertex and edge struc-
ture. Probes from Class 2 will catch this difference, but
those from Class 1c cannot. Overall, the average graph
probing distance was found to be 43.4.

The number of editing operations as a function of
graph probing distance is charted in Fig. 6, along with
the lower bound and the least squares error fit (with aver-
age error 5.61). As before, this value appears to be a good
predictor of the number of edits used to simulate recog-
nition errors, although the behavior of graph-pairs near
the extremes of the ranges merits closer examination. Re-
call that the count of editing operations displayed along
the y-axis is only an upper bound on the actual edit dis-
tance. It seems possible that worst-case scenarios in the
random editing process, e.g., altering the content of sev-
eral cells in a given row and then later choosing to delete
the whole row, could make the edit distance appear sub-
stantially larger than it is in reality. This may explain
some of the wide deviations for datapoints on the left in
the chart.

Since the equation for the least squares error fit line in
Fig. 6 is clearly different from that for the line in Fig. 4 (in
particular, the slope is noticeably shallower), it appears
likely the mapping from graph probing distance to edit
distance will need to be calibrated on a per-model basis.
This is a subject for future research.

In previous papers [9–11,18], we have also considered
a third, more sophisticated class of probes for the table
graph model:
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Table

Row Column Column ColumnRow Row Row

Cell
regression radiant

Cell
474383991

Cell
sima Nostrand

Cell
clubroom incuse

Cell
ascribe gam

Cell
shovel registrable

Cell
593134723

Cell
1813217419

Cell
615003753

Cell
ant Sussex

Cell
opulent

Cell
astride Peru

Fig. 5. An instance of a table graph
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Fig. 6. Results of the table graph simulation (2500 random
graphs)

Class 3 For a given target vertex, keys that uniquely de-
termine its row and column are identified. These are
used to index into the graph, retrieving the content of
the vertex that lies at their intersection. Again refer-
ring to the table shown in Fig. 5, an example might
be: What is the content of the cell that lies at the
intersection of the row indexed by “clubroom incuse”
and the column indexed by “sima Nostrand”?

Our intention was that such probes mimic the sorts of op-
erations users may wish to perform on the results of docu-
ment analysis (e.g., table lookups in the style of relational
database queries) and hence more accurately reflect the
impact of recognition errors on a real application.

While this may indeed be the case, we have not yet
found a way to relate other classes of probes to the
formalism we presented earlier in Sect. 3. Still, it is
worth examining the potential utility of such comparison
measures, so we performed another, separate simulation
study involving 500 randomly generated graphs following
the same procedure as before, only this time comparing
the ground-truth and edited graphs using Class 3 probes.
These results are presented in Table 4 and Fig. 7.

Table 4. Statistics for the table graph simulation
using Class 3 probes (500 random graphs)

Attribute Min Max Avg

Rows 4 20 12.0
Columns 4 8 6.0
Total vertices 25 189 91.1
Edits 1 81 26.1
Class 3 probes 36 320 144.3
Class 3 distance 3 118 27.4
Overall probes 36 320 144.3
Overall distance 3 118 27.4
Probes/vertex 0.655 0.847 0.774

Probes Detected Missed Rate Unique

Class 3 500 0 100.0% n/a
Overall 500 0 100.0% n/a

As can be seen, the statistics are for the most part
comparable to the previous table experiment. The Class 3
probes are far more expensive to evaluate, however. Al-
though they always correctly detected that there was a
difference between the graphs, the plot in Fig. 7 sug-
gests that these probes are not necessarily well correlated
with the notion of graph edit distance, so one is probably
not a good substitute for the other. Nevertheless, Class 3
probes still seem to present some attractive qualities that
merit further investigation.

4.3 Page segmentation experiment

Our past experience using graph probing for performance
evaluation in small-scale experiments involving real (as
opposed to simulated) document analysis results has been
quite favorable (see [9–11]). As is often the case, however,
the considerable effort required to create the necessary
ground-truth presents a barrier to performing larger stud-
ies featuring our table understanding work at the present
time (for a discussion of some of the associated issues,
see [8]). Instead, we developed a test using a well-known
page segmentation technique, Nagy and Seth’s X-Y cut
algorithm [23]. This partitions a page image recursively,
representing the result as a tree. By injecting a controlled
amount of random “bit-flip” noise (turning black pixels
white as might arise in a light photocopy), we can induce
differences in the segmentation graph that hopefully will
be reflected in the distance computed during probing.
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Fig. 7. Results of the table graph simulation using Class 3
probes (500 random graphs)

The test collection consisted of ten pages taken from
the UW1 dataset [26]: a037, c003, e011, e02j, h01c,
h015, ig05, j002, n039, and s03n. We chose examples
with relatively complex layouts, so that the X-Y cut
graphs would be interesting. Each page was subjected
to the bit-flip noise at rates ranging from 5% to 75% in
increments of 5%. We then compared the segmentation
graphs for the original and noisy pages using our graph
probing paradigm.

