REVIEW

Do surgical drains reduce the postoperative surgical complications following incisional hernia repair? A systematic meta-analysis

V. Sanha¹ · B. O. Trindade¹ · F. A. R. Elvir¹

Received: 3 November 2023 / Accepted: 5 January 2024 / Published online: 31 January 2024 © The Author(s), under exclusive licence to Springer-Verlag France SAS, part of Springer Nature 2024

Abstract

Purpose Abdominal surgeries are common surgical procedures worldwide. Incisional hernias commonly develop after abdominal wall surgery. Surgery is the definite treatment for most incisional hernias but carries a higher rate of complications. Although frequently used, the real benefit of using drain tubes to reduce surgical complications after incisional hernia repair is uncertain.

Methods PubMed and Embase databases were searched for studies that compared the outcomes of drain vs. no-drain placement and the risk of complications in patients undergoing incisional hernia repair. Primary endpoints were infection, seroma formation, length of hospital stay, and readmission rate.

Results From a total of 771 studies, we included 2 RCTs and 4 non-RCTs. A total of 40,325 patients were included, of which 28 497 (71%) patients used drain tubes, and 11 828 (29%) had no drains. The drain group had a significantly higher infection rate (OR 1.89; CI 1.13–3.16; P = 0.01) and mean length of hospital stay (Mean Difference—MD 2.66; 95% CI 0.81–4.52; P = 0.005). There was no difference in seroma formation and the readmission rate.

Conclusion This comprehensive systematic meta-analysis concluded that drain tube placement after incisional hernia repair is associated with increased infection rate and length of hospital stay without affecting the rate of seroma formation and readmission rate. Prospective randomized studies are required to confirm these findings.

Keywords Incisional hernia repair · Drains · Surgical complication · Surgical site infection · Surgical site occurrence

Introduction

Abdominal surgeries are common surgical procedures worldwide. However, approximately 20% of these procedures are associated with complications related to wound healing, which may eventually lead to the development of incisional hernias. An incisional hernia can develop at the site of the previous surgical incision due to improper closure of the abdominal wall, and open abdominal surgery carries an important risk [1]. Incisional hernias can be asymptomatic or present with symptoms such as pain, discomfort, bowel obstruction, incarceration, and strangulations [2]. Therefore, the repair of incisional hernias has become a common procedure in the field of general surgery, with an estimated incidence rate of 15% to 20% following laparotomy [2]. Recurrence after initial hernia repair is a common complication. Although surgery remains the definitive treatment for incisional hernias, it frequently leads to complications such as seroma formation and infections [3].

Drains are used in many surgical fields to reduce the fluid collection in the surgical site and reduce seroma formation. Nevertheless, their effectiveness in preventing complications following incisional hernia repair remains a topic of uncertainty. In a retrospective analysis conducted by White et al. on patients who underwent incisional hernia repairs, they observed a higher occurrence of wound infections among individuals who had drains inserted compared to those who did not [4]. Prior systematic review did not find enough studies for evaluation and cited only one randomized controlled study comparing two groups, both using different types of drains [5].

Due to insufficient evidence, there is no standard routine care concerning using drains after incisional hernia repair. In Australia, for instance, a survey showed a divided opinion

V. Sanha valberto@ufcspa.edu.br

¹ Department of Surgery, The Federal University of Health Science of Porto Alegre, Rua Sarmento Leite, Porto Alegre 245, Brazil

among surgeons, with some advocating for drains and others not using them [6]. The situation became even more complex when a legal case in Australia ruled in favor of drain usage, causing controversial opinions among experts [7]. This case brought more attention to the topic as there is insufficient evidence. The existing studies in the literature present a conflicting array of studies with varied outcomes on this matter, further complicating the issue [8–12]. Therefore, we perform a systematic meta-analysis to evaluate the influence of drains on the incidence of complications after incisional hernia repair.

Methodology

Search strategy

This systematic meta-analysis was conducted according to the recommendations from the Cochrane Collaboration and the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statement guidelines [13]. Two authors (V.S. and F.R.E) independently reviewed the literature, and disagreement was solved by the third author (B.O.T). Systematic search from PubMed and EMBASE databases for published studies were performed using the following heading terms: 'Incisional Hernia Repair,' 'Incisional Hernia,' 'Postoperative Hernia,' Surgical Drain,' 'Drain,' Suction,' and 'Drainage.' There were no restrictions on the publication year. The pre-specified research protocol has been registered and is available at PROSPERO (CRD42023452567).

Selection criteria

We include studies that met the following criteria: (1) Studies with only incisional hernia repair, (2) Comparing the use of the drain vs. no-drain tubes to reduce complications, (3) Studies that reported at least one of the outcomes of interest, (4) in English, Portuguese, and Spanish. Reviews, case reports, and editorials were excluded.

Endpoints

We extracted baseline characteristics and the endpoints reported in Table 1 and 2. for the analysis using pre-specified criteria for the search, data extraction, and quality assessment. We perform a systematic meta-analysis on the following endpoints: infection rate, seroma formation, abscesses formation, hematoma, wound dehiscence, evisceration, length of hospital stay, and readmission rate.

Quality assessment

The risk of bias and quality assessment of each individual study was performed independently by two authors (B.O.T and VS). Quality assessment of randomized controlled trials was performed with Cochrane's tool for assessing bias in randomized trials [14], wherein studies are categorized as high risk, low risk, or moderate in five domains: randomization, deviation from intended intervention, missing outcome data, measurement of the outcome, and selection of the reported results. Non-randomized studies were appraised using the Cochrane Collaboration tool for assessing the risk of bias in non-randomized studies (ROBINS-I) [15]. Each study was categorized as critical, serious, moderate, and low risk in all seven domains: confounding, selection, classification, deviations from intended interventions, missing data, measurement of the outcomes, and selection of reported results. Publication bias was investigated with funnel-plot analysis of the primary outcomes.

Statistical analysis

The systematic meta-analysis was performed per recommendations from the Cochrane Collaboration and PRISMA statement guidelines. Treatment effects for binary endpoints were compared using pooled HR or odds ratios (OR) with 95% confidence intervals. Weighted mean differences were used to pool continuous outcomes. Heterogeneity was evaluated with the Cochran Q test and I^2 statistics; P values inferior to 0.10, and $I^2 > 25\%$ were considered significant for heterogeneity. A fixed-effect model was used for endpoints with $I^2 < 25\%$ (low heterogeneity). DerSimonian and Laird random-effects models were used in pooled outcomes with high heterogeneity. Review Manager 5.4 (Nordic Cochrane Centre, The Cochrane Collaboration, Copenhagen, Denmark) was used for statistical analysis.

Results

Study selection and characteristics

Our search yielded 771 results; 17 studies remained for fulltext review after duplicate removal and exclusion of studies that did not meet inclusion criteria based on abstract and title screening, Fig. 1. Finally, we included 6 studies, 2 randomized controlled studies, and 4 non-randomized controlled studies, comprising 40,325 patients. A drain tube was placed in 71% of patients, and 29% had no drains. The age range varied from 55 to 63 for patients with drain and 52 to 62 years old for patients without drain. The mean BMI

Table 1 Baselii	ne characteristi	ics											
Study	Country	Study design	Surgical	Follow up	Number of p:	atients $N(\%)$		Mean age	(y)	BMI dist	ribuition (mean		
			technique	(days)	Drain	No-Drain	Total	Drain	No-Drain	<i>p</i> -value Drain	No-Drai	n <i>p</i> -valu	ar
Willemin 2023	Switzerland	RCT	Open repair (Sublay)	30	70 (49%)	74 (51%)	144	61.8	62.1	0.914 28.4	29.8	0.0	626
Westphalen 2015	Brazil	RCT	Open repair (Onlay)	Early (days four to six) Intermediate (days 14 to 16) Late (days 29 to 31)	21 (50%)	21 (50%)	42	55.5	52.4	0.421 13 (61.9 obese	%) 10 (47.6 obese	(%)	
Tejerizo 2020	Argentina	Prospective cohort (observa- tional)	Open repair (Onlay)	15	42 (41%)	60 (59%)	102	57	53	0.158 31.5	30.9	0.0	651
Luo 2020	Australia	Retrospective cohort	Laparoscopic repair (34.1%) Open repair (onlay/sub- way)	No descrip- tion (only 30 day readmis- sion)	102 (24.9%)	308 (75.1%)	410			59 (BMI>	-30) (BMI>	• 30) 0.6	64
Louis 2023	France	Retrospective cohort (non- randomized pilot study)	Open repair (Sublay)	30	80 (76.9%)	24 (23.1%)	104	60.8	57.5	0.5 30.6	29.5	0.0	74
Sahm 2023	Germany (+ Austria, Switzer- land)	Prospective cohort (Internet- based Hernia Registry)	Open repair (Direct Suture/ Onlay/Sub- lay)	1 year	28 182	11 341	39.523	63.6±12. ¹	§ 59.8±15.1	< 0.001 29.8±5.	9 27.9±5.	4 <0.0	100
Diabetes n (%)		Smoker	rs proportion-/	V (%)	COPD—N (%	(2		Charlson Comorbic Index	lity	ASA score (N)			
Drain	No-Drain	<i>p</i> -value Drain	No-Dra	in <i>p</i> -value	Drain	No-Drain	<i>p</i> -value	Drain N	o-Drain <i>p</i> -valı	le Drain	No-Drain	Total	
7 (10.1)	13 (17.3)	0.213 30 (45.	5) 24 (34.8	3) 0.206	17 (24.6)	11 (14.7)	0.13	1 7.91 12	2.8 0.831	ASA 1 – 2 ASA 2 – 39 ASA 3—24	ASA 1 – 3 ASA 2 – 46 ASA 3—23	5 85 47	
		4 (19%)) 6 (28.6%	%) 0.469 -									

Diabetes n (%	(5)		Smokers propo	ortion—N (%)		COPD—N (%)			Charlson Comorb Index	1 idity		ASA score (N)		
Drain	No-Drain	<i>p</i> -value	Drain	No-Drain	<i>p</i> -value	Drain	No-Drain	<i>p</i> -value	Drain 1	Vo-Drain	-value	Drain	No-Drain	Total
			38 (27.9)	98 (72.1)	0.31								I	I
23 (28.7%)	5 (20.8%)	0.74	14 (17.5%)	6 (25%)	0.74	12 (15%)	1 (4.2%)	0.39			7	4SA 1 – 10	ASA 1 – 2	12
											7	ASA 2 – 44	ASA 2 - 17	61
											7	ASA 3 – 26	ASA 3 – 5	31
4033 (14.3%)	1025 (9.0%)	< 0.00	11 3605 (12.8%)	1372 (12.1%)	0.06	3227 (11.5%)	977 (8.6%)	< 0.001	NA I	VA j	NA .	ASA	ASA	ASA 1-4.363
												1 - 2.261	1-2.102	ASA
											7	ASA	ASA	2-21.973
												2 - 15.539	2-6.434	ASA 3/4
											7	4SA 3/4	ASA 3/4	-13.187
												10.382	2.805	

Table 1 (continued)

ranged from 28.4 to 31.5 in the drain group and 27.9 to 30.9 BMI in the non-drain group. The proportion of current smokers at the time of the procedure in both groups was 13%, Table 1.

Pooled analysis

All six studies reported infection rate, five studies reported seroma formation, and three studies reported readmission rates and length of hospital stay. Meta-analysis showed an increased incidence of surgical infection in the patients who had drain (OR 1.89; CI 1.13—3.16; P=0.01), Fig. 2. The length of hospital stay was also significantly higher in the drain group (Mean Difference—MD 2.66; 95% CI 0.81–4.52; P=0.005), Fig. 3. There was no difference in seroma formation rate between the groups (OR 1.22; CI 0.80—2.19; P=0.27), Fig. 4. Analysis of the readmission rate did not find a difference between the groups (OR 0.99; 95% CI 0.59–1.66; P=0.96), Fig. 5.

Quality assessment

This meta-analysis included two RCTs with low risk of bias and four non-RCTs with moderate risk.

The appraisal of each individual study is reported in Fig. 6a for RCTs and Fig. 6b for non-RCTs. Overall, randomized controlled trials were classified as having a low risk of bias, and non-RCTs as moderate risk of bias.

Discussion

This systematic meta-analysis of 6 studies and 40,325 patients compare drain tubes vs. no-drain usage following incisional hernia repair and the risk of surgical complications. The main findings were as follows: (1) The odds of postoperative infection are approximately 90% higher in patients who had a drain tube placed following incisional hernia repair (OR 1.89; P = 0.01); (2) patients in the drain group spent twice as much time in the hospital after the surgical procedure (MD 2.66; P = 0.005); (3) seroma formation rate and readmission rate are comparable between the groups.

Drains are often used after incisional hernia repair, expecting the reduction of surgical complications; however, some studies reported increased infection rates with their use [4]. There is no clear evidence in the literature to support the use of drains for incisional hernia repair; therefore, no specific recommendation is available to guide surgeons. Moreover, the use of the drain following incisional hernia repair widely varies among surgeons [6]. Willemin et al., in their RCT, reported a decreased overall complication rate in the drain group, but when analyzing each subcategory of the

Table 2(Dutcome	S																		
ы Ж	ecurrent he	ernia n (%)		Hernia size			Operatic time (min)-1	on mean		Clavien-Dindo	grade (%)		Serom	ਕ	ц	nfection		Rec wit 30	idmission hin days	
Study Dı	rain	No-Drain	<i>p</i> -value	Drain	No-Drain	<i>p</i> -value	Drain	No- Drain	<i>p</i> -value	Drain	No-Drain	Total	Drain	No- Drain	<i>p</i> -value D	Drain	No-Drain <i>p</i> -va	lue Dra	un No- Drair	<i>p</i> -value
Willemin 11 2023	1 (15.9)	14 (18.7)	0.66	mean = 8.13 cm <5 cm - (N) 11 5-10 cm - (N) 21 > 10 cm - (N) 21	mean = 7.90 cm <5 cm—(N) 16 15–10 cm—(N) 23 1 > 10 cm—(N) 17	0.804	151	135	0.073	$\begin{array}{c} I-6 \ (8.7) \\ II-9 \ (12.9) \\ IIIa - 0 \\ IIIb-6 \ (8.7) \\ IIIb-6 \ (8.7) \\ IVa-2 \ (2.9) \\ IVb-2 \ (2.9) \\ V-0 \end{array}$	$\begin{array}{c} 1-14\ (18\ 7)\\ 11-16\ (21.6)\\ 111a-0\\ 111a-0\\ 111b-13\\ (17.3)\\ 17a-0\\ 17^{2}-0\\ 17^{2}-1\\ 1^{2}$		29	32	0.9114		7	0.439 8	=	0.545
West- phalen 2015				Mean 9.4 cm	Mean 9.3 cm	0.95	114.3	124	0.31				11	6	4		5			
Tejerizo 2020				 <3 cm—(N) 0 3-6 cm—(N) 9 6-10 cm—(N) 14 > 10 cm—(N) 19 	 <3 cm-(N) 6 3-6 cm-(N) 31 31 6-10 cm-(N) 8 > 10 cm-(N) 15 	0.035 0.002 0.016 0.033							19	24	0.598 7		4	0.109		
2020 2020				0.5 cm—(N) 32 5-10 cm—(N) 44 > 10 cm—(N) 27	0- 5 cm—(N) 199 5-10 cm—(N) 60 48	< 0.001	120	80	< 0.001	No grade—81 (79.4) Grades 1 and 2—13 (12.7) Grades 3 and 4—8 (7.8) Grade 5—0	No grade— 263 (85.4) Grades 1 and 2—28 (9.1) Grades 3 and 4—14 (4.5) Grade 5—3 (1.0)		16	51	0.78 1	_	=	0.005 12	31	0.043
Louis 27 2023	7 (33.7)	7 (29.2%)	0.84	<pre><4 cm—(N) 16 4-10 cm—(N) 39 > 10 cm—(N) 13</pre>	<pre><4 cm-(N) 8 4-10 cm-(N) 10 >10 >10 (N) 1 (N) 1</pre>	0.34	215.5	173.7	0.0	Grade $\ge 3a-2$	Grade≥3a—6	Grade ≥ 3a—8			D S	uper- ficial - 3 Jeep -9	Super- ficial 0.6 - 1 Deep -2	0.82 12	4	0.32
Sahm 58 2023	373 (20.8%)	1904 (16.8%)	< 0.001	<4 cm—(N) 6365 4-10 cm—(N) 14,991 > 10 cm—(N) 6826	<pre><4 cm—(N) 7696 4-10 cm—(N) 2904 >10 cm—(N) 741</pre>	< 0.001	NA	NA	NA	NA	NA	NA	1353	255	< 0.001 4	178	75 <	0.001		

Fig. 1 PRISMA flow diagram of study screening and selection

complications, no significant difference between drain and the non-drain group was found, which emphasizes that the reduction of the overall complication was not directly related to the drain usage.

The RCTs [9, 10] did not exhibit significant differences in infection occurrence between patients with drain vs. the non-drain groups. In addition, Tejerizo et al. reported similar outcomes in their retrospective analysis, including 102 patients showing no difference between the groups. On the other hand, Sahm et al., in a registry-based analysis with 39,523 patients, demonstrated an increased infection rate in the drain group, although the patients in this group had more preoperative risk factors than the non-drain group. In addition, multivariate analysis demonstrated increased intraoperative complications in those who used the drain. Similarly, Luo et al., in a study with 410 patients, including different surgical techniques for incisional hernia repair, demonstrated an increased infection rate in patients with a drain placed compared to those without a drain (10.8% vs. 3.6%, P = 0.005), respectively, concordant to the previous study [4]. However, stratifying these patients according to the complexity level of their hernias, "Complex incisional hernia (CIH)," complexity risk criteria: smoker, obesity, and lower abdominal wound. CIH level 1 if they met 1/3 criteria, CIH level 2 if 2/3 criteria met, CIH level 3 if they met all

Fig. 2 Infection Rate: Drain vs.		Drai	in	No-Dr	ain		Odds Ratio		Odds	Ratio	
No-Drain	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl		M-H, Rand	om, 95% Cl	
NO-Diam	Louis 2023	12	80	3	24	10.6%	1.24 [0.32, 4.80]			•	
	Luo 2020	11	102	11	308	19.0%	3.26 [1.37, 7.78]				
	Sahm 2023	478	28182	75	11341	38.1%	2.59 [2.03, 3.31]			-	
	Tejerizo 2020	7	42	4	60	11.3%	2.80 [0.76, 10.26]		-		
	Westphalen 2015	4	21	5	21	9.3%	0.75 [0.17, 3.31]				
	Willemin 2023	4	70	7	74	11.6%	0.58 [0.16, 2.08]				
	Total (95% CI)		28497		11828	100.0%	1.89 [1.13, 3.16]			◆	
	Total events	516		105							
	Heterogeneity: Tau ² =	0.16; Chi	i ^z = 8.96	, df = 5 (P	= 0.11);	$ ^{2} = 44\%$		L			- 100
	Test for overall effect	Z=2.44 ((P = 0.01)				0.01	Eavors Drain	Favors No-Drain	100

Fig. 3 Mean Difference in the		D	rain		No	Drai	n		Mean Difference	Mean Difference
Length of Hospital Stay: Drain	Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
Lengui of Hospital Stay. Diali	Louis 2023	5.9	6	80	3.1	1.9	24	34.0%	2.80 [1.28, 4.32]	
vs. No-Drain	Luo 2020	6	2.5	102	2	2	308	42.5%	4.00 [3.47, 4.53]	•
	Willemin 2023	7.23	7.9	70	7.18	8.1	74	23.5%	0.05 [-2.56, 2.66]	_
	Total (95% CI)			252			406	100.0%	2.66 [0.81, 4.52]	◆
	Heterogeneity: Tau² =	2.04; CI	hi² = 1	0.04, 0	if = 2 (P	= 0.0	007); I *	= 80%	-	
	Test for overall effect:	Z = 2.81	(P =	0.005)						Eavore Drain Eavore No-Drain

Fig. 4 Seroma Formation Rate:		Drai	in	No-Di	ain		Odds Ratio		Odds I	Ratio	
Drain vs. No-Drain	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl		M-H, Rando	m, 95% Cl	
Diam vs. No-Diam	Luo 2020	16	102	51	302	21.2%	0.92 [0.50, 1.69]			_	
	Sahm 2023	1353	28182	255	11341	30.3%	2.19 [1.91, 2.51]			-	
	Tejerizo 2020	19	42	24	60	17.4%	1.24 [0.56, 2.75]		-+-		
	Westphalen 2015	11	21	9	21	11.0%	1.47 [0.43, 4.95]			•	
	Willemin 2023	29	70	32	74	20.1%	0.93 [0.48, 1.80]		-	_	
	Total (95% CI)		28417		11798	100.0%	1.33 [0.80, 2.19]		-	•	
	Total events	1428		371							
	Heterogeneity: Tau ² = Test for overall effect:	0.21; Chi Z = 1.11 (i ² = 14.8: (P = 0.27	5, df = 4 ()	P = 0.00	5); I² = 73	%	0.01	0.1 1 Favors Drain	10 Favors No-Drain	100

я

vs. No-Drain

Study	Bias fro randomiza proces	m Bias ation f s i	due to deviations rom intended interventions	Bias due to missing outcome data	Bias in measureme the outcor	Bias in Bias in the re	n selection of ported result	Overall risk of bias
Westphalen, 2015	Low		Low	Low	Low		Low	Low
Willemin, 2023	Low		Low	Low	Low		Low	Low
b								
Study	Bias due to confounding	Bias in selection of participants	Bias in classification of interventions	Bias due to deviations from intended interventions	Bias due to missing data	Bias in measurement of outcomes	Bias in selectio of the reported result	n Overall 1 risk of bias judgement
Tejerizo, 2020	Moderate	Low	Low	Low	Low	Low	Low	Moderate
Luo, 2020	Moderate	Low	Low	Low	Low	Low	Low	Moderate
Louis, 2023	Moderate	Low	Low	Low	Low	Low	Low	Moderate
Sahm, 2023	Moderate	Moderate	Low	Low	Low	Low	Low	Moderate

Fig. 6 (a) Risk of bias summary for randomized studies (RoB 2). (b) Risk of bias summary for non-randomized studies (ROBINS-I)

3 criteria, and simple hernia without any risk criteria. The infection rate difference only remains statistically significantly higher in the drain group vs. the non-drain group in the CIH level 1 subgroup (P = 0.006). Lous et al. analyzed the drain's impact according to its location in their study [8]. Location of the drains, whether in contact with mesh or subcutaneous, might influence the occurrence of complications. They reported an increased surgical site occurrence (SSO) when drains are placed in direct contact with the mesh compared to subcutaneously placed drains. This is an important finding that raised the question of whether the use of the drains and also the location where they are placed (whether or not in contact with mesh) could impact surgical complications. Most of the previous studies did not specify the location of the drain. Future studies should assess this question. This meta-analysis showed increased odds of infection rate in the patients with drain tubes (OR 1.89).

The use of the drains is associated with increased fluid evacuation from the incision site, although their effectiveness in preventing seroma formation is uncertain. Drain usage following robotic retromuscular ventral hernia repair (rVHR) was found to reduce the seroma formation (P < 0.0001) at 30 days postoperative compared to no-drain placement [16]. Whestphalen et al., a randomized controlled study, did not find significant differences in seroma formation in the drain vs. non-drain group following incisional hernia repair. [9] In the same way, Luo et al. reported no difference between the groups. Conversely, Sahm et al. reported increased seroma formation in drained patients; despite selection bias, this study represents a real-life practice scenario since surgeons tend to use drains in more complex hernias and high-risk patients. Our pooled analysis found no statistical difference in seroma formation with or without drain usage (P=0.27).

Several studies reported prolonged hospital stay in the group who used drains [8, 11], while some did not find a statistically significant difference in the hospital stay comparing drain vs. no-drain following incisional hernia repair [10]. In this meta-analysis, we found that drain tubes were associated with an increased length of hospital stay (P = 0.005). However, no difference was seen in the readmission rate.

This is the first meta-analysis with studies evaluating post-surgical outcomes between patients using drain vs. no drain following incisional hernia repair. Few limitations need to be considered in this study. Most importantly, four of the six included studies were not randomized, moreover, some studies included different surgical techniques. Comorbidity conditions such as age, DM, obesity, COPD, and the proportion of smokers were similar between the groups in each study, except for Sahm et al., where patients with a drain placed had significantly higher comorbidity. Hernia size was similar between the groups in most studies, except for Lou et al., more patients with large hernias (>10 cm) in the non-drain group and two studies [12, 17] reported more patients with large hernias in the drain group. These retrospective studies are susceptible to retrospective data collection bias. The difference in surgical technique was expected since different surgical approaches are currently acceptable for incisional hernia repair.

Conclusion

This meta-analysis, including 6 studies and 40,325 patients, investigated the impact of drain placement following incisional hernia repair. We found that drain usage does not impact seroma formation and readmission rate. Conversely, its usage was associated with increased infection and length of hospital stay. Additional prospective randomized studies with larger patient populations and controlling the comorbidity and risk factors are needed to confirm these findings and further elucidate the subject.

Funding There was no funding for research and publication of this project.

Declarations

Conflict of interest Dr. V. Sanha, B. O. Trindade and Dr. F. A. R. Elvir declare no conflict of interest.

Registration See the registration, PROSPERO 2023 (CRD42023452567).

References

- Berrevoet F (2018) Prevention of incisional hernias after open abdomen treatment. Front Surg 5:11. https://doi.org/10.3389/ fsurg.2018.00011
- Hope WW, Tuma F (2023) Incisional hernia. In: StatPearls [Internet]. StatPearls Publishing, Treasure Island, FL. https://www.ncbi. nlm.nih.gov/books/NBK435995/. Accessed 12 Jun 2023
- den Hartog D, Dur AH, Tuinebreijer WE, Kreis RW (2008) Open surgical procedures for incisional hernias. Cochrane Database Syst Rev 2008(1):CD006438. https://doi.org/10.1002/14651858.cd006 438.pub2
- White TJ, Santos MC, Thompson JS (1998) Factors affecting wound complications in repair of ventral hernias. Am Surg 64:276–280
- Gurusamy KS, Allen VB et al (2013) Wound drains after incisional hernia repair. Cochrane Database Syst Rev (12):CD005570. https://doi.org/10.1002/14651858.CD005570
- Luo Y, Mohammed Jinnaah S, Masood D, Hodgson R (2020) Drain tube use in incisional hernia repair: a national survey. Hernia 25(2):427–433. https://doi.org/10.1007/s10029-019-02115-3
- Wysocki AP, McGowan B (2018) To drain or not to drain: Supreme Court has the answer. ANZ J Surg 88(1–2):115. https:// doi.org/10.1111/ans.14285

- Louis V, Diab S, Villemin A, Brigand C, Manfredelli S, Delhorme JB, Rohr S, Romain B (2023) Do surgical drains reduce surgical site occurrence and infection after incisional hernia repair with sublay mesh? A non-randomised pilot study. Hernia 27(4):873– 881. https://doi.org/10.1007/s10029-023-02768-1
- Westphalen AP, Araújo ACF, Zacharias P, Rodrigues ES, Fracaro GB, Lopes Filho GDJ (2015) Repair of large incisional hernias. To drain or not to drain. Randomized clinical trial. Acta Cir Bras 30(12):844–851. https://doi.org/10.1590/s0102-8650201501 20000009
- Willemin M, Schaffer C, Kefleyesus A, Dayer A, Demartines N, Schäfer M, Allemann P (2022) Drain versus no drain in open mesh repair for incisional hernia, results of a prospective randomized controlled trial. World J Surg 47(2):461–468. https://doi.org/10. 1007/s00268-022-06725-4
- Luo Y, Masood D, Mohammed Jinnaah S, Tacey M, Hodgson R (2020) Do drain tubes help reduce risks of post-operative complications in complex incisional hernia repair (as defined by a recent court ruling)? ANZ J Surg 90(6):1080–1085. https://doi.org/10. 1111/ans.15875
- Tejerizo JBT, Bartoli JD, Dreizzen E (2021) Utilidad del drenaje en las eventroplastias con malla. Rev Hispanoam Hernia 9(1):10– 14. ISSN-e 2255-2677. https://doi.org/10.20960/rhh.00277
- Page MJ, McKenzie JE, Bossuyt PM et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. https://doi.org/10.1136/bmj.n71
- Sterne JAC, Savović J, Page MJ et al (2019) RoB 2: a revised tool for assessing risk of bias in randomized trials. BMJ 366:14898. https://doi.org/10.1136/bmj.14898
- Sterne JA, Hernán MA, Reeves BC et al (2016) ROBINS-I: a tool for assessing risk of bias in non-randomized studies of interventions. BMJ 355:i4919. https://doi.org/10.1136/bmj.i4919
- Miller BT, Tamer R, Petro CC et al (2023) Retromuscular drain versus no drain in robotic retromuscular ventral hernia repair: a propensity score-matched analysis of the abdominal core health quality collaborative. Hernia 27:409–413. https://doi.org/10.1007/ s10029-022-02696-6
- Sahm M, Pross M, Hukauf M, Adolf D, Köckerling F, Mantke R (2023) Drain versus no drain in elective open incisional hernia operations: a registry-based analysis with 39,523 patients. Hernia. https://doi.org/10.1007/s10029-023-02862-4

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.