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ABSTRACT

Spatiotemporal heterogeneity in soil CO2 efflux

(FS) underlies one of our greatest gaps in under-

standing global carbon (C) cycles. Though scientists

recognize this heterogeneity, FS sampling schemes

often average across spatial heterogeneity or fail to

capture fine temporal heterogeneity, and many

ecosystem models assume flat terrain. Here, we test

the idea that simple, remotely sensible terrain

variables improve regression models of spatiotem-

poral variation in FS. We used automatic chambers

that, for the first time, capture FS in complex

temperate forest terrain at fine temporal resolution

with 177,477 hourly FS measurements at 8 loca-

tions from ridgetop to valley along planar and

swale hillslopes, across three years ranging from

dry to record wet precipitation. In two of these

years, we measured FS weekly at 50 additional

locations distributed across the 8-ha catchment.

Growing season Fs estimates were 1.25 times

greater when sampling hourly versus weekly. At

ridgetops, growing season FS increased by an

average of 463 gC m-2 180 day-1 (75.9%) from

dry to wet years, while valleys decreased by

208 gC m-2 180 day-1 (- 20.1%). This bidirec-

tional response to interannual moisture was iden-

tified in distinct Random Forest models of Fs for

convergent (water accumulating) or non-conver-

gent (water shedding) hillslope positions. We

hypothesize that different FS constraints drive these

opposing responses—water availably to biota limits

FS from ridgetops while slow oxygen diffusion

limits FS from wet valleys. Accounting for hillslope

position and shape reduces variance of FS estimates

in complex terrain, which could improve FS sam-

pling, C budgets, and modeling.
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piration; climate variability; critical zone; complex

terrain.

HIGHLIGHTS

� Simple terrain metrics of hillslope position and

shape reduce variance in FS estimates

� Ridgetop FS was highest in a wet year, while

valley floor FS was highest in a drought
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� Growing season FS estimated from hourly sam-

pling was about 1.25x greater than from weekly

sampling

INTRODUCTION

Soil CO2 efflux (FS), the release of CO2 from soils to

the atmosphere, is the second largest flux in the

global carbon (C) cycle (Friedlingstein and others

2020). An estimated 90 Pg CO2-C diffuse from soils

to the atmosphere each year, roughly 10 times

larger than annual global anthropogenic CO2

emissions (Schlesinger and others 2013), and

potentially increasing at a rate of about

0.1 Pg C year-1 (Bond-Lamberty and Thomson

2010; Hashimoto and others 2015). Despite its

importance, the land surface exchange of CO2 with

terrestrial ecosystems bears the largest uncertainty

bounds in current global C budgets (Todd-Brown

and others 2013; Friedlingstein and others 2014).

In fact, FS is often estimated as a residual from

other, better-known variables in the global C

budget (for example, Le Quéré and others 2016).

Spatial heterogeneity contributes to the uncer-

tainty in FS. Although FS has been measured

extensively in the past century (Jian and others

2021), these point measurements are scaled to

ecosystem, landscape, or global estimates using

modeling frameworks that assume flat terrain (for

example, Dai and others 2004; Mao and others

2016): an assumption violated by over 50% of the

global land surface (Rotach and others 2014). Areas

of complex terrain can be significant terrestrial

sinks of atmospheric CO2; for example, Reyes and

others (2017) estimate about 15% of C sequestra-

tion in the conterminous US occurs in topograph-

ically complex areas. Complex terrain influences

soil temperature, as well as the lateral distribution

of water, sediments, nutrients, and C, all of which

may influence FS. Research from the Susquehanna

Shale Hills Critical Zone Observatory (CZO) (where

our field site is located) revealed significant rela-

tionships between topography and soil organic C

storage (Andrews and others 2011), soil pCO2

(Hasenmueller and others 2015; Hodges and others

2019), and aboveground and belowground tree C

storage (Smith and others 2017; Orr 2016). This

complements a growing body of evidence linking

topography to the spatial distribution of C fluxes

(for example, Pacific and others 2011; Shi and

others 2018; Smeglin and others 2020) and the

response of these fluxes to climatic changes (for

example, Riveros-Iregui and McGlynn 2009; Ber-

ryman and others 2015; Reyes and others 2017).