Basic statistics for the probing evaluation of the 150
test pages are presented in Table 5. There were errors in
every one of the recognized pages, and this is reflected in
the minimum overall distance of 47. As in the simulations,
a relatively small number of probes were generated for
each vertex in the graphs.

The lower portion of Table 5 shows that, in nearly
every case, both probe classes were capable of detect-
ing that there were differences between the segmentation
graphs for the original and degraded documents. Only
in five instances did the Class 2 probes outperform the
other class.

The remaining issue, then, is how well graph prob-
ing correlates with the controlled amount of damage we
inflicted on each page image. These results are plotted
in Fig. 8. Here we show a distinct style of datapoint for
each of the ten source documents in the test set. While
the correspondence is perhaps coarser than in the simu-
lations, which likewise involved Class 1c and 2 probes, an
overall monotonic behavior is still visible.

Table 5. Statistics for the page segmentation ex-
periment (150 page images)

Attribute Min Max Avg

X-Cuts 300 1,097 510.8
Y-Cuts 58 668 210.4
Text 246 987 480.6
Other 0 29 10.2
Total vertices 641 2,501 1,212.0
Class 1c probes 8 8 8.0
Class 1c distance 0 1,186 179.0
Class 2 probes 1,283 4,780 2,424.1
Class 2 distance 41 4,122 1,099.8
Overall probes 1,291 4,788 2,432.1
Overall distance 47 4,566 1,278.8
Probes/vertex 1.002 1.006 1.004

Probes Detected Missed Rate Unique

Class 1c 145 5 96.7% 0
Class 2 150 0 100.0% 5
Overall 150 0 100.0% n/a
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Fig. 8. Results of the page segmentation experiment (150
page images)

4.4 Empirical timing analysis

As noted in Sect. 3, graph probing is an efficient pro-
cedure; the asymptotic time complexity is essentially
O(|E| + |V |) for the kinds of graphs we are interested
in. The implementations described in the previous sub-
sections were programmed in Tcl/Tk, which offers a great
deal of flexibility but is inefficient from a computational
standpoint because it is an interpreted language. To ob-
tain a more accurate estimate of the time needed to per-
form graph probing, we rewrote the entity graph simula-
tion in C and ran it on an IBM ThinkPad T23 (1 Ghz
Pentium III, 256 MB RAM) under Linux, using it to
compare random graphs of increasingly larger sizes. The
chart in Fig. 9 presents timing results for graphs rang-
ing from 10 000 to 1 000 000 vertices, where the time re-
ported is the total for generating two random graphs of
the given size, synthesizing and evaluating the respective
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Fig. 9. Timing results of comparing entity graphs of various
sizes using graph probing

probe sets, and comparing the output vectors to yield the
probing distance. Note that the rise in computation time
is strictly linear and that graphs with a million vertices
can be compared in less than 10 s.

5 Conclusions

This paper has described a fast, intuitive, easy-to-imple-
ment scheme for the problem of performance evaluation
when document recognition results are represented in the
form of a graph. Graph probing can be seen as having its
roots in past work on heuristics for solving the graph iso-
morphism problem. However, its utility extends beyond
simply testing graphs for equivalence; it also allows us
to quantify the similarity between two graphs. Building
on our past work on table understanding, we provided a
formalism proving that graph probing provides a lower
bound on the true edit distance. We presented results
from two simulation studies using different graph models
and an experiment employing real page image data to
demonstrate the applicability of the approach. Moreover,
our technique is very fast; graphs with tens or hundreds of
thousands of vertices can be compared in mere seconds.

There are a number of ways in which this work could
be continued. It may be possible to broaden the formal-
ism we presented to cover other error models or probe
classes (e.g., Class 3 probes, which mimic simple database
queries). The probing paradigm as we have defined it is
an offline procedure (i.e., all of the probes are computed
in advance, before any are evaluated). Allowing the prob-
ing to take place online, making it adaptive, might bring
significant benefits.

One of our underlying assumptions throughout this
paper has been that all of the basic graph editing op-
erations have the same constant cost. It is conceivable,
though, that this could be relaxed to allow more flexible
cost functions.

Currently, graph probing provides a measure of how
dissimilar two graphs are. It does not, however, produce
a mapping from one graph to the other. To identify the

potential errors that may have arisen in a recognition
process, we must be able to determine a correspondence
between the vertices and edges of the graphs as well as
associate editing operations with the differences that re-
main.

Finally, other applications could make use of this tech-
nique for graph comparison. In information retrieval, for
example, queries and target documents are sometimes
represented in terms of graphs. Certain of these cases will
probably require retargeting graph probing to address
the related subgraph comparison problem (i.e., whether
a given graph contains a subgraph that is similar to an-
other graph of interest). See [16,17] for work on com-
paring semistructured documents that arise from parsing
HTML-coded Web pages.
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