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ABSTRACT

While vascular plants in drylands can spatially self-

organize and persist under climatic stress through

gradual changes in patch attributes, dryland patch

dynamics largely assumes bare soil between plants.

Biological soil crusts (BSCs) are communities living

in the soil surface of drylands and mediate water

redistribution in space. BSCs often occur in patches

of light cyanobacteria and dark-mixed aggregates;

however, little is known about their spatial patterns

and dynamics. Here, we investigate spatial attri-

butes of BSC patches, their spatial interactions with

vascular plants, and factors that drive variation in

these attributes using ultra-high-resolution (1 cm)

maps from UAV imagery across three ecoregions of

the southwest United States. Our analysis showed

that light cyanobacteria BSCs varied most in patch

shape complexity with aridity, while dark-mixed

BSCs varied most in abundance. The distribution of

dark-mixed BSCs was strongly affected by the soil

template (texture and calcareousness) and vascular

plants. Light cyanobacteria BSCs and woody plants

spatially aggregated with aridity, while slope en-

hanced the spatial association between BSC func-

tional groups. We conclude that light cyanobacteria

BSCs can likely persist under stress through patch

shape alterations, while dark-mixed BSC patches

may have a lower capacity to do so—corroborating

that dark-mixed BSC abundance may decline un-

der altered climatic regimes. Light cyanobacteria

BSCs may also buffer the effects of aridity for other

biota by promoting runoff. BSCs and vascular

plants coordinate in space in response to resource

availability, suggesting the need to consider self-

organization of multiple unique assemblages to

better predict dryland response to climate change.
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tial feedbacks; aridification; cryptogams; remote

sensing.

HIGHLIGHTS

� Light cyanobacteria BSCs persist under stress

through changes in patch traits

� Patch dynamics driven by light cyanobacteria

BSCs may increase dryland resilience

� Spatial self-organization in drylands is likely a

community-level process
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INTRODUCTION

Drylands cover approximately 40% of the Earth’s

terrestrial surface, are home to roughly an equal

proportion of the human population and play key

roles in regulating global hydrologic and nutrient

cycling (Maestre and others 2021). As drylands are

defined by water limitation, climatic variation can

cause substantial ecosystem response in these

landscapes, and the transition from a productive

state to one of bare soil under increased stress may

be abrupt (D’Odorico and others 2007; Berdugo

and others 2020). As many drylands are projected

to experience increased climatic stress in the future

(Cook and others 2020; Lian and others 2021),

understanding complex ecological responses in

these landscapes is key to estimate risk of aridifi-

cation and maximize management effectiveness

(Wang and others 2015).

Water scarcity in drylands limits the abundance

of vegetation, generating a spatial patchiness per-

vasive to drylands worldwide (von Hardenberg and

others 2010; Okin and others 2015; Eldridge and

others 2021). However, through ecohydrological

feedbacks, patches of vegetation may also persist at

the same cover through alteration of patch attri-

butes (for example, shape, orientation, spatial

configuration), rather than size, in response to

water limitation (Rietkerk and others 2004; Sch-

effer 2009; Deblauwe and others 2012). An in-

crease in connectivity of bare space between

vegetation patches as a response to reduced abun-

dance may in turn promote vegetative growth in

favorable microsites through increased runoff

(Mayor and others 2019). The patch attributes of

vegetation may therefore change over time such

that these vegetative patches receive the same

amount of runoff under increased aridity, allowing

the ecosystem to maintain productivity within a

range of aridity change. Through such ecohydro-

logical feedbacks and patch dynamics, dryland

vegetation often self-organizes at large spatial sca-

les—likely increasing ecosystem resilience (van de

Koppel and Rietkerk 2004; Bastiaansen and others

2018; Rietkerk and others 2021). As a result, veg-

etation patches typically become more complex, or

less compact, with stress (Aguiar and Sala 1999).

On hillslopes, self-organized vegetation patches

also tend to orient perpendicular to prevailing slope

where runoff from interspaces is most readily

available (Deblauwe and others 2012). Spatial self-

organization is an important process that allows

sessile organisms to persist in harsh environments,

and in drylands, spatial feedbacks mediated by the

redistribution of rainfall as runoff by different types

of patches play a critical role.

The dominant paradigm of dryland patch

dynamics considers only two types of patches, bare

soil and vascular plants (Rietkerk and others 2004,

2021; Bastiaansen and others 2018). However, soil

between vascular plant patches is often abundant

with biota living in the soil surface (Bowker and

others 2018). Biological soil crusts (hereafter BSCs)

are complex, largely autotrophic, communities

living in the soil surface of drylands between pat-

ches of vegetation (Bowker and others 2013, 2018;

Belnap and others 2016; Chamizo and others

2016). These poikilohydric communities often

cover more proportional area than vascular plants

and play key ecosystem roles through their effects

on hydrologic cycling (Bowker and others 2013;

Chamizo and others 2016; Eldridge and others

2020, 2021), nitrogen fixation (Barger and others

2013, 2016; Weber and others 2015), and soil sta-

bilization (Williams and others 2012; Belnap and

Büdel 2016). In BSCs, filamentous cyanobacteria

colonize and stabilize the soil surface via the

excretion of exopolysaccharides (EPS) (Colica and

others 2014; Büdel and others 2016; Kidron and

others 2020, 2022), which promotes the immigra-

tion of species with greater water requirements,

like dark N-fixing cyanobacteria, lichens, and

bryophytes (Belnap and others 2008; Büdel and

others 2016; Muñoz-Martı́n and others 2019;

Cantón and others 2020). While relative abun-

dance, composition, and structure of BSCs vary,

they typically form two distinct groups—lightly

pigmented cyanobacteria, hereafter light

cyanobacteria, and darker aggregated patches of N-

fixing cyanobacteria, bryophytes, and lichens,

hereafter dark-mixed BSCs (Chamizo and others

2012b; Maier and others 2018; Eldridge and others

2020; Havrilla and others 2020; McIntyre and

others 2021). These patches of dark-mixed BSCs

are typically very diverse, often with several species

present within a few square centimeters. Likely

owing to lower water requirements and relatively

high lateral expansion rates of light cyanobacteria

patches, these BSCs often predominate at high le-

vels of abiotic stress compared to dark-mixed BSCs

(Read and others 2016; Sorochkina and others

2018; Tamm and others 2018; Becerra-Absalón and

others 2019). Dark-mixed BSC cover has been ob-

served to decrease, sometimes rapidly, in response

to increased abiotic stress (Maestre and others

2015; Ferrenberg and others 2015). Therefore,

patches of these BSC groups may have contrasting

capacities to adjust shape through regeneration and
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persist under water limitation—with dark-mixed

BSCs likely having a lower capacity to do so.