Despite the significance of topography as a

mediator of C cycling, explicit study of FS in com-

plex terrain remains limited. The only thorough

case studies we are aware of were in the US Rocky

Mountain range (for example, Pacific and others

2008; Riveros-Iregui and McGlynn 2009; Riveros-

Iregui and others 2012; Berryman and others

2015). At these sites, lateral redistribution of soil

water from non-convergent (water shedding) to

convergent (water accumulating) areas led to

bidirectional responses of FS to interannual pre-

cipitation variability: landscape positions receiving

high drainage had higher cumulative FS in a

drought year, whereas positions with low drainage

had higher Fs in a non-drought year (Riveros and

others 2012). Although such work has provided a

nascent understanding of mechanisms underpin-

ning FS variability across climate and topography,

the pervasiveness of complex terrain on the global

land surface calls for expanded exploration beyond

these (sub)alpine ecosystems (Reyes and others

2017). For example, the idea that soil saturation

decreases FS is well established in laboratory incu-

bations and wetlands (for example, Doran and

others 1991). Yet very few field studies identify

which upland areas may be impacted by this pro-

cess and to what extent. Additionally, many Earth

System Models do not capture the lateral redistri-

bution of water that drives these patterns (Clark

and others 2015).

New understanding of FS in complex terrain may

be advanced by higher temporal resolution data.

The spatial distribution of soil moisture can change

rapidly in complex terrain as preferential flow

paths redistribute rainwater. For example, at the

Shale Hills CZO, preferential soil water flow paths

cause high moisture following rain events to be

fleeting on ridgetops and planar slopes as water is

drained to convergent landscape positions in swales

and the valley floors (Lin and others 2006). These

rainfall events rapidly alter soil pCO2 at Shale Hills

(for example, Hodges and others 2019) and Fs in

other forests in complex terrain (for example,

Riveros-Iregui and others 2008). Thus, rainfall

events can change FS within sub-weekly time-

scales, with the magnitude and lag time of response

related to topographic positions (Petrakis and oth-

ers 2017; Riveros-Iregui and others 2008). Yet,

with so few high temporal resolution Fs measure-

ments, we lack a generalized understanding of how

topography mediates the Fs response to moisture

change. It is possible that a unit change in soil

moisture produces the same change in Fs at a rid-

getop and a valley floor, but this assumption has

rarely been tested, and it may be wrong for soils
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that remain saturated. For example, extended

anaerobic conditions in convergent areas may lead

to lower Fs at a given soil moisture than non-

convergent areas with brief saturation.

There are inherent tradeoffs between temporal

and spatial resolution when designing sampling

schemes of FS in complex terrain (Lovett and others

2005). Explorations of FS across topographic gra-

dients often use manual chambers, allowing for

many replicates across space (for example, Riveros-

Iregui and others 2012; Savage and Davidson

2001). However, collecting and processing samples

from manual methods is labor intensive, which

leads to sampling frequencies rarely finer than

weekly (Riveros-Iregui and McGlynn 2009; Riv-

eros-Iregui and others 2012) and, more often, as

low as fortnightly (Berryman and others 2015) or

monthly (Hanson and others 1993; Wang and

others 2019; Jiang and others 2020). Further,

manual sample collection typically excludes

nighttime fluxes (for example, Hanson and others

1993; Riveros-Iregui and McGlynn 2009; Riveros-

Iregui and others 2012; Berryman and others 2015;

Wang and others 2019; Jiang and others 2020).

Thus, while manual methods may capture spatial

heterogeneity in FS at longer timescales (Savage

and Davidson 2003), they miss the fine temporal

responses.

By contrast, automatic chambers enable contin-

uous FS observations at hourly or sub-hourly

temporal resolutions that capture nighttime fluxes

and short-term responses to rain (Savage and

Davidson 2003; Ruehr and others 2009; Görres and

others 2016). While automatic chambers have been

increasingly used to measure FS, many of these

studies do not explicitly consider topographic

variation (Makita and others 2018; Courtois and

others 2019). Studies that do consider topography

have often been limited in execution, such as one

automatic chamber (Ruehr and others 2010) or one

year of measurement (Liu and others 2006; Ruehr

and others 2010; Tian and others 2019), with

notable exceptions focused on tropical forests or

plantations (Rubio and Detto 2017; Yan and others

2019). Overall, automatic chambers remain an

underutilized tool in identifying the timing of spa-

tial controls on ecosystem-level FS that may be

necessary for scaling FS responses to global change.

In this study, we present one of the first multi-

year, continuous datasets of FS in a temperate

deciduous forest in complex terrain. Within this

dataset, we analyze FS across three years repre-

senting a gradient from drought to record precipi-

tation. We use these data to ask: how does

topography influence the response of FS to inter-

annual precipitation variability? We hypothesize

that (1) adding terrain variables to standard soil

temperature and moisture predictors will explain

significantly more variance in estimates of growing

season and daily FS across climate variability, and

(2) automated chamber methods will provide the

same FS estimates as manual sampling when

aggregated to the growing season temporal scale

and catchment spatial scale.

METHODS

Site Description

We designed our soil CO2 efflux (FS) sampling

scheme to capture topographic variability (Fig-

ure 1) in the Shale Hills watershed (40�40¢N,
77�54¢W) of the Susquehanna Shale Hills Critical

Zone Observatory (He 2019). The Shale Hills

watershed is a small (0.08 km2), forested, first-or-

der catchment underlain by Rosehill shale bedrock.

Catchment topography includes steep planar slopes

alternating with areas of convergent flow, known

as swales (Brantley and others 2018). This con-

vergence influences productivity in the mature

oak-dominated (Quercus sp.) deciduous broadleaf

forest, with evidence of greater aboveground car-

bon uptake and storage in swales and valley floors

compared to ridgetops and planar slopes (Smith

and others 2017). Hillslope curvature and position

also drive soil carbon, texture, and depth, with

valley floor positions having deeper and wetter

soils with a greater clay content than the ridgetop

soils (Lin and others 2006; Supplemental Table 1).

We sampled across convergent (swale) and non-

convergent (planar) slopes, as well as positions

along these hillslopes (ridgetop, midslope, and

valley floor, by elevation). Though the landscape

can also be considered a continuous variable (for

example, Riveros-Iregui and McGlynn 2009), we

use these categories as one approach to define

replicates, discuss trends across topography, and

propose a method for upscaling FS in global models.

Overall, this sampling design enables us to analyze

FS within nested scales: at the level of chambers, of

landscape positions, and by the presence or absence

of convergent flow.

Shale Hills has a humid continental climate with

a mean annual temperature of 10 �C and mean

annual precipitation of 1050 mm (NOAA 2007).

However, annual precipitation from 2016 to 2018

deviated from this average: 2016 was a drought

year at 719 mm, 2017 was near average at

988 mm, and 2018 was a wet year at 1275 mm

(Xiao and Li 2018). Put in a state historical context,
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2016 was the second driest year in Pennsylvania in

the last two decades and 2018 was the wettest year

on record (NOAA 2021). We targeted our analyses

across these three years to explore the response of

FS to rapid and significant change in interannual

water availability.

Automatic Soil CO2 Efflux Collection

FS was measured hourly in two replicates across

four landscape positions (ridgetop, planar midslope,

swale midslope, and valley floor) using an auto-

mated soil respiration instrument, the LI-8100A

Soil CO2 Flux System (LI-COR Biosciences Inc.,

Lincoln, NE, USA). Two LI-8100A Flux Systems

were each linked to four opaque long-term soil

respiration chambers (8100-104) fitted to a LI-8150

Multiplexer. These chambers measure FS by closing

over a soil collar installed to � 5 cm depth and

continuously calculating the change in CO2 con-

centrations within the chamber over 120 s, allow-

ing 20 s for chamber closure, 30 s as a ‘‘dead band’’

to reach steady mixing immediately after closure,

and 30 s after measurement for air to purge sam-

pling lines of moisture. After completing the mea-

surement, the chamber moves 180� from the soil

collar to preserve the natural CO2 gradient between

soils and the atmosphere. Data were downloaded

approximately weekly, at which time we removed

any plant growth within the chambers and debris

that could affect the chamber’s closure. Otherwise,

all new litter inputs were allowed to accumulate in

the collars. Measurements were stopped prior to

forecasted snowfall to avoid damaging the auto-

mated systems. Samples were taken every hour

from July 2015 to December 2018 which, when

accounting for missing data from technical issues

and inclement weather, led to a total of 177,477

observations. This base dataset is publicly available

through COSORE (Bond-Lamberty and others

2020).

FS was estimated using SoilFluxPro software

(version 4, LI-COR Biosciences). FS was calculated

as both an exponential and linear regression of CO2

concentration in the chamber over time. The best-

fitting model was determined by comparing the

regression coefficient (R2) and the normalized sums

of the squares of the residuals for both fits. All

calculations discarded the first 30 s of the CO2

concentration curves to account for disturbances of

soil surface pressure from the chamber movement

(Courtois and others 2019).

FS estimates from the base dataset were removed

using the following quality control pipeline: (1)

incomplete entries (n = 1506); (2) fluxes that had a

best-fitting regression between time and CO2 con-

centration with an R2 < 0.90 (n = 13,394) as per

literature precedent (Courtois and others 2019;

Savage and others 2014); (3) entries with known

problematic data according to the field technician

error log (n = 1264); and (4) entries with physically

implausible values (fluxes < - 1 or > 50

lmol m-2 s-1) (n = 34). Additionally, fluxes that

were ± 5 lmol m-2 s-1 from adjacent observa-

tions were flagged as ‘‘spikes’’ (Rubio and Detto

2017). The regression between time and CO2 con-

centration for each ‘‘spike’’ was individually re-

viewed and removed if there was evidence of

measurement errors (n = 479), such as implausibly

high starting CO2 concentrations (suggesting that

Figure 1. Location of soil CO2 efflux (FS) measurements along elevation map of Shale Hills with 2-m topographical

contoured lines. FS was measured at four landscape positions: ridgetops (yellow), planar midslopes (green), swales (blue),

and valley floors (gray). Measurements were collected using both automatic chambers (where squares represent the soil

collar) and manual methods (where circles represent the 10-m-diameter circular macroplots, within which were three soil

collars averaged to the macroplot scale).
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not enough time elapsed between chamber closings

to preserve the CO2 concentration gradient) or er-

ratic concentrations (suggesting an improper seal

between the chamber and soil collar). After fol-

lowing these criteria, 90.6% of original flux mea-

surements were retained (Figure 2).

Manual Soil CO2 Efflux Collection

FS was manually measured weekly to biweekly in

2016–2017 between 0900 and 1400 h because

prior research suggested this time window may

minimize diel effects (Davidson and others 1998).

Measurements were collected at 50 macroplot sites

(Figure 1) spanning ridgetops (n = 7), planar mid-

slopes (n = 21), swale midslopes (n = 13), and

valley floors (n = 9). Within these 10-m diameter

circular macroplots, FS was measured at three soil

collars with the same LI-COR 8100 analyzer used

for continuous observations. At each sampling

time, soil collar FS was averaged to the macroplot

scale to account for spatial autocorrelation. Spatial

measurements were checked for quality, such that

values indicating a malfunction (that is, unrea-

sonable chamber temperature, initial CO2, or

pressure, etc.) were removed. We calculated

growing season estimates as a linear interpolation

between daily observations (for example, Pacific

and others 2008), which were summed for the

180 days between May 9 to October 15 (the earliest

and latest sampling dates found in both years).

Co-located Timeseries and Geospatial
Data

To understand controls on FS, we leveraged co-lo-

cated time series data available from the Shale Hills

CZO (https://czo-archive.criticalzone.org/shale-hill

s/data/datasets/). For climate variables, this in-

cluded hourly precipitation from an OTT Pluvio

weighing rain gauge gap-filled with data from the

National Atmospheric Deposition Program (Xiao

and Li 2018). Hourly air temperature was mea-

sured in the automated chambers and gap-filled

with regional Daymet climate data (Thornton and

others 2020) adjusted for our study site using the R

‘‘daymetr’’ package (version 1.6) (Hufkens and

others 2018). For metrics of plant productivity, an

indicator of autotrophic respiration, we used 90th

percentile daily green chromatic coordinate (GCC),

an estimate of canopy greenness from PhenoCam

imagery (Richardson and others 2018). For bio-

physical controls on heterotrophic respiration, we

monitored soil moisture using ECH2O EC-5 or GS1

(Decagon, METER Group Inc, Pullman, WA, USA)

sensors and soil temperature using 8150-203 soil

temperature probes (LI-COR) at 5-cm soil depth co-

located with each chamber. However, the sensors

often failed or recorded physically impossible data.

Instead, we modeled hourly soil moisture and

temperature at a 5-cm depth using the Penn State

Integrated Hydrologic Model with a surface heat

flux module (Flux-PIHM; Shi and others 2013).

Flux-PIHM is a physically based, spatially dis-

tributed, land surface hydrologic model that simu-

lates lateral water flows (Shi and others 2013),

which are critical to capturing heterogenous FS in

complex topography (Riveros-Iregui and others

2012). In the Shale Hills watershed, Shi and others

(2015) have found that Flux-PIHM simulates the

dynamic and spatial structure of observed soil

moisture. Specifically, the Shale Hills watershed

model domain was decomposed into a triangular

network of 532 grids. Flux-PIHM simulations used

a surface elevation map from lidar measurements

(Guo 2019), a soil map and soil hydraulic proper-

ties from an extensive soil survey (Lin and others

2006), and a vegetation map from a survey of more

than 2000 trees (Eissenstat and others 2013). The

meteorological forcing data for Phase 2 of the North

American Land Data Assimilation system (NLDAS-

2; Xia and others 2012) were used for the model

simulation. The model was calibrated using dis-

charge, groundwater level, soil moisture, soil tem-

perature, and surface heat flux measurements.

Model-predicted spatial patterns of soil moisture at

a 5-cm depth have been validated using field

measurements (Shi and others 2015), which

showed that the model is able to capture the ob-

served macro-spatial pattern of soil moisture at

Shale Hills. We used the modeled soil temperature

and soil moisture as liquid water of the topsoil layer

(0–10 cm) at the corresponding grids where auto-

mated chambers were located. Note that soil

moisture, here, is the volume of liquid water,

which excludes the frozen soil moisture content.

Additionally, we gathered static (or slow chang-

ing) variables using soil samples and remote sens-

ing products (Supplemental Table 1). In June 2020,

we collected two soil cores within 1 m of each

chamber to a 15-cm depth using a 5.08-cm-diam-

eter split corer. Each soil core was split into two

layers for uniform processing: ‘‘surface’’ mineral

soils from 0 to 5 cm, and ‘‘deeper’’ mineral soils

from 5 to 15 cm. We collected O horizons within a

24-cm ring centered around each core. Samples

were placed on ice and transported back to the

laboratory where they remained at 4 �C until pro-

cessing. Soils were dried to constant mass to

determine water content gravimetrically. Soil bulk
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Figure 2. Time series of soil CO2 efflux across three years of measurement. Black lines indicate quality controlled

observations, while gray lines represent gap-filling through a regression model with modeled 5-cm soil temperature and

volumetric soil water content (see Eq. 2). Year tick marks correspond to January 1.
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density was calculated both with and without rock

volume (Throop and others 2012). O horizon

samples were ground to 1 mm using a Wiley Mill,

and mineral soils were sieved at 2 mm. Soil texture

was determined using the rapid method from Ket-

tler and others (2001). Soils were analyzed for total

C at Penn State Agricultural Analytical Laboratories

using the combustion method (Nelson and Som-

mers 1996).

We estimated topographic variables in ArcGIS

Pro using a 3-m Digital Elevation Model (Guo

2019). Soil depth was calculated as elevation minus

bedrock elevation, determined from ground pene-

trating radar (Lin 2019). Three types of curvature

were calculated using the Curvature function:

profile, or curvature parallel to the slope, which

relates to rates of erosion and deposition; planform,

or curvature perpendicular to the slope, which re-

lates to flow convergence; and standard, which

combines both types of curvature into a standard

value. Lastly, topographic wetness index (TWI), an

indicator of the influence of local topography on

water movement and accumulation, was calculated

using the equation:

TWI ¼ ln a=tanbð Þ ð1Þ

where a is the upslope contributing area calculated

using a D-infinity algorithm (Tarboton 1997) and b
is the slope angle (Beven and Kirkby 1979).

Estimating Automatic Growing Season
Efflux

To sum continuous FS across time, we gap-filled

our observations using a regression model from

Sullivan and others (2010) based upon modeled

soil temperature and water content:

ln FSð Þ ¼ b0 þ b1T þ b2hþ b3h
2 ð2Þ

where FS is soil CO2 efflux (lmol m-2 s-1), bn is a

parameter coefficient, T is soil temperature at 5 cm,

and h is volumetric soil water content at 5 cm

(m3 m-3). We attempted to fit simpler equations,

but we determined Eq. (2) was the preferred

method to gap-fill based on Akaike’s Information

Criterion (Akaike 1974), adjusted R-squared, root

mean square error, and mean absolute error. Final

model performances found all variables to be sig-

nificant (p-value < 0.001); and across all cham-

bers and years, the fraction of FS from gap-filling

averaged 29.0% in the growing season and 30.4%

in total (Supplemental Table 2). Gap-filled data are

displayed in Figure 2. Once the dataset was gap-

filled, we calculated growing season fluxes from

automatic chambers by summing all hourly fluxes

between May 9 and Oct 15 of each year (Table 1),

as well as annual fluxes summed for the calendar

year (Supplemental Table 3). We also simulated

annual estimates from manual sampling for 2016–

2018 by randomly choosing one observation from

the automatic gap-filled dataset each week be-

tween 0900 and 1200 h in hours without rain,

linearly interpolating between daily observations,

and summing for the calendar year (Supplemental

Figure 1).

We focused our statistical analyