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ABSTRACT
We analyzed the spatial heterogeneity in vegetation
indices among 13 North American landscapes by
using full Landsat Thematic Mapper images. Land-
scapes varied broadly in the statistical distribution of
vegetation indices, but were successfully ordinated
by using a measure of central tendency (the mean)
and a measure of dispersion (the standard deviation
or the coefficient of variation). Differences in hetero-
geneity among landscapes were explained by their
topographic relief and their land cover. Landscape
heterogeneity (standard deviation of the Normal-
ized Difference Vegetation Index, NDVI) tended to
increase linearly with topographic relief (standard
deviation of elevation), but landscapes with low
relief were much more heterogeneous than ex-
pected from this relationship. The latter were char-
acterized by a large proportion of agricultural land.
Percent agriculture, in turn, was inversely related to
topographic relief. The strength of these relation-
ships was evaluated against changes in image spatial
resolution (grain size). Aggregation of NDVI images

to coarser grain size resulted in steady decline of
their standard deviation. Although the relationship
between landscape heterogeneity and explanatory
variables was generally preserved, rates of decrease
in heterogeneity with grain size differed among
landscapes. A spatial autocorrelation analysis showed
that rates of decrease were related to the scale at
which pattern is manifested. On one end of the
spectrum are agricultural, low-relief landscapes with
low spatial autocorrelation and small-scale heteroge-
neity associated with fields; their heterogeneity
decreased sharply as grain size increased. At the
other end, desert landscapes were characterized by
low small-scale heterogeneity, high spatial autocor-
relation, and almost no change in heterogeneity as
grain sized was increased—their heterogeneity, asso-
ciated with land forms, was present at a large scale.

Key words: landscapes, spatial heterogeneity, veg-
etation indices, Landsat TM, AVHRR, scale, topogra-
phy, land use.

INTRODUCTION

Despite early recognition by ecologists that spatial
heterogeneity is important for understanding eco-
logical processes (McIntosh 1991), spatial variabil-
ity, and the issues associated with spatial scaling,
have been traditionally neglected (Magnuson and
others 1991; Levin 1992; Kareiva 1994; Kratz and
others 1995). Yet the environmental problems that
face us (global change, land-use change, landscape

fragmentation, and loss of biodiversity) require that
ecologists deal with structures and processes at
regional to global scales and across heterogeneous
and changing landscape mosaics (Turner and others
1995). Landscape ecology expands the scope of
ecology to address the role of spatial heterogeneity
in ecological processes (Picket and Cadenasso 1995).

Spatial heterogeneity is an important property of
landscapes (Kolasa and Picket 1991; Li and Rey-
nolds 1995). On the one hand, it reflects the
operation of processes and constraints responsible
for the generation of pattern (Urban and others
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1987). On the other hand, landscape heterogeneity
affects many ecological processes. To understand
how those processes operate, it is essential to charac-
terize spatial heterogeneity (Turner 1989a, 1989b).

Spatial heterogeneity is manifested at different
scales, determined by the pattern-generating pro-
cesses (Urban and others 1987; Picket and Cade-
nasso 1995). For example, at a small scale (small
extent, small grain, short temporal resolution), spa-
tial heterogeneity in vegetation can be related to
microenvironments, species dispersal, or competi-
tion processes. At a medium scale, it can be related
to disturbances such as windthrow or fires. At a
larger scale, topography and climate may be overrid-
ing constraints (Urban and others 1987).

The ability to detect and explain spatial heteroge-
neity depends on the scale of observation. At a large
scale (regional, to continental, to global), remote
sensing provides the only means to collect synoptic
data with high spatial resolution (Quatrocchi and
Pelletier 1991; Roughgarden and others 1991). Spec-
tral vegetation indices, which exploit differences in
green vegetation in absorption of red radiation and
reflectance of near-infrared radiation, provide a
surrogate for vegetation properties such as cover,
above-ground biomass, leaf-area index, or absorbed
photosynthetically active radiation (Tucker and Seller
1986; Baret and Guyot 1991; Myneni and others
1995).

To investigate the role of heterogeneity in struc-
ture and function at larger spatial scales than tradi-
tionally analyzed by ecologists, it is first necessary to
observe this heterogeneity quantitatively and deter-
mine its major determinants. Our goal is to measure
large-scale heterogeneity in vegetation, compare
these measures among disparate landscapes, and
explain the observed patterns through explanatory
variables and the influence of changing scales of
observation. The landscapes we studied comprise a
wide range of North American biomes, from boreal
forest in Alaska to hot desert in New Mexico. We
used entire Landsat Thematic Mapper (TM) images
and two of the most widely used vegetation indices:
the simple ratio vegetation index (SR), and the
Normalized Difference Vegetation Index (NDVI).

At a continental scale, mean vegetation cover and
biomass are constrained by climate and elevation
[that is, by the magnitude and variance of solar
radiation and water availability (Schlesinger 1991)].
We hypothesized that at the extent of full Landsat
TM images, variability in vegetation cover and
biomass, and hence heterogeneity in vegetation
indices, would be related to topographic relief and
to land use/land cover. Land modification by hu-

mans is a powerful force shaping landscapes at a
regional to global scale (Meyer and Turner 1994).

Our specific objectives are (1) to characterize
landscapes by the heterogeneity in their vegetation
indices, (2) to select an appropriate metric for the
comparison of heterogeneity across landscapes, (3)
to ordinate landscapes based on that metric, (4) to
assess the contribution of surface water and of ice
plus snow to landscape heterogeneity, (5) to relate
heterogeneity in vegetation to topography and land
use, and (6) to assess the effects of changing grain
size on heterogeneity.

DATA SOURCES AND METHODS

Study Landscapes
We compared 13 sites located across the contermi-
nous United States and in Alaska (Figure 1). The
landscapes comprised a wide range of biomes
(Table 1), including boreal forest (BNZ), temperate
rain forest (SEA), temperate coniferous (AND) and
deciduous (CDR, CWT, and HFR) forest, grassland
(KNZ), and desert (JRN and SEV). Moreover, two of
the scenes were dominated by agricultural land-
scapes (KBS and MLR). The proportion of inland
water bodies in the scenes varied greatly, with its
maximum representation in Northern Wisconsin
(TLR) and the Seattle area (SEA). In one of the

Figure 1. Location of landscapes in North America. Poly-
gons correspond to extent of Landsat Thematic Mapper
images. See Table 1 for explanation of abbreviations.
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scenes (BNZ, Alaska), glaciers were a significant
component of the landscape.

Satellite Images
We acquired Landsat TM images for each of the
study landscapes. Because spatial heterogeneity is
scale dependent (Milne 1991), the choice of satellite
sensor, and hence of scale, sets the boundaries for
the analysis. For our analyses, we chose full Landsat
TM images because of its relatively fine grain (ap-
proximately 30 m) and large extent (swath, 185
km). Each image contained a site of the Long-Term
Ecological Research (LTER) Network (Table 1), ex-
cept for Cedar Creek (CDR), where the LTER site lies
just off the north edge of the image. Scenes were
acquired by the LTER Network, with the exception
of the Seattle scene (SEA), which was obtained as
part of the US Geological Survey Biological Re-
sources Division GAP analysis program (Vande Castle
and others 1995). To minimize the influence of
interannual and seasonal variability of vegetation
cover on our analysis, we limited image acquisition
dates to the growing season of 1991, with the
exception of the Madison Lakes Region (MLR),
which was acquired during the growing season of
1989. Acquisition dates ranged from 2 May to 3
September, with 11 of 13 images in June, July, or
August. A closer seasonal grouping was prevented
by our choice of images with low cloud cover (less
than 10%; the proportion of clouds plus cloud

shadows in the landscapes varied from a minimum
of 0.1% for NIN to a maximum of 16.5% for BNZ).

The LTER Network has focused on the collection
of consistent long-term data at a set of diverse
ecosystems across North America (Brenneman 1989;
Franklin and others 1990; Magnuson and others
1991). By using imagery containing LTER sites, we
assured (a) access and relevance to a growing,
maintained database of satellite imagery (currently
over 80 images), (b) access to a body of long-term
ecological research at the sites, and (c) the potential
for contrasting our results with previous compara-
tive analyses among LTER sites (Kratz and others
1995).

Image Classification
Each image was classified to remove clouds and
cloud shadows and to discriminate between land,
water, and snow plus ice. The classification process,
which used all seven bands provided by the Landsat
TM sensor, started with an unsupervised classifica-
tion, followed by an iterative series of supervised
classifications. We continued the iterative classifica-
tion until no net improvement was visually ob-
served. We assigned the numerous classes to land,
water, snow 1 ice, or clouds 1 shade. The resulting
images were then used as masks in the calculation
of descriptive statistics for each class. All classifica-
tions were done with the image analysis package
ERDAS 7.5. Sources of error in the classification

Table 1. Satellite Images Used in This Study

Acronym LTER Site in the Scene Vegetation Type at LTER Site Row/Path
Acquisition
Date

AND H. J. Andrews Experimental Forest Temperate coniferous forest 46/29 7 July 1991
BNZ Bonanza Creek Experimental Forest Boreal forest 69/15 22 June 1991
CDR Cedar Creek Natural History Area Eastern deciduous forest and

tall-grass prairie 27/29 18 July 1991
CWT Coweeta Hydrologic Laboratory Eastern deciduous forest 18/36 3 July 1991
HFR Harvard Forest Eastern deciduous forest 13/30 16 July 1991
JRN Jornada Experimental Range Hot desert and mesquite dunes 33/37 26 July 1991
KBS Kellogg Biological Station Agricultural landscape 21/31 6 June 1991
KNZ Konza Prairie Tall-grass prairie 28/33 26 August 1991
MLR Madison Lake Regiona Agricultural landscape 24/30 10 July 1989
NIN North Inlet Marsh Estuary, marshes, eastern deciduous

forest 16/37 2 May 1991
SEA Seattle Area Temperate rain forest, high

mountain 46/27 7 July 1991
SEV Sevilleta National Wildlife Refuge Mixed-conifer forest, grassland,

desert 33/36 3 September 1991
TLR Trout Lake Regiona Eastern deciduous forest, wetlands

and lakes 25/28 5 August 1991

aMLR and TLR are two regions within the North Temperate Lakes (NTL) Long-Term Ecological Research (LTER) site.
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include mixed pixels (for example, at the edge of
water bodies), and confused classes when spectral
signatures were similar. This was the case for some
wetlands (confusion between water and land) and
shadows of clouds (occasionally confused with land
or water). Portions of the ocean visible in three of
the scenes [Andrews (AND), Seattle (SEA), and
North Inlet (NIN)] were removed from the analysis.

Vegetation Indices
Two widely used vegetation indices were calculated.
Both exploit the differential response of green veg-
etation with respect to other surfaces to the red
(absorbed by vegetation) and near-infrared (re-
flected by vegetation) portions of the electromag-
netic spectrum (EMS). The SR is defined as

SR 5
TM4

TM3

and the NDVI as

NDVI 5
TM4 2 TM3

TM4 1 TM3

where TM3 is the reflectance in band 3 (0.63–0.69
µm), which corresponds to the red portion of the
EMS; and TM4 is the reflectance in band 4 (0.76–
0.90 µm), which corresponds to the near-infrared,
of the Landsat TM sensor (Lillesand and Kiefer
1994). Before calculating indices, images were radio-
metrically corrected to make them comparable by
converting digital numbers to radiance and then
normalizing them to percent at-sensor reflectance
(Vande Castle and others 1995). No attempt was
made to correct for atmospheric interference or
topographic influence. Ratio-based indices, how-
ever, reduce topographic effects on spectral re-
sponse. Vegetation indices were calculated using
custom models written for ERDAS Imagine 8.2, and
the results were stored as 32-bit floating-point
numbers (Vande Castle and others 1995).

Statistics
Histograms and descriptive statistics (minimum,
maximum, mean, median, and standard deviation)
were calculated for each vegetation index by class
component (that is, land, land plus water, and land
plus water plus ice and snow). The coefficient of
variation was calculated as the standard deviation
divided by the mean.

Skewness and kurtosis were estimated from histo-
grams using SAS (SAS 1988). Histograms were
produced using 300 data intervals or bins within the
following ranges of values: 21 to 11 for NDVI, and
0 to 30 for SR. The range for NDVI comprises the

entire range of values that this index can take on. SR
takes on nonnegative values and is unbounded, but
because some scenes contained extremely high
values, we selected an upper bound (SR 5 30) that
was assigned to all pixels exceeding that value. The
number of pixels in this category was negligible in
all scenes. The number of bins per histogram (300)
was chosen to be in the same order of magnitude as
the radiometric resolution of the original data (that
is, 8 bits). Given the large number of pixels per
scene, this decision did not affect our results. Statis-
tics calculated on the full scene and estimated from
300-bin histograms and from 100-bin histograms
were similar (data not shown).

Explanatory Variables
As a measure of topographic relief, we used the
standard deviation of elevation. Elevation was de-
rived from the 30 arc-second Digital Chart of the
World (DCW) Digital Elevation Model (DEM) (De-
fense Mapping Agency 1992). This is a moderate
resolution topographic data set, with pixel resolu-
tions of 30 arc-seconds (approximately 1 3 1 km,
but varying with latitude). [The absolute reported
accuracy of the vector contour data from which this
digital elevation model was derived is 2000 m
circular error (horizontal) and 6650 m linear error
(vertical) at 90% confidence interval (Defense Map-
ping Agency 1992). The accuracy for the grid has
not been measured or calculated, but will not be
more accurate than its source.]

Land use/land cover was obtained at a similar
spatial resolution from the Conterminous US Land
Cover Characteristics Data Set 1990 prototype (Love-
land and others 1991), which was acquired through
the Socioeconomic Data and Applications Center
(SEDAC; URL, http://sedac.ciesin.org). This is a
classification of seasonal land-cover types at 1-km
resolution. The data set was produced by the US
Geological Survey EROS Data Center and the Cen-
ter for Advanced Land Management Information
Technologies at the University of Nebraska–Lincoln.
Original data for the classification were from Na-
tional Oceanic and Atmospheric Administration’s
Advanced Very High Resolution Radiometer
(AVHRR) satellite imagery. The information derived
from satellite images was combined with ancillary
earth science data sets (such as climate, elevation,
and ecoregions) to produce a classification of land
cover comprising 159 distinct classes.

We merged the original classes into seven broad
categories: agricultural land (mostly irrigated), for-
age/rangeland/pasture, forest, marsh, barren and
urban, alpine tundra, and open water (Table 2). The
first three categories comprised over 95% of the
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land area in each landscape studied (Table 3). The
proportions of each of these three major classes
were used as explanatory variables. Land-cover data
were not available for Bonanza, Alaska (BNZ).

Multiscale Analysis
Measures of spatial heterogeneity often depend on
the scale of observation (Milne 1991; O’Neill and
others 1991). Therefore, it is important to evaluate
how heterogeneity changes with grain size. In our
study, an additional complication was that statistics
were calculated at the native scale of each data set.
When measures of heterogeneity were related to
explanatory variables, a mismatch in scale occurred.
While extent was preserved across data sets, grain
size was approximately 30 m for Landsat TM, but
about 1 km for elevation and land cover.

We used two different approaches to explore the
relationship between heterogeneity and grain. The
first was to aggregate Landsat NDVI images to
progressively coarser spatial resolutions and then
recalculate image statistics at each new scale. Image
pixel aggregation was accomplished by averaging
pixel values using nonoverlapping windows. Win-
dow size was varied from 2 3 2 (that is, 60 3 60 m)
to 100 3 100 (that is, 3 3 3 km) by adding one row
and one column to the averaging window at each
iteration. NDVI images were masked so that only
land values were used in calculations, because we
wanted to avoid an increase in land heterogeneity
owing to contamination of land pixels with other
classes. Aggregating NDVI images rather than aggre-
gating the original reflectance bands and then recal-
culating NDVI at each scale probably did not affect
the results at the scales of our analysis (Aman and
others 1992; De Cola 1997).

The second approach was to calculate NDVI statis-
tics from the conterminous US 1-km AVHRR data
collected and composited biweekly during 1991 by

the EROS Data Center. Biweekly composites are
created by first selecting all images with low cloud
cover, calculating NDVI, and then selecting, for each
given pixel, the highest NDVI value recorded (Eiden-
shink 1992). For each landscape, we used the
biweekly composite that included the correspond-
ing acquisition date for the Landsat TM images
(Table 1). Because AVHRR composites are not avail-
able before 1991, the Madison Lakes Region (MLR)
site had to be excluded from this analysis. Because
we were interested in land heterogeneity, we masked
water and ice plus snow in the AVHRR images by
using a threshold value of NDVI # 0.09 (Loveland
and others 1991), except for the two desert land-
scapes (NDVI # 0.13), where a low threshold would
have excluded large, sparsely vegetated areas from
the analysis. Vegetation heterogeneity was calcu-
lated as the standard deviation of NDVI, and values
were compared with those obtained from Landsat
scenes aggregated to 1020-m pixel size.

Spatial Autocorrelation
A neutral landscape constructed by randomly assign-
ing values for NDVI to each pixel to ensure the lack
of spatial autocorrelation would respond to an
aggregation of pixels by decreasing its variance (or
standard deviation) according to the proportionality

ln S2 < a 2 ln n

where S2 is the sample variance, a is a proportional-
ity constant, and n is the sample unit size (that is,
pixel size), which in our aggregation procedure
increases as the number of samples (that is, number
of pixels) decreases. The slope of this linear relation-
ship is 21.

If NDVI values, however, were not spatially inde-
pendent, then the slope of this relationship would
vary between 21 and 0 [see O’Neill and others
(1991) and references therein]. Since any natural
landscape is expected to show spatial autocorrela-
tion to some degree, our landscapes should present
slopes closer to zero, with differences in slope
related to differences in spatial autocorrelation
among landscapes.

We hypothesize that differences in slope (that is,
in the rate of variance decrease as grain size in-
creases) among landscape will be not be related to
their heterogeneity at the original scale of Landsat
TM images (that is, approximately 30-m grain size),
but to their degree of spatial autocorrelation at that
scale, that is, to the configuration of landscape
pattern.

To test this hypothesis, we calculated slopes of the
log–log relationship between variance and grain size
for each landscape, and plotted them against a

Table 2. Aggregated Land-Cover Classes

Land-Cover Class
(This Study)

Land-Cover Key in
Land-Cover
Characteristics Prototype

Agriculture 1–54
Forage/rangeland/pasture 55–86
Forest 87–148
Water 149
Wetlands 150–154
Urban and barren 155
Alpine tundra 156–159

Socioeconomic Data and Applications Center: URL, http://sedac.ciesin.org.
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simple measure of spatial autocorrelation, Moran’s I
index (Qi and Wu 1996). This statistic measures the
similarity among adjacent pixels, which, in the case
of a lattice data set, are defined as the four immedi-
ate neighbors of each pixel. Moran’s index takes on
values between 21 and 1, with 0 values denoting
spatial independence, a value of 1 denoting perfect
spatial autocorrelation (that is, total homogeneity),
and a value of 21 indicating a checkerboard pattern
(Cressie 1993). We chose to calculate Moran’s index
on Landsat TM-derived NDVI images aggregated to
a pixel size of 1020 m to ease computational burden
and because this pixel size is commensurate with
the size of agricultural fields, which we expect to be
the major source of heterogeneity at a small scale
(small grain size) in our landscapes.

RESULTS

Frequency Distributions of Land Only
Examples of land NDVI frequency distributions in
Figure 2 have been ordered along an axis of mean
NDVI; a similar ordering could have been done for
SR. Mean NDVI values varied from 0.25 to 0.76;
mean SR values ranged from 1.7 to 7.8. For both
indices, minimum values were at Sevilleta (SEV; desert
landscape), and maximum values at Trout Lake Region
(TLR; deciduous forest). When only the land compo-
nent of the scenes was considered, most histograms
were unimodal. Some landscapes, however, were
bimodal. This was the case for Kellogg Biological
Station (KBS; modes at 0.20 and 0.80 NDVI) and for
Konza Prairie (KNZ; modes at 0.20 and 0.35 NDVI).
Similar patterns were observed for SR distributions.

The relationships among the mean, the standard
deviation, and the coefficient of variation among
sites differed between NDVI and SR (Figure 3). For
NDVI, the standard deviation increased with the
mean until it reached a maximum at intermediate
values (around 0.5) and then decreased. The coefficient
of variation, in contrast, was consistently high for
images with mean NDVI below approximately 0.55 and

then decreased as mean NDVI increased. For SR, the
standard deviation increased with the mean and lev-
eled off at about SR 5 5, but the coefficient of variation
varied with mean SR in the same way that the standard
deviation of NDVI did with mean NDVI.

Kurtosis and skewness among sites varied in a
regular fashion with mean vegetation index (Fig-
ures 2 and 4). Skewness (a measure of the asymme-
try of a frequency distribution about its mean)
decreased with the mean. It was positive for images
with the lowest mean vegetation index, and nega-

Table 3. Proportion of Land-Cover Classes Per Landscape

Land-Cover Class JRN SEV CWT SEA AND TLR HFR NIN KNZ MLR CDR KBS

Agriculture 0.55 2.37 7.97 9.10 9.75 12.41 26.23 47.97 61.04 82.42 89.12 94.20
Forage/rangeland/pasture 80.67 89.74 0.05 1.19 0.13 0.01 0.01 0.65 34.03 0.09 0.22 0.01
Forest 15.94 7.89 90.73 78.35 87.52 84.39 72.57 39.65 4.05 16.72 10.10 4.83
Water 0.31 0.00 1.23 10.41 2.59 3.20 1.19 9.81 0.88 0.78 0.55 0.96
Other 2.52 0.00 0.01 0.95 0.01 0.00 0.00 1.92 0.00 0.00 0.00 0.00

See Table 1 for explanation of the abbreviations. Other includes wetlands, urban and barren, and alpine tundra. Land-cover from the 1991 U.S. Conterminous Land Cover
Prototype (Loveland and others, 1991).

Figure 2. Histograms of normalized difference vegetation
index (NDVI) for selected Landsat Thematic Mapper
images. Histograms are ordered from lower to higher
mean NDVI (vertical line) starting at the top left panel
and moving counterclockwise.
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tive for images with higher mean vegetation index.
This negative relationship was linear for NDVI and
negative exponential for SR (Figure 4). Kurtosis (a
measure of the shape of the distribution about the
mean) also varied regularly with the mean. For
NDVI, distributions were leptokurtic (that is, tall
and narrow) for both sparsely vegetated and pro-
fusely vegetated sites, but were brachykurtic (that
is, short and wide) for sites with medium mean

NDVI. For SR, kurtosis decreased exponentially
with mean SR (Figure 4).

Water and Ice Plus Snow
Water, ice, and snow have vegetation index values
near zero because, in contrast to vegetation, they
neither absorb light in the red portion of the EMS
nor reflect differentially in the infrared region.
Vegetation index values for water are particularly

Figure 3. Relationship be-
tween the standard devia-
tion and the mean for A the
normalized difference veg-
etation index (NDVI) and B
the simple ratio vegetation
index (SR) for full Landsat
Thematic Mapper scenes at
30-m grain size. Dotted lines
correspond to the coefficient
of variation. Solid lines con-
nect values for land, land
plus water, and land plus
water plus ice and snow, for
each of the landscapes.

Figure 4. Plots of kurtosis
(top panels) and skewness
(bottom panels) against
mean normalized difference
vegetation index (NDVI)
(left panels) and mean
simple ratio vegetation in-
dex (SR) (right panels).
Solid lines connect values
for land, land plus water,
and land plus water plus ice
and snow, for each of the
landscapes. Data are for full
Landsat Thematic Mapper
scenes at 30-m grain size.
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low because water strongly absorbs infrared radia-
tion (Lillesand and Kiefer 1994). This is apparent in
the histograms for Seattle Area (SEA) and Trout
Lake Region (TLR) in Figure 2. Values of NDVI for
water appear disjointed in those histograms prob-
ably because the radiometric resolution of the Land-
sat TM sensor is low at the range of radiation energy
reflected by water. Distinct signatures for water of
different trophic state, transparency, or water color
might contribute to this pattern as well. This dis-
jointed appearance is not perceptible in histograms
of SR because this index aggregates low values and
spreads large values of the vegetation index.

Where water or ice plus snow are a large compo-
nent of the landscape, their effect on the statistics
describing the frequency distributions of vegetation
indices are (a) to lower the mean vegetation index,
(b) to increase its standard deviation, and (c) to
increase its coefficient of variation (Figure 3). Skew-
ness generally decreases [although it increases in
the case of Trout Lake Region (TLR)], whereas the
response of kurtosis shows no regular pattern.

SR Compared with NDVI
SR and NDVI are two functionally equivalent vegeta-
tion indices that differ in their statistical properties
(Perry and Lautenschlager 1984). SR takes on non-
negative values and is unbounded. Its frequency
distribution tends to be skewed to the right; its
values can be high. In contrast, NDVI is rescaled to
be bounded between 21 and 11. Its frequency
distribution is less skewed; more weight is given to
low values. SR and NDVI are analytically related by
the expression:

NDVI 5
(SR 2 1)

(SR 1 1)

Sample statistics for each vegetation index, how-
ever, cannot be analytically derived from the other.

Ordinations of landscapes with SR and NDVI were
similar for means, but differed widely for standard
deviation and coefficient of variation, especially
if water 1 ice pixels were excluded (Figure 5).
However, the standard deviation of NDVI and the
coefficient of variation of SR were linearly related
(Figure 6), with a correlation coefficient of 0.93 (P ,
0.001). The coefficient of variation normalizes the
standard deviation by the mean and has a scaling
effect equivalent to the normalization performed
during the calculation of NDVI. Therefore, the mean
and standard deviation of NDVI, and the mean and
coefficient of variation of SR, are equivalent for the
purposes of this study. Because of its statistical
properties (less skewed distribution), we selected

Figure 5. Comparison of
normalized difference veg-
etation index (NDVI) and
simple ratio vegetation in-
dex (SR): A plot of mean
NDVI against mean SR,
where the solid line is the
analytical expression of
NDVI against SR; and B plot
of the standard deviation of
NDVI against that of SR.
Data are for full Landsat
Thematic Mapper scenes at
30-m grain size.

Figure 6. Plot of standard deviation of normalized differ-
ence vegetation index (NDVI) against the coefficient of
variation of simple ratio vegetation index (SR). The line is
a least-squares simple regression.
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NDVI as a measure of greenness, and its standard
deviation as a measure of spatial heterogeneity.

Topography and Land Use

Visual inspection of scatterplots reveals strong rela-
tionships between landscape heterogeneity (stan-
dard deviation of NDVI) and two explanatory vari-
ables: topographic relief (as measured by the
standard deviation of elevation) and percent agricul-
tural land (Figure 7A and B).

The relationship between heterogeneity and to-
pography is complex. For landscapes with greater
relief [SD(elevation) . 100], NDVI heterogeneity
increased linearly with the standard deviation of
elevation [SD(NDVI) 5 0.0002(elevation) 1 0.0646,
n 5 8, r2 5 0.82, P , 0.002). Low-relief landscapes
[SD(elevation) , 100), contrary to what the previ-
ous relationship would suggest, showed the highest
heterogeneity. Land cover explains this pattern.
Heterogeneity increases linearly with percent agri-
cultural land (Figure 7B). Moreover, percent agricul-
tural land is strongly linked to topographic relief
(Figure 7C). In conclusion, landscape heterogeneity
appears to be directly related to both topographic
relief and percent agricultural land, whereas the
latter is inversely related to topographic relief.

Using stepwise multiple-regression analysis, the
following model is selected:

SD(NDVI) 5 0.05579 1 0.000142 SD(elevation)

1 0.001228 %AGRICULTURE

(n 5 12, RMSE 5 0.026, r2 5 0.63,

Adjr2 5 0.55, P , 0.05)

Other models, including interaction terms or vari-
able transformations to stabilize the variance, do not
result in substantial improvements in explanatory
power as measured by root mean square error and
adjusted r2. The model with highest statistical signifi-
cance and highest explanatory power that we ob-
tained was

SD(NDVI) 5 0.01888 1 0.13782 ARCAGRI

1 0.00034 SD(elevation) 2 0.00063 INT;

(n 5 12, RMSE 5 0.024, r2 5 0.72,

Adjr2 5 0.62, P , 0.05)

where ARCAGRI is the arc sine of the square root of
percent agricultural land [a common transforma-
tion for percentage variables (Draper and Smith

Figure 7. Relationships between landscape heterogene-
ity and explanatory variables. A Relationship between a
measure of landscape heterogeneity (standard deviation
of the normalized difference vegetation index, NDVI) and
a measure of topographic relief (standard deviation of
elevation). The regression equation is for landscapes with
less than 40% agricultural land cover. B Relationship
between the standard deviation of NDVI and percent
agricultural land. The linear regression equation applies
to all landscapes. C Relationship between percent cover
by agriculture and topographic relief (standard deviation
of elevation). Percent agriculture is shown on a trans-
formed axis (arc sine of square root). The model is an
exponential equation.
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1981)], and INT is the interaction term between the
two independent variables.

Multiscale Analysis
As expected, the standard deviation of NDVI decreased
as grain size increased (closely following a negative
exponential curve) because, as pixel size increases,
pixel values tend to converge to the image mean
value. But the rate at which the standard deviation
of NDVI decreased varied markedly among land-
scapes (Figure 8). The fastest decrease rate was
found at the southern Wisconsin site (MLR), where
the standard deviation of NDVI went from 0.17 at
30-m resolution to 0.065 at 3-km resolution. The
slowest decrease rates were observed at the two desert
sites (JRN and SEV). The mean and standard devia-
tion of NDVI obtained from AVHRR images (grain
size 5 1 km) are in general agreement with the
same statistics obtained by aggregating Landsat TM
images to a grain size of 1020 m (Figure 9). Despite
the scatter of points, a geometric linear regression
[preferred over simple least-squares because the
purpose was not prediction, but description of the
relationship (Sokal and Rohlf 1981)] yields a slope
close to 1 and an intercept close to 0 (Figure 9). The
scatter may result from using composite images,
from differences in the field of view of the two
sensors, or from contamination of land pixels with
water and ice plus snow in the AVHRR images.

Autocorrelation Analysis
The rate at which heterogeneity decreased with
increasing pixel size was related strongly to small

scale (1-km grain size) spatial autocorrelation (Fig-
ure 10). All the landscapes with low relief have low
values of Moran’s I index (that is, low spatial
autocorrelation), indicating that the observed hetero-
geneity is manifested at a small scale. In five of these
landscapes (NIN, MLR, CDR, and KBS), the hetero-
geneity is associated with agriculture. In accordance
with their low spatial autocorrelation, these land-
scapes present the lowest slopes (closer to 21),
indicating that the standard deviation of NDVI

Figure 8. Changes in standard deviation of the land
normalized difference vegetation index (NDVI) of full
Landsat Thematic Mapper images with grain size. The
original grain size (window size of 1 3 1 pixels) is
approximately 30 3 30 m. The coarsest grain size ana-
lyzed is 100 3 100 pixels, or approximately 3 3 3 km.

Figure 9. Comparison between the standard deviation of
the normalized difference vegetation index (NDVI) from
Advanced Very High Resolution (AVHRR) images (pixel
size, approximately 1000 m) and from aggregated Landsat
images (pixel size, about 1020 m). The solid line is a
geometric regression line, and the broken line is the
one-to-one relationship.

Figure 10. The slope of the logarithm of the standard
deviation of the normalized difference vegetation index
versus the logarithm of pixel size, plotted against Moran’s
I index, a measure of spatial autocorrelation.
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decreases rapidly as grain size is increased. In con-
trast, desert landscapes, whose heterogeneity de-
creases only slightly throughout the range of pixel
sizes analyzed, have high spatial autocorrelation at
the scale of 1 km.

DISCUSSION

Comparison of Heterogeneity
Among Landscapes

Landscape ecology is concerned with the detection,
measurement, and interpretation of pattern, the
relationship between pattern and ecological pro-
cesses, and the dependency of pattern and process
on spatial scale (Forman and Godron 1986; Turner
1989a). Our study addresses these aspects through a
comparison of landscape heterogeneity among North
American landscapes. We detect and measure het-
erogeneity in spectral vegetation indices, ordinate
these landscapes according to the statistical proper-
ties of those indices, relate heterogeneity across
landscapes to two explanatory variables (topogra-
phy and land use), and explore the dependency of
those relationships on scale (grain size).

The landscapes showed a rich array of pattern in
spectral vegetation indices, yet only two statistics
were needed to ordinate them: a measure of central
tendency and a measure of dispersion. We selected
the mean and standard deviation of NDVI as statis-
tics, but other combinations would have been pos-
sible, as long as care were taken to normalize the
variability in the vegetation index to the magnitude
of the index. In the case of NDVI, such normaliza-
tion is performed by the index itself. If SR is used,
the coefficient of variation should be used as a
measure of heterogeneity.

At the native scale of Landsat TM images (pixel
size <30 m), land spatial heterogeneity was greatest
for landscapes with intermediate mean vegetation
indices, such as Kellogg Biological Station (KBS)
and Madison Lakes Region (MLR). Desert land-
scapes (JRN and SEV) and grassland landscapes
(KNZ) had low mean NDVI and low overall hetero-
geneity, whereas landscapes dominated by forest
(for example, CWT, HFR, and TLR) had high mean
vegetation indices, but low heterogeneity. This rela-
tion is altered when other landscape components
(water, ice, and snow) are included. These compo-
nents are more common in wetter landscapes,
where mean vegetation indices are high. Spatial
heterogeneity of those landscapes is increased by
inclusion of water and ice plus snow, which are
well-defined patches with low vegetation index
values.

Other studies have reported marked differences
in spatial heterogeneity across landscapes by using
satellite imagery. Landsat TM radiance and radiance
coefficient of variation were useful in discriminating
cover types in the seasonal tropics (Rey-Benayas
and Pope 1995). Musick and Grover (1991) used
textural measures to compare satellite images of
diverse landscapes. An important difference is that
their measures implicitly incorporate the scale and
spatial distribution of pixel values. Our measures of
overall spatial heterogeneity, however, are insensi-
tive to how vegetation index values are distributed
across the images.

Spatial configuration is an important characteris-
tic of pattern (Li and Reynolds 1995). The values we
have obtained for overall spatial heterogeneity can
result from different spatial configurations. In par-
ticular, a similar value can be obtained with a few
large patches of homogeneous vegetation index
values (that is, large-scale heterogeneity) or with
many small, scattered patches of dissimilar values
(that is, small-scale heterogeneity). More com-
monly, a combination of large-scale and small-scale
heterogeneity will be found, with heterogeneity
manifested at nested hierarchical levels (Allen and
Hoekstra 1992). We addressed this issue by manipu-
lating the scale of the satellite images and calculat-
ing heterogeneity as a function of scale. Because the
scale of analysis influences the relationship of hetero-
geneity to explanatory variables, we first discuss the
explanatory variables at a full Landsat scale.

Explanatory Variables
The detection and measurement of observed hetero-
geneity only acquires ecological significance when
the agents of pattern formation can be identified by
using independent observations. Spatial pattern in
vegetation, and hence in vegetation indices, can be
the result of disturbance processes, biotic processes,
or environmental constraints (Levin 1978, 1992;
Urban and others 1987). The importance of each
agent of pattern generation varies with scale. We
have hypothesized that, at the scale of North
America, topography and land use/land cover would
be of overriding importance.

Topography acts as a surrogate for a number of
environmental constraints that limit the develop-
ment of vegetation, such as temperature, water
availability, and incident radiation. On a pixel-by-
pixel basis, the relationship between NDVI and
topography has been established for several land-
scapes (Bian and Walsh 1993; Bian 1997; Walsh and
others 1997). Here we demonstrate a general rela-
tionship between the heterogeneity of vegetation
and the heterogeneity of elevation across landscapes: as
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the complexity of the topography increases, so does
the heterogeneity of vegetation as measured by the
standard deviation of NDVI (Figure 7a).

This relationship breaks down for landscapes with
low relief. This results from the contribution of
human land uses, and specifically of agriculture, on
the measured heterogeneity of NDVI. Large-scale
agricultural developments are restricted to low-
relief land. Their disproportionate contribution to
NDVI heterogeneity is easily explained, as agricul-
tural areas are mosaics of fields with different crops
or at different phenological states. Our results recog-
nize the widespread transformation of the land
surface by human activities and emphasize the need
to link landscape models to land-use/cover extent
and change (Thomas 1956; Turner and others 1990;
Meyer and Turner 1994; Vitousek and others 1997).

Is spatial heterogeneity a desirable property of
landscapes? Assessing the human value of heteroge-
neity is an important question for land managers.
Yet the answer to this question is nonexistent
because the question is not adequately posed. Land-
scape heterogeneity has been related to biodiversity
in tropical forests (Rey-Benayas and Pope 1995),
but in our study the most human-dominated land-
scapes present the highest heterogeneity. Landscape
heterogeneity is as vague a term as ecological
variability (Kareiva and Bergelson 1997) or biodiver-
sity when viewed in the sense of human values. The
meaning of heterogeneity needs to be rendered
precise by specifying the data characteristics, scale,
method of calculation, and purpose of the study (Li
and Reynolds 1995). In our study, heterogeneity
only acquires meaning when it is related to explana-
tory variables (topography and land cover) and
when its dependence on scale is assessed. And an
additional step is required: Kolasa and Rollo (1991)
suggest that measured heterogeneity needs to be
turned into functional heterogeneity, that is, hetero-
geneity from the perspective of participating ecologi-
cal entities.

Multiscale Analysis
We have compared landscapes according to their
spatial heterogeneity at the scale of full Landsat TM
scenes and then explained the differences among
landscapes in heterogeneity from topography and
land use/land cover. To what degree does the order
of these landscapes along an axis of heterogeneity
change? Does the relationship between spatial het-
erogeneity with topography and land cover hold at
different scales?

Scale has been identified as a central issue in
remote sensing and in the Geographic Information
System (GIS) (Quatrocchi and Goodchild 1997), in

global ecology (Ehleringer and Field 1993), in land-
scape ecology (Meentemeyer and Box 1987; Turner
and others 1989a; Milne 1991), and in ecology
generally (Allen and Starr 1982; Levin 1992). The
observed pattern and variability of a system are
conditional on the scale of description. Relation-
ships established at one scale are not guaranteed to
hold at another, because processes or constraints
that are significant at one scale may not operate at
another. Landscape heterogeneity is a multiscale
property of landscapes (Milne 1991; O’Neill and
others 1991; Turner and others 1989b)

Scale is a concept of broad meaning (Goodchild
and Quatrocchi 1997). We took it to comprise the
spatial extent, grain (spatial resolution), spectral
resolution, and temporal resolution of analysis.
Because our data were Landsat TM-derived NDVI
images, and because the native scale of our explana-
tory variables was coarser than the Landsat data, we
were particularly concerned with the effect of
changes in grain.

Ordering of landscapes according to their spatial
heterogeneity changed with the grain size of the
image. As expected, the standard deviation of NDVI
decreased with grain size, a consequence of the
smoothing produced by the aggregation technique
(Bian 1997), but it decreased at different rates for
different landscapes (Figure 8). An important conse-
quence of the differential decrease of heterogeneity
with grain is that its relationship with topography
and land cover also changes (Figures 8 and 11). As
we coarsened the grain size from 30 m to 3 km, the
decrease in heterogeneity was more pronounced for
agricultural landscapes than for forested landscapes,

Figure 11. The standard deviation of the normalized
difference vegetation index (NDVI) calculated at four
grain sizes, from native (approximately 30 m) and aggre-
gated (1020, 2010, and 3000 m) Landsat images, plotted
against the standard deviation of elevation (pixel size,
approximately 1000 m).
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whereas the heterogeneity of the two desert sites
remained almost unaltered. Thus, a landscape that
ranked as moderately heterogeneous at the 30-m
grain size, the Jornada desert (JRN), became the
most heterogeneous one at a grain size of 3 km.

Are these results an artifact of the aggregation
procedure? A comparison of aggregated images at
approximately 1-km pixel size with AVHRR images
of equal pixel size (Figure 9) suggests that the
method of aggregation was consistent with the use
of coarser-grained remote sensors. Despite some
expected scatter in the relationship, both methods
yielded remarkably similar values of heterogeneity
and produced a similar ranking of landscapes. In
particular, the heterogeneity of Jornada (JRN) is
among the highest in both aggregated Landsat and
AVHRR images, whereas this site ranked among the
less heterogeneous when Landsat images were used
at their native resolution (30-m pixel size).

What determines the rate of decrease in standard
deviation? Visual inspection of the landscapes indi-
cates that heterogeneity is manifested at different
scales in different landscapes. Two contrasting ex-
amples are MLR, a mainly agricultural landscape in
southern Wisconsin, and JRN, a desert landscape in
southern New Mexico (Figure 12). Heterogeneity in

MLR occurs at the scale of field and small forest
patches, but with the low-relief, glaciated land-
scape, no major geomorphological features add
heterogeneity at larger scales. In contrast, the desert
landscape displays low small-scale heterogeneity
but high large-scale heterogeneity compared with
other sites. Large areas dominated by arid shrubland
appear homogeneous, whereas, at the scale of kilo-
meters, the landscape is dominated by the contrast
between the arid lowlands and the forested hills of
the Capitan and Sacramento Mountains, each of
which is more homogeneous at a smaller scale.

Landscapes with low spatial autocorrelation at
the scale of 1 km should display slopes of log(vari-
ance) versus log(sample size) closer to 21 than
landscapes with high spatial heterogeneity, which
should present slopes closer to 0. This hypothesis is
validated by the strong relationship between rate of
decrease in heterogeneity and spatial correlation
(Figure 10). These analyses emphasize the need to
complement the measurement of heterogeneity with
an evaluation of how that pattern is distributed
across space and how heterogeneity is exhibited at
various scales. As previously discussed, vegetation
in landscapes is subjected to a variety of pattern-
generating agents that operate over varied spatial
and temporal scales, perhaps structured hierarchi-
cally (Allen and Starr 1982; O’Neill and others
1991).

CONCLUSIONS

Our analysis of the heterogeneity of vegetation
indices among North America landscapes has identi-
fied explanatory variables for the observed pattern,
and has detected and explained scale effects at fine
to moderate resolutions (30-m to 3-km grain size).
The spatial heterogeneity varies greatly among land-
scapes at the extent of full Landsat images. This
heterogeneity is largely explained by geomorphol-
ogy (topographic complexity), land cover (espe-
cially percent agricultural land), and their interac-
tion. Topographic relief directly affects landscape
heterogeneity at large scales, but topographic com-
plexity also indirectly affects the distribution and
area covered by agricultural lands and thus hetero-
geneity at small scales. In low-relief landscapes,
where we hypothesize that spatial heterogeneity in
vegetation indices would be low, agricultural land
uses are the major contributor to spatial heterogene-
ity.
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