Spatial patterns in drylands are appreciably

shaped by ecohydrological interactions between

BSCs and vascular plants (Kidron 2007, 2019;

Zhang and others 2016; Havrilla and others 2019;

Eldridge and others 2020, 2021). Light cyanobac-

teria BSCs are smooth and often promote runof-

f—likely concentrating water in sink patches of

vascular plants and dark-mixed BSCs (Eldridge and

others 2000; Yair 2001; Rodrı́guez-Caballero and

others 2012; Read and others 2016; Kidron and

others 2020). While the morphological structure

and diversity of dark-mixed BSC patches vary,

these well-developed crusts increase surface

roughness and typically promote pooling and

interception of runoff relative to light cyanobacte-

ria BSCs (Kidron 2007, 2019; Chamizo and others

2016; Guan and Liu 2019). Vascular plants have

varying effects on BSCs as they can locally inhibit

cyanobacterial growth by deposition of leaf litter

(Zhang and others 2016; Lan and others 2021), but

also promote dark-mixed patches by providing lo-

cal shading and high soil moisture (Bowker and

others 2016; Navas Romero and others 2020).

These coupled interactions between patches of

dryland functional groups likely feedback to affect

the redistribution of water in drylands (Amir and

others 2022). As such, to understand the spatial

patterns of vegetation in drylands and their chan-

ges, it is necessary to consider spatial self-organi-

zation of multiple interacting groups, that is, spatial

self-organization at the community level beyond

the existing theory focused on a single homoge-

nous group.

BSCs, together with vascular plants, form a spa-

tially distributed community and likely organize in

space as a response to abiotic stress and local

mediation of that stress, creating a dynamic matrix

of biota in dryland landscapes. Despite recent

developments in mapping BSCs in space with re-

mote sensing technology (Weber and Hill 2016;

Rodrı́guez-Caballero and others 2017; Rozenstein

and Adamowski 2017; Havrilla and others 2020),

little has been done to understand patch dynamics

of BSCs and underlying processes driving variations

in their patch attributes. In this study, we mapped

BSCs at 26 sites across the southwest United States,

quantified their patch attributes along the aridity

gradient as well as spatial interactions between

patches of different functional groups, and lastly,

we assessed effects of climatic and environmental

drivers on patch attributes and interactions.

METHODS

Field Data Collection

Sites Description

To characterize BSC patches and investigate likely

drivers of variation in their characteristics, we se-

lected 26 sites across three ecoregions of drylands in

the southwest United States—the Great Basin (9

sites), the Colorado Plateau (9 sites), and the Mo-

jave Desert (8 sites) (Figure 1; Table S1). These

three dryland ecoregions make for an ideal study

system as they provide substantial variation in

environmental and climatic conditions. The Great

Basin is a cold desert with frost-heaving and deep

soil profiles (Snyder and others 2019). The Color-

ado Plateau is also a cold desert with sedimentary

soils (Duniway and others 2016). The Mojave is a

hot rain shadow desert characterized by high

aridity and nutrient poor alluvial deposits (Thorne

1986). The 26 sites were chosen to cover broad

variation in climate, soil, and topography. Within

each ecoregion, a smaller subregion was first

identified to provide a substantial gradient in arid-

ity within a relatively small area, with a total limit

of distance between furthest sites set at 100 miles.

Within each smaller subregion, we chose study

sites to provide large variation in topography, soil

type, and texture. All sites are on property of the

United States Bureau of Land Management (BLM),

which allots grazing—allowing analysis of the ef-

fects of this disturbance. Annual climatic water

deficit (CWD), a measure of aridity equal to the

depth of evaporative demand that exceeds rainfall,

ranges between 912 and 1887 mm yr-1 across sites.

Minimum and maximum temperature range from

- 22 to - 4 �C and 36–48 �C, respectively. Eleva-

tion ranges from 210 to 1850 m. Mean site slope

varies between 0� and 3.6�, while hillslope aspect

includes north and south facing slopes ranging

from 0� to 357�. Soil texture at these sites ranges

from silty clay loam to sandy loam.

Community Mapping and Ground Truthing

To map the spatial pattern of BSC-vascular plant

communities at each site, we collected 1 cm reso-

lution visible spectrum (RGB) unmanned aerial

vehicle (UAV) imagery at all sites in a 50 m by

50 m plot using a DJI Phantom 4 Pro V2.0 at a

flight height of 120 feet. UAV flights were con-

ducted from August 16 to August 31, 2021, be-

tween 10:00 and 15:00 to limit shadow cover. We

selected these dates to maximize desiccation of

BSCs and limit photosynthetic similarity between
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them and vascular plants. Collected images were

first orthorectified using the photogrammetry

software Agisoft Metashape (2021). Orthorectified

images were then classified using a maximum

likelihood classifier in ENVI version 5.5 (Exelis

Visual Information Solutions 2022).

We considered a total of eight classes in spectral

classification: light cyanobacteria BSC, dark-mixed

BSC, woody vegetation, herbaceous vegetation,

rock, shadow, non-photosynthetic vegetation (leaf

litter and woody debris), and bare soil. Spectrally

unique subclasses were considered, namely un-

iquely colored lichens within dark-mixed BSC

patches. All spectral subclasses were combined

prior to spatial analysis. 50 ground truthing points

were chosen for each class and subclass present to

inform the maximum likelihood classifier, often

resulting in 100 or more ground truthing points for

classes with multiple subclasses. 70% of ground

truthing points were used for training the classifier,

while 30% were used out-of-sample for cross-val-

idation. These ground truthing points were in-

formed from twelve 25 cm by 25 cm quadrats at

each site. These quadrats were selectively placed to

prioritize the inclusion of multiple classes per

quadrat and distributed around sites at least several

meters apart to representatively capture spectral

variation of classes across quadrats (Figure S1).

While most ground truthing data were selected

from within quadrats, some data were selected

from outside of these quadrats, typically near

quadrats and informed from notes and images from

sites, to further increase independence and repre-

sentativeness of ground truthing data. Large, easily

identifiable, woody vegetation patches and shad-

ows were not included in quadrats and were

identified by images and notes taken at each site.

Although dead plant patches of only woody debris

(here considered non-photosynthetic vegetation)

may provide some shade to BSCs, these instances

were uncommon and are not expected to signifi-

cantly affect our results of spatial association. We

identified BSC patches and constituent species

using a BSC specific field guide (Rosentreter and

others 2007). Common bryophyte species across

ecoregions included Bryum argenteum, Syntrichia

caninervis and Syntrichia ruralis. Common lichen

species across ecoregions included Placynthiella spp.,

Fulgensia desertorum and Placidium squamulosum.

More diverse and sometimes uniquely colored taxa

of lichens, largely found in less arid regions of the

Great Basin and Colorado Plateau, included Psora

cerebriformis, Psora decipiens, Candelariella citrina,

Acarospora nodulosa, and Squamarina lentigera. We

distinguished between bare soil and light

cyanobacteria BSCs by taking samples of the top

crusted layer across at least 10 transects between

vascular plant patches, where no loose soil was

present, and identifying evidence of EPS, which

suspends soil particles from the main crusted layer

(Lange and Belnap 2016). Where EPS were pre-

sent, we considered that type of patch as light

cyanobacteria while loose soil or physical crusts

were classified as bare soils. While some BSCs,

N

100 km

Mojave

Great Basin

Colorado 
Plateau

Figure 1. Locations of 26 study sites (red markers) within approximate boundaries of each of the three ecoregions

included in this study: the Great Basin, Mojave Desert, and Colorado Plateau. Sites within each region vary by aridity,

slope, aspect, and soil conditions. Base imagery: Gorelick and others (2017).
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typically dark-mixed patches, may grow directly

beneath the canopy of woody plants and be ob-

scured in aerial imagery (Zhang and others 2016),

these patches often extend beyond the canopy’s

reach at our sites, even in highly arid environ-

ments.

To test the expectation that BSCs fall into two

classes in the visible spectrum (Havrilla and others

2020), the number of spectral classes (groups) of

BSCs in our study was first evaluated by K-means

silhouette analysis of three 3 m by 3 m subplots at

one site within each ecoregion (Figure S2). Sub-

plots were chosen to provide near complete BSC

cover and a representative gradient of BSC devel-

opment. Silhouette analysis identifies the number

of spectral classes with the greatest separation dis-

tance between them using an unsupervised classi-

fication scheme (Shutaywi and Kachouie 2021).

Spectra of BSCs in all ecoregions showed greatest

divergence when BSCs fell into two types in our

data (Figure S2). While we were unable to relate

species-level composition to the two spectral classes

in our imagery, this suggests that these soil com-

munities in our study area are constituted of

spectrally distinct patches of light cyanobacteria

and dark-mixed aggregates.

Classification accuracies were assessed with Co-

hen’s kappa (k) coefficient, an overall conservative

measure of accuracy across classes (Fitzgerald and

Lees 1994), with a minimum k of 0.75 to be in-

cluded in analysis. We set this cutoff to limit the

effects of classification error on patch metric cal-

culations and further analysis. We were able to

obtain k greater than or equal to this cutoff at 22 of

the total 26 sites (Figures S3, S4 and S5)—leaving

four sites out of the rest of our analysis. High

classification errors at these four sites are likely

caused by high photosynthetic similarity between

BSCs and vascular plants, spectral similarity be-

tween light cyanobacteria and bare soil, and

movement of ground level objects by high winds.

Soil Sampling

We collected three soil samples of the top 5 cm of

soil (Barger and others 2013; Havrilla and Barger

2018) using a 1 ½’’ diameter galvanized steel pipe

along 25 m intervals at each site. For all soil sam-

ples containing BSCs, the top crusted layer was

separated from the underlying soil to isolate soil

substrate. We then evaluated all soil substrate

samples for texture, calcareousness (% as CaCO3),

and total nitrogen (nitrogen) (%)—all considered

to appreciably affect the composition and abun-

dance of the BSC community (Bryce and others

2012; Bowker and others 2016). Soil texture was

calculated through the sedimentation method in

100-mL graduated cylinders (Taubner and others

2009). To validate these measurements, we ran-

domly selected ten soil samples and analyzed soil

texture using density analysis (Sheldrick and Wang

1993). We find that these two methods provide

statistically similar results (Figure S6). Soil cal-

careousness and nitrogen content were obtained

through gravimetric loss (U.S. Salinity Laboratory

Staff 1954) and combustion methods (AOAC Offi-

cial Method 972.43 1997), respectively. Soil cal-

careousness and nitrogen content quantification, as

well as the soil texture measurements using density

analysis, were all carried out by the UC Davis

Analytical Lab.

Data Analysis and Statistical Modeling

Analyses of Spatial Patterns and Principal Components

To characterize the spatial attributes of BSC pat-

ches, including both light cyanobacteria and dark-

mixed BSCs, we calculated a total of 17 spatial

metrics using landscapemetrics in R (Hesselbarth and

others 2019) for each BSC group using classified

imagery. These 17 metrics quantify patch abun-

dance, patch shape complexity, dominance, edge

effects, and aggregation (Table 1). To identify the

aspects of spatial patterns that capture the most

variation in all 17 metrics across sites, we paired

principal component analysis (PCA) with linear

regression of metric data (Larson and Funk 2016).

PCA reduces data dimensionality by calculating

principal component values (PCs) for each site

across various metrics, which capture variation in

the data with fewer variables (Demšar and others

2013).

To ensure that our characterization of BSC spa-

tial attributes is robust to the spatial resolution of

aerial imagery and the possibility of spurious iso-

lated pixels of classes, we reduced the resolution of

our classified data to 2 cm, half that of the original

data, and repeated the PCA procedure using the

same 17 metrics at each site for each BSC group. To

obtain BSC patches at this reduced resolution, new

cells were assigned values over a 4 cm2 sampling

grid (four original cells) in the existing classification

raster. If a BSC group occupied less than half of the

original cells, the new cell was classified as not

occupied by that BSC group. If a BSC group occu-

pied half or more of the four original cells within a

new sampling grid cell, that new cell was classified

as that BSC. If BSC groups occupied equal pro-

portions of the four original cells, we assigned the

BSC group of the new classification randomly.
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Using these new reduced resolution classifications,

we then evaluated PCs of the same 17 metrics.

To further examine the robustness of our classi-

fication approach, we compared area (cm2),

perimeter (cm), and fractal dimension (-), a scale

invariant measure of complexity, between patches

generated from our classifications and observed

patches in orthomosaics. We compared these met-

rics for 4 randomly selected patches of each BSC

class at the site of Colorado Plateau 9 (CP 9). Ob-

served patches were rasterized hand drawn patches

that were identified and traced in the orthomosaic

without viewing the classification a priori. While

light cyanobacteria patch area was less than the

observed patches (� 30%) across patches, we

found that patch metrics of area, perimeter, and

complexity between the classification and visually

identified patches were similar (Figure S7).

Patch Orientation

To characterize site-level patch orientation of BSCs,

a potential outcome of ecohydrological processes

on patch dynamics on hillslopes (Deblauwe and

others 2011, 2012), we evaluated the directional

connectivity index (DCI) (Larsen and others 2012)

for each BSC group at each site. DCI determines the

connectivity of a patch class or group, across all

patches, at a given angle within a classified matrix

(Larsen and others 2012). We calculated DCI be-

tween 0� and 90� from north at 10� intervals to

capture all directional variation. With calculated

DCI for a given group, we then computed the dif-

ference between angle of maximum DCI and angle

of prevailing slope face of a given site, Dh (�). As

such, Dh is approximately 90� when patch domi-

nant orientation is perpendicular to the prevailing

slope, suggesting the capacity for patches to capture

surface runoff through gradual adjustments in

shape (Deblauwe and others 2012). However, Dh
for BSCs likely deviates somewhat from 90� due to

microtopography within sites (Rodrı́guez-Caballero

and others 2019) and environmental stochasticity.

Therefore, we set 60� as a critical threshold for Dh
to be approximately perpendicular to hillslope in

our analysis. We also expect that Dh is affected by

landscape slope.

Spatial Interactions Within Dryland Communities

To characterize the type (positive vs. negative) and

strength of ecological interaction between dryland

functional groups, we calculated the mean spatial

interaction, Xi-j, between each BSC type and woody

vegetation. These interactions include between light

cyanobacteria BSCs and woody vegetation, dark-

mixed BSCs and woody vegetation, as well as light

cyanobacteria and dark-mixed BSCs. While BSCs

interact with herbaceous plants as well, this biotic

group was considerably present at only 6 of all 22 sites

included in analysis. We calculated Xi-j, the spatial

interaction between groups i and j, via the spatial

analysis through distance indices (SADIE) method

developed by Perry 1998. Xi-j is calculated through

deriving local spatial interaction from clustering maps

(equation 1) (Perry and Dixon 2002):

Table 1. Spatial Metrics for PCA Calculated for Each BSC Patch Type

Metric Unit Description

Edge density m ha-1 Edge of a class per unit area, measure of complexity

Perimeter–area (P-A) ratio – Ratio of patch perimeter to area, measure of complexity

Coefficient of variation P-A ratio – Measure of variance in patch P-A ratio, variation in complexity

Aggregation % Measure of aggregation of a patch type

Proportional cover – Measure of total abundance

Number of patches – Number of unique patches, measure of abundance

Mean patch area ha Average patch area

Clumpiness – Measure of aggregation of a patch type

Cohesion % Connectivity-based measure of aggregation of a patch type

Division % Measure of aggregation of a patch type

Mean fractal dimension – Mean patch fractal dimension, measure of complexity across scales

Interspersion and juxtaposition index (IJI) % Measure of intermixing and aggregation of a patch type

Largest patch index (LPI) % Percent area of largest patch, measure of dominance

Landscape shape index (LSI) – Measure of aggregation of a patch type

Patch density ha-1 Number of patches per unit area, measure of abundance

Percent like adjacency (PLADJ) % Measure of aggregation of a patch type

Edge length m Total length of class edge in landscape, measure of complexity
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Xi�j;k ¼
nðvi;k � viÞðvj;k � vjÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

k vi;k � vi
� �2

vj;k � vj
� �2

q ð1Þ

where vi;k and vj;k are Perry’s clustering indices (-)

(Perry 1998, Perry and others 1999) of groups i and

j in cell k of a 1 m2 sampling grid (Navas Romero

and others 2020), and vi and vj are the mean values

of those clustering indices for groups i and j across

all sampling grid cells. Perry’s clustering index v of a

group in k, a unitless metric, is the contribution of k

to the overall distance to regularity in a sampled

abundance grid using proportional cover within

each sampling grid cell—the minimum distance

that individuals would have to move to obtain an

equal abundance across the entire sampling grid

(Perry and Dixon 2002). Xi-j,k is the interaction

strength between i and j in k, and n is the number

of cells within the 1 m2 sampling grid (n = 2500).

Local interaction Xi-j, k is increased if both focal

groups have v in k greater than or less than the

average of the sampling grid, v; and Xi-j, k is de-

creased if they deviate from the mean in opposite

directions. The numerator of Xi-j, k is normalized

through the product of standard deviations of v for

groups i and j in the denominator of equation 1.

We calculated a site-specific Xi-j as the mean of Xi-

j, k across all sampling grid cells within a site (Perry

and Dixon 2002).

Xi-j is particularly useful in this study as it is

standardized to variation in abundance among

sites, which allows for comparison of interactions

across sites (Perry and Dixon 2002; Navas Romero

and others 2020). Xi-j > 0 indicates positive spa-

tial associations and suggests positive ecological

interactions. For example, positive species interac-

tions can result from increased spatial proximity

between woody vegetation and dark-mixed BSCs,

when vascular plants increase shading for dark-

mixed BSCs and dark-mixed BSCs may increase

infiltration for those plants (Bowker and others

2016). Xi-j < 0 indicates negative spatial associa-

tions and suggests negative ecological interactions.

Competition for water or light between groups,

such as burial of light cyanobacteria BSCs by litter

of woody vegetation, likely increases spatial segre-

gation of these groups (Zhang and others 2016; Lan

and others 2021).

Bayesian Statistical Models

To investigate the driving forces of variation in

principle spatial attributes of BSC patches, deter-

mined from PCA described above, we used a

Bayesian multivariate multiple regression. Out-

come variables in this model include the first two

PCs of each type of BSC patch, light cyanobacteria

and dark-mixed BSCs, making four outcome vari-

ables in total. Only the first two PCs were used as

these two components capture a majority of total

variance in spatial metrics, that is, > 65% for both

BSC groups across 17 total metrics (Results). For

any PCs which exhibited significant negative rela-

tionships to associated spatial metrics, we corrected

these PCs in statistical analysis by taking the neg-

ative values for ease of direct interpretation of ef-

fect size. As we expect these four outcome variables

might be correlated, we used a multivariate normal

distribution for the likelihood function of the

model (equations 2–5) to infer posterior distribu-

tions of predictor effect sizes on each outcome:

Oi � MultivariateNormalðli;SÞ ð2Þ

li ¼
X

x

bxxi þ aregioni
ð3Þ

S ¼
r1 � � � 0
..
. . .
. ..

.

0 � � � rn

0

B

@

1

C

A

R
r1 � � � 0
..
. . .
. ..

.

0 � � � rn

0

B

@

1

C

A

ð4Þ

R � LKJðgÞ ð5Þ

where n is the number of outcome variables (O) in

the model—n = 4 in this case. bx is the slope

parameter describing the effect size of the corre-

sponding predictor variable x, including aridity,

slope, aspect, grazing, soil texture, soil CaCO3, and

soil nitrogen across all sites (equation 3). Aridity is

represented in our model by climatic water deficit

(CWD) (mm yr-1) from the TerraClimate dataset,

taken as the mean annual value over the past five

years (Abatzoglou and others 2018). CWD de-

scribes water stress through estimation of the total

depth of evaporative demand which exceeds

available rainfall, with greater values associated

with greater aridity. Slope (�) and aspect (�) were

extracted from the United States Geological Survey

(USGS) 3D Elevation Program (3DEP) dataset

(USGS 2022). Geospatial predictor variables in our

model are the average value within the bounds of

each site, that is, one value for each variable to

represent the mean condition of each site. Predictor

data for landscape aspect were converted to

northness by taking the cosine of aspect values. Soil

texture for individual samples within sites was

classified using integers 1–12, increasing in

coarseness, according to the United States Depart-

ment of Agriculture (USDA) system through par-

ticle size fractionation analysis. The average of

three texture sample values are used to represent
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soil texture for each site. Soil calcium carbonate

content (% as CaCO3) and nitrogen content (%)

are also averages of the three samples collected

within each site. As data on degree of grazing are

scarce and difficult to measure (Fetzel and others

2017), grazing disturbance is described with a

quotient of observed intensity to estimated time

since last grazed. This quotient captures the effect

of grazing in a continuous variable, as time is ex-

pected to reduce the effects of grazing. Grazing

intensity at each site was classified 0–3 on a scale of

absent—light-moderate—severe based on our vi-

sual inspection of grazing evidence for at least 10

patches of vegetation in the field covering the full

extent of the site (Petz and others 2014). We define

grazing evidence as having signs of foraging of

herbaceous plants or woody leaves in a patch along

with trampling depressions. Light grazing (‘‘1’’) is

defined as having few instances of grazing evi-

dence, while moderate grazing (‘‘2’’) is defined as

having noticeable grazing across more than half of

patches, but not all. Severe grazing (‘‘3’’) is defined

as having noticeable evidence of grazing across all

patches. The time from last major grazing distur-

bance was classified 1–3 from current—re-

cent—non-detectible, based on evidence of

trampling. Time from last major grazing was as-

signed a ‘‘1’’ if trampling was recent, with depres-

sions showing little to no recovery or refill of soil.

‘‘2’’ was assigned if trampling depressions were

present but depressions were somewhat recolo-

nized by BSCs or refilled with soil. ‘‘3’’ was as-

signed if disturbed soil was completely recolonized

by BSCs or no depressions were visible. This nor-

malization of grazing intensity by a measure of time

is necessary as vegetation may not necessarily re-

cover from intense grazing while BSCs may recover

in that time, and it allows us to represent grazing

intensity in a continuous variable. Fire disturbance

is not accounted for in our analysis as, according to

data from the Monitoring Trends in Burn Severity

program (Eidenshink and others 2007) and the

Bureau of Land Management (pers. communica-

tion), none of our study sites have experienced fire

since 1980.

Intercept parameters, a, were pooled by region to

elucidate local variance in BSC spatial attributes

not captured by predictors included in the model.

Weak priors were applied to slope parameters bx
and aregion. S is a variance–covariance matrix for all

outcome variables, O (equation 4). A Le-

wandowski-Kurowicka-Joe (LKJ) distribution with

shape parameter g of 2 was used for a prior distri-

bution for the correlation matrix R (equation 5).

In the model described above, we used PC1 and

PC2 of the patch spatial metrics of light cyanobac-

teria BSCs and dark-mixed BSCs as outcome vari-

ables (Sanchez-Martinez and others 2020). To

interpret what each PC represents, we systemati-

cally examined the spatial metrics in which these

PCs capture the most variance by conducting linear

regression analysis between variables and consid-

ering correlation across all spatial metrics (Larson

and Funk 2016). Once we determined the most

plausible spatial attribute that each PC captures, we

built a separate model that is a variant of the one

described above. In this model variant, we replaced

the PC values on the left side of equation (outcome

variables, O) (equation 2) with the values of those

most plausible metrics we identified. We expect the

results of these two models to be largely similar.

We developed a second model to investigate

factors driving variation in the interactions be-

tween BSC groups and with woody vegetation. The

structure of this second model is identical to that of

the first model described above (equations 2–5),

except that the outcome variables are different,

reflecting the types of interactions considered. We

included three types of interactions as outcome

variables in this model—between light cyanobac-

teria BSCs and woody vegetation, dark-mixed BSCs

and woody vegetation, and light cyanobacteria and

dark-mixed BSCs. The two multivariate models

share the same set of explanatory variables,

including aridity, slope, aspect, grazing, soil tex-

ture, soil CaCO3 content, and soil nitrogen content,

as described above (that is, the right side of equa-

tion 3 stays the same).

All data included in our statistical models were

first standardized by z-scoring to promote model

sampling efficiency and allow for direct comparison

of effect sizes of different predictors.

Posterior distributions of slope and intercept

parameters were constructed using 10,000 samples

distributed across five chains using Hamiltonian

Monte Carlo (HMC) simulation in Stan in R (Gel-

man and others 2015). These distributions were

then used to assess mean standardized slope

parameters and degree of confidence in nonzero

effect of predictor variables. In this study, central

90% credible intervals were used as a critical de-

gree of confidence to determine statistical signifi-

cance of parameters. Model convergence was

evaluated in our study using trace plots to ensure

chains mixed and by ensuring br < 1.1 (Gelman and

Shalizi 2013).
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RESULTS

Spectral cluster analysis of BSCs in our study sug-

gested that these communities likely fall into two

distinct patches—corresponding to light cyanobac-

teria and dark-mixed BSCs (Figure S2). BSCs were

present at all sites in our study, showing significant

variation in proportional cover (Figure 2A) as well

as patch shape (Figure 2B). Cover of light

cyanobacteria BSCs ranged from 6 to 58%, while

cover of dark-mixed BSCs ranged between 0 and

63%. Total coverage of BSCs, including both

functional groups, ranged between 11 and 90%

across sites. While BSCs occupied more than 50%

of total site area at only 12 out of 22 sites included

in analysis (Figures S2, S3 and S5), we found that

BSCs covered more proportional area than vascular

vegetation at all but three sites—two of which were

in the Mojave Desert, one was in the Colorado

Plateau. This suggests our study sites were largely

of a mixed BSC-vegetation state (Chen and others

2020). For patches of similar sizes, their shape may

vary significantly (Figure 2B). Mean patch

perimeter–area ratio (P-A ratio), a metric describing

patch shape complexity, ranged from 1.25 to 1.58

for light cyanobacteria BSCs and 1.30 to 1.54 for

dark-mixed BSCs (P-A ratio for individual patches

in Figure 2B, left to right, is 1.66, 2.00, and 2.29).

Local interactions with woody vegetation were

typically negative for light cyanobacteria BSCs

(mean interaction strength X ¼ �0:18 and stan-

dard deviation rX = 0.21 across sites) (Figure 2D)

and positive for dark-mixed BSCs (X ¼ 0:10, rX =

0.28 across sites) (Figure 2E). The two groups of

BSCs were typically well segregated in space

(X ¼ �0:16, rX = 0.26 across sites) (Figure 2F).

Through analysis of Dh, the difference between

angle of maximum DCI and angle of dominant

hillslope face at a given site, we found that light

cyanobacteria BSC patches tended to orient per-

pendicular to slope more readily than dark-mixed

BSCs (Figure S8A, B). Although Dh often deviated

from 90� for both BSC groups, the distribution of

Dh for light cyanobacteria tended more toward 90�,
with Dh deviating less than 30� from 90� at 10 sites

(Figure S8A) and Dh for dark-mixed BSCs was only

A

1 cm 

Complexity

Classified Map

Cover

)-( ht gnert s noit car et nI
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Light cyanobacteria BSC (LC)

Woody vegetation

Herbaceous vegetation

Bare soil
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Non-photosynthetic vegetation
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Figure 2. Example classifications displaying variation in A abundance and B complexity of dark-mixed BSC patches

across sites, as well as C classified imagery of a site in the Great Basin and D, E, F local interactions between woody

vegetation and each type of BSC, light cyanobacteria (LC) and dark-mixed (DM) BSCs, within that site.
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within 30� deviation from 90� at 5 sites (Fig-

ure S8B). Patch orientation of light cyanobacteria

BSCs also exhibited greater dependence on slope,

as they oriented approximately perpendicular to

hillslope at 6 of 8 sites with slope greater than 2�
(Figure S8A), compared to only 3 sites for dark-

mixed BSCs (Figure S8B).

To further characterize each of the two types of

BSC patches, we conducted principal component

analysis (PCA) on 17 metrics describing their spatial

characteristics (Table 1). The first principal com-

ponent (PC) of light cyanobacteria BSC patches

explained 44.6% of the total variance of 17 metrics

across sites, while the second PC explained 29.1%

of metric variance (Figure 3A). We found that the

first PC was highly correlated with mean perime-

ter–area ratio (R2 = 0.71, p = 0.00) (Figure 3C),

suggesting that this PC captures variation in the

complexity of patch shape. The second PC had a

significant, high correlation with proportional

cover (R2 = 0.81, p = 0.00) (Figure 3D), suggesting

this PC captures variation in abundance of this BSC

type. These results were robust when calculated at

a coarser spatial resolution (Figure S9). While the

absolute cover of light cyanobacteria might be

underpredicted in our classification approach (Fig-

ure S7), given that our study focuses on inter-site

variations along the aridity gradient, we do not

expect that this would significantly affect our PCA

results or further analysis. We also found no con-

sistent trend of overprediction or underprediction

of light cyanobacteria BSCs across sites (Figures S3,

S4 and S5), further suggesting that the PCs of light

Figure 3. Principal component analysis (PCA) of spatial metrics of BSC patches, showing biplots of the first two principal

components (PCs) for A light cyanobacteria and B dark-mixed BSCs. Site specific values of PCs are grouped in ellipses of

70% confidence by ecoregion. Vectors are shown displaying correlation between spatial metrics and both PCs. The x-

component of metric vectors corresponds to correlation with PC1, while correlation of spatial metrics with PC2 comprises

the y-component of these vectors. C, D, E, F Linear regression plots and correlation coefficients between PCs and spatial

metrics suspected to correspond to them.
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cyanobacteria BSCs are complexity and cover,

respectively.

For dark-mixed BSC patches, PCA showed that

the first two PCs of the 17 spatial metrics consid-

ered captured 46.6 and 22.9% of the total variance,

respectively (Figure 3B). Unlike light cyanobacte-

ria, the first PC of dark-mixed BSC patches was

significantly, highly correlated with proportional

cover (R2 = 0.67, p = 0.00) (Figure 3E) and the

second PC was significantly correlated with mean

fractal dimension (R2 = 0.51, p = 0.00) (Fig-

ure 3F)—a scale invariant metric of patch com-

plexity calculated from patch perimeter and area

(McGarigal and others 1995; Hesselbarth and oth-

ers 2019). Additionally, we found that dark-mixed

BSCs varied more in overall abundance than light

cyanobacteria, as the standard deviation of pro-

portional cover across sites for these two groups

was 0.21 and 0.15, respectively. While confusion of

dark-mixed BSCs with other classes was limited

(Figures S3, S4 and S5), dark-mixed BSCs were

most overpredicted in the Great Basin, where they

are abundant, possibly increasing the total variance

of cover of this group. However, as dark-mixed

BSCs are largely absent in high aridity areas, we do

not expect for this to affect the PCs of this type of

BSC. Like light cyanobacteria BSCs, these results

for dark-mixed BSC patch metrics were not signif-

icantly changed at a coarser spatial resolution

(Figure S9). The first PC of dark-mixed BSCs at

coarser resolution was highly correlated with pro-

portional cover (R2 = 0.80, p = 0.00) (Figure S9E),

while the second PC at 2 cm was significantly

correlated with mean fractal dimension (R2 = 0.55,

p = 0.00) (Figure S9F). While the correlation be-

tween the first two PCs and associated dark-mixed

BSC attributes was negative at 2 cm resolution, as

opposed to positive at 1 cm, these PCs still likely

correspond to the same metrics. Magnitudes of site

PC values only differed in sign and were highly

correlated between the two resolutions (Fig-

ure S10). As PCs correspond to eigenvectors of the

original metric data, an inverse relationship be-

tween PCs and metrics still holds the same inter-

pretation as PCs capture the same amount of

variance in metric data, and the eigenvectors to

which PCs are projected are merely flipped (Bro

and Smilde 2014).

We assessed the strength and significance of

environmental predictors on variation in the first

two PCs of both types of BSC patches through a

Bayesian multivariate multiple regression. Model

results suggested a statistically significant positive

effect of aridity and slope on patch complexity of

light cyanobacteria BSCs (Figure 4A), with mean

effect sizes of 0.72 and 0.61, respectively. Grazing

also showed a significant positive effect on light

cyanobacteria patch complexity, with a mean effect

size of 0.44 (Figure 4A). For light cyanobacteria

BSC cover, soil coarseness showed a significant

positive effect, with a mean effect size of 0.56

(Figure 4B).

No predictors included in our analysis exhibited a

statistically significant effect on dark-mixed BSC

patch complexity or cover (90% credible interval;

Figure 4C, D). Aridity and soil texture (coarseness)

displayed the greatest mean effect (both negative)

on the first principal component of dark-mixed

BSCs, interpreted as total cover (Figure 4C). They

were marginally significant within 75 and 80%

credible intervals, respectively.

These were results of models using PC values as

outcome variables. When we directly used the

interpreted metrics that correspond to each PC as

model outcomes (for example, replacing PC1 with

P-A ratio for light cyanobacteria; Figure 3C), model

results stayed largely the same (Figure S11).

To identify the effect of climatic and environ-

mental predictors on variation in interactions be-

tween BSC patches and woody vegetation, we

specified these interactions as outcome variables in

our multivariate regression model. Model results

suggested that interactions between BSCs and

woody vegetation were significantly affected by

aridity, soil texture, and slope. Aridity reduced the

degree of spatial segregation (X= - 0.18 across

sites) between light cyanobacteria BSCs and woody

vegetation (Figure 5A). Soil texture (coarseness)

enhanced the typically positive association be-

tween dark-mixed BSCs and woody plants (X =

0.10 across sites) (Figure 5B). Soil calcium car-

bonate (CaCO3), however, reduced the positive

association between dark-mixed BSCs and woody

plants (Figure 5B). The only predictor to show a

statistically significant effect on the interaction be-

tween light cyanobacteria and dark-mixed BSCs,

typically negative (X= -0.16 across sites), was slope,

which decreased their spatial segregation (Fig-

ure 5C). Aridity also may reduce the spatial segre-

gation between these two groups of BSCs;

however, this effect was only marginally significant

(Figure 5C).

DISCUSSION

Characteristics and Responses of BSC
Spatial Patterns

When resources become increasingly limited, the

abundance of a sessile organism or functional
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group will likely decrease (Tilman 1982; Svensson

and Marshall 2015). However, a patch of biota may

receive the same amount of a resource if new

individuals emerge in space to intercept it more

readily (Aguiar and Sala 1999). In drylands, vege-

tation patches often grow in areas where runoff is

easily captured, maintaining productivity under

high stress (Aguiar and Sala 1999; Couteron and

others 2014). Organisms with relatively high stress

tolerance and relatively rapid regeneration rates

therefore may be able to maintain their total

abundance under greater stress through spatial

reorganization. We observed such a response in

light cyanobacteria BSC patches. The spatial com-

ponent of greatest variance for light cyanobacteria

along the aridity gradient was patch shape com-

plexity, rather than total cover (Figure 3A,C), and

aridity significantly increased light cyanobacteria

patch complexity (Figure 4A). We also found evi-

dence that light cyanobacteria BSC patches can
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Figure 4. Posterior distributions of predictor effect sizes on A light cyanobacteria BSC PC1 (patch complexity) and B PC2

(cover) and C dark-mixed BSC PC1 (cover) and D PC2 (complexity). Positive effect size means the variable on the y-axis

increases the patch complexity (A and D) or cover (B and C) of BSCs, while negative effect size denotes negative effects.

Mean effect size values are designated by circles and central 90% credible intervals are shown as lines. Parameter

distributions statistically different from zero are shown in black, while those that are not significantly different from zero

are shown in gray.
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Figure 5. Posterior distributions of predictor effect sizes on the interaction between A light cyanobacteria BSCs (LC) and

woody vegetation, B dark-mixed BSCs (DM) and woody vegetation, and C light cyanobacteria (LC) and dark-mixed BSCs

(DM). Positive effect size means the variable on the y-axis increases the spatial aggregation (reduces spatial segregation)

between groups, and negative effect size means the variable reduces the spatial aggregation (increases spatial segregation)

between the two groups. Mean effect size values are designated by circles and central 90% credible intervals are shown as

lines. Parameter distributions statistically different from zero are shown in black, while those that are not significantly

different from zero are shown in gray.
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more readily orient perpendicular to prevailing

hillslope (Figure S8)—likely a response of patch

reorganization (Deblauwe and others 2011). For

dark mixed BSCs, which are more sensitive to stress

(Reed and others 2012, 2019; Maestre and others

2015; Tamm and others 2018; Ladrón de Guevara

and Maestre 2022), the spatial component of

greatest variance was cover (Figure 3B, E), which

was plausibly negatively affected by aridity (Fig-

ure 4C; significant within 75% confidence). While

dark-mixed BSCs under the canopy of vegetation

possibly not accounted for in our analysis may

change patch complexity and increase total cover of

this group, especially at sites of low stress, it is

unlikely that the PCs of dark-mixed BSCs would

change, as this would likely increase total variation

in cover across all sites. If dark-mixed BSCs under

the canopy of vegetation are considered, we might

observe a negative correlation between aridity and

dark-mixed BSC cover, which is currently inferred

to be statistically insignificant (Figure 4C). A gen-

eral negative relationship between cover of this

BSC group and aridity has also been well docu-

mented (Maestre and others 2015, 2021; Bowker

and others 2016; Read and others 2016; Weber and

others 2022). Marginal significance of the effect of

aridity in our analysis may be caused by differential

responses of constituents within dark-mixed BSCs,

as lichens and mosses vary both in relative pro-

portion and stress tolerance (Ferrenberg and others

2015; Bowker and others 2016). These results

suggest that patches of light cyanobacteria-domi-

nated crusts, with greater water stress tolerance

and faster lateral expansion rate than dark-mixed

BSCs (Sorochkina and others 2018; Becerra-Absa-

lón and others 2019), can persist under increased

aridity through the gradual modification of patch

attributes and configuration. In contrast, patches of

dark-mixed crusts, which have been shown to be

more sensitive to climatic variation (Reed and

others 2012; Maestre and others 2015; Rodrı́guez-

Caballero and others 2022), may not sufficiently

spatially adjust through regeneration, possibly

resulting in reduced cover under increased

stress—consistent with other studies (Reed and

others 2012, 2019; Maestre and others 2015; Fer-

renberg and others 2015; Rodrı́guez-Caballero and

others 2018a).

Sensitive species constituting dark-mixed BSCs

have been observed to rely significantly on the

physical conditions of soil (Bowker and others

2016; Weber and others 2022). We found that

coarser soil substrate likely increased the positive

interaction between these BSCs and woody vege-

tation (Figure 5B) and plausibly reduced dark-

mixed BSC cover (Figure 4C). Fine textured soil

provides both high water holding capacity and

nutrient availability for patches of sensitive dark-

mixed BSCs (Bowker and others 2006; Bowker and

Belnap 2008). Under coarser soil conditions, where

cover of dark-mixed BSCs is often reduced (Weber

and others 2022), these organisms likely have

greater reliance on local stress amelioration by

woody vegetation, which promote shading, rela-

tively high soil moisture, and nutrient availability

(Zhang and others 2016; Havrilla and others 2019).

While, under this assumption, it is expected that

aridity will increase the spatial aggregation of dark-

mixed BSCs and woody vegetation, we found an

insignificant negative effect of aridity on the

strength of this generally positive interaction (Fig-

ure 5B). However, because our classifications did

not consider dark-mixed BSCs directly under

woody canopies, the actual association between

these two groups in more arid sites might be

slightly more positive than the level we quantified.

While both dark-mixed and light cyanobacteria

BSC patches can locally increase soil fineness

through deposition (Belnap 2003), our soil texture

data captured the mean state of a site and variation

across sites, instead of within-site heterogeneity.

We also found that soil calcareousness likely in-

creased the spatial segregation between woody

vegetation and dark-mixed BSCs (Figure 5B). We

speculate that this is likely an effect of lichens.

Abundant in calcareous and gypsum soils, where

woody vegetation has difficulty establishing (Bel-

nap and others 2001; Lalley and Viles 2008; Moya

and others 2020), lichens can provide shade and

habitat for other sensitive BSC constituents

(Rosentreter and others 2016). Through increased

local shading and soil moisture, lichen abundance

in calcareous soils may provide functional redun-

dancy at small scales for habitat otherwise provided

by woody vegetation (Rosentreter and others 2016;

Havrilla and others 2019). As the spatial interaction

between BSC lichens and vegetation in drylands

likely does not change with aridity (Navas Romero

and others 2020), increased abundance of lichens

within dark-mixed BSC patches may allow dark-

mixed patches to persist under stress without

relying on woody plants (Figure 5B). However, li-

chens are also notably susceptible to climate

change and disturbance (Navas Romero and others

2020; Finger-Higgens and others 2022; Ladrón de

Guevara and Maestre 2022). These results highlight

that, in addition to climate, dark-mixed BSC pat-

ches are likely highly sensitive to local soil condi-

tions—essentially binding them in space, and

hence, resulting in a reduced capacity and likeli-
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hood of patch adjustments in space under increased

stress.

The negative effects of grazing on BSC commu-

nities are well documented, with grazing likely

decreasing total cover and functional diversity of

BSC communities and subsequently degrading

ecosystem function (Soliveres and Eldridge 2020;

Mallen-Cooper and others 2018; Root and others

2020; Chamizo and others 2016; Ding and Eldridge

2020). We found that grazing intensity at our study

sites most significantly affected the patch com-

plexity of light cyanobacteria BSCs, exhibiting a

positive effect, rather than decreasing its cover

(Figure 4A). We also found that grazing weakly

decreased dark-mixed BSC cover (Figure 4C). This

suggests that trampling fragmented light

cyanobacteria BSCs, but that these BSCs were

somewhat resilient to trampling overall at our

study sites, whereas dark-mixed BSCs possibly

could not persist under trampling activity. The

suggested resilience of light cyanobacteria BSCs to

grazing is not likely an effect of climatic conditions,

where rainfall shortly after grazing has been sug-

gested to promote recovery (Dojani and others

2011), as we do not observe a significant relation-

ship between grazing intensity and climatic water

deficit (CWD) at our study sites (Figure S12).

Therefore, soil stability and promotion of runoff by

light cyanobacteria BSCs may be sustained under

moderate grazing activity. However, we expect that

light cyanobacteria BSCs can only sustain grazing

disturbance up to a certain threshold under favor-

able climatic conditions, beyond which their

abundance would likely decrease and possibly

collapse.

Facilitation by Light Cyanobacteria BSCs

Under increasing stress, biota can also persist

through reaping the benefits of facilitative inter-

actions among species (Kéfi and others 2016). Light

cyanobacteria BSCs can promote local runoff gen-

eration by releasing exopolysaccharides (EPS),

which creates a smooth soil surface and clogs soil

pores (Chamizo and others 2016; Kidron and oth-

ers 2020, 2022; Eldridge and others 2020, 2021),

likely providing a critical source of runoff for

downslope biota (Yair 2001; Rodrı́guez-Caballero

and others 2018b; Eldridge and others 2020). EPS

also likely promote water adsorption to sediment

particles, possibly providing stored water for other

biota (Kidron and others 2020). Our analysis cor-

roborates these findings, showing significant effect

of water stress on the spatial associations between

light cyanobacteria and other functional groups in

the landscape. Aridity was shown to reduce the

spatial segregation between woody vegetation and

light cyanobacteria BSCs (Figure 5A). Similarly,

enhanced runoff induced by increased slope within

a certain range also possibly increased the spatial

proximity of light cyanobacteria BSCs and woody

plants, as slope showed the second greatest mean

effect size on this interaction, albeit insignificantly

(Figure 5A). This response is only likely within a

range of increased slope before runoff begins to

concentrate in rills and vascular plants can no

longer effectively intercept runoff by reorganiza-

tion, possibly explaining the insignificance of this

effect in our analysis. These results suggest that,

under increased water limitation, woody plants

may grow in areas closer to light cyanobacteria

patches and capture runoff more effectively. While

light cyanobacteria patches may plausibly shift to-

ward vegetation, this effect is less likely as vegeta-

tive cover often inhibits cyanobacteria through

deposition of leaf litter (Zhang and others 2016;

Lan and others 2021).

The spatial proximity of dark-mixed BSC patches

to light cyanobacteria likely increases with in-

creased slope (Figure 5C). As we find that dark-

mixed BSCs may have a limited capacity to adjust

patch attributes, we expect the spatial interaction

between BSC patch types to increase with slope as

dark-mixed BSCs most often develop within, or

adjacent to, light cyanobacteria patches. Light

cyanobacteria BSCs may develop into dark-mixed

BSC patches at favorable microsites where runoff

collects, and dark-mixed patches may return to a

cyanobacteria-dominant state in unfavorable areas.

The mean effect of increased aridity on the inter-

action between the two types of BSCs was less than

that of slope and was insignificant, further sug-

gesting patches of dark-mixed BSCs may have a

limited capacity to spatially respond to increased

climatic stress. Inciting such a patch-level response

in runoff sinks of woody vegetation and dark-

mixed BSCs suggests the significant role of light

cyanobacteria BSCs in organizing the spatial

structure of drylands and in affecting dryland

ecosystem productivity through runoff–runon

dynamics (Chamizo and others 2012a; Rodrı́guez-

Caballero and others 2018b; Eldridge and others

2020).

Community Level Spatial Self-
organization in Drylands

Biotic agents and their associated spatial feedbacks

driven by resource redistribution create a dynamic

ecohydrological matrix in drylands (Puigdefábregas
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2005; Kéfi and others 2007; Belnap and others

2016). Through spatial self-organization and

adjustment of spatial patterns over time, produc-

tivity may be maintained under a range of in-

creased aridity (Bastiaansen and others 2018;

Rietkerk and others 2021). In drylands, where

abiotic stress is high and likely to increase in many

regions, much attention has been given to their

response to decreased water availability, consider-

ing only vascular plants (Rietkerk and others 2004,

2021; Pringle and Tarnita 2017; Bastiaansen and

others 2018). However, our analysis suggests that

BSCs, which often cover more area than vascular

plants (Bowker and others 2018), may significantly

drive the reorganization of biota in space through

the redistribution of scarce water. Patch scale re-

sponses of light cyanobacteria BSCs (Figure 4A), an

important source of runoff, to water limitation

were paired with spatial adjustments in woody

plants (Figure 5A), and to a limited extent, dark-

mixed BSCs (Figure 5C). In dryland autotrophic

communities, high tolerance of light cyanobacteria

to stress may therefore act as a buffer for highly

sensitive dark-mixed BSCs and vascular plants,

which are often considered to be runoff sinks

(Rodrı́guez-Caballero and others 2018b; Chen and

others 2020). This coordination between multiple

functional groups in dryland communities likely

significantly affects ecosystem resilience, possibly

delaying an abrupt loss in vegetation cover under

increased aridity. Coupled, or mutually linked,

spatial responses of BSCs and vascular plants to

water limitation suggest that spatial self-organiza-

tion in dryland ecosystems is likely a community-

level response. While changes in ecosystem pro-

ductivity may be dominated by changes in vascular

plant cover, BSCs likely significantly alter responses

and spatiotemporal dynamics of vascular plants in

drylands.

While we found evidence of coupled patch re-

sponses of BSCs and vegetation to stress through

observational data and correlations revealed by

statistical models, controlled experimentation is

necessary to fully elucidate mechanisms of patch

responses and ecohydrological interactions. Future

analysis is also necessary to relate species-level

composition to functional BSC patch types as well

as further characterize spatial responses of dark-

mixed BSC patches. Contrasting patch responses of

functionally unique biota within dark-mixed BSCs,

such as lichens and mosses, may induce inconsis-

tencies in the behavior of dark-mixed patches in

aggregate. Consideration of species-level responses

would also likely help elucidate processes driving

community level self-organization in drylands.

Such future studies would benefit from utilizing

hyperspectral imagery, likely improving classifica-

tion accuracies of BSC species (Baxter and others

2021). We also recommend future studies investi-

gate the spatial relationships and dynamics be-

tween BSC patches and herbaceous vegetation.

Ecohydrological dynamics associated with herba-

ceous vegetation could be distinctively different

from woody plants and they likely play a key role

in dryland ecosystems where grasses predominate.

CONCLUSIONS

Our results show that, like vascular plants, BSCs

form patches in space that mediate and respond to

the redistribution of scarce resources in drylands.

Patches of light cyanobacteria BSCs can likely

persist through gradual spatial alterations under

stress, likely due to low water requirements and

relatively fast dispersal and expansion rates. Alter-

natively, more sensitive patches of dark-mixed

BSCs may have a limited capacity to adjust patch

attributes to environmental conditions through

regeneration, suggesting a relatively high likeli-

hood of decline in their cover under increased

stress. Varying species composition of dark-mixed

patches, assemblages largely composed of lichens

and bryophytes, may explain varying patch re-

sponses of these BSCs. Furthermore, spatial asso-

ciations of patches of different biota also change

with water availability. Light cyanobacteria BSC

patches may act as significant sources of runoff for

sensitive patches of vegetation and dark-mixed

BSCs under high stress—possibly increasing dry-

land ecosystem resilience. Our study calls for a new

paradigm of considering spatial self-organization in

drylands through multiple interacting functional

groups, instead of vascular plants only, to improve

our predictive capacity of dryland response to glo-

bal change.
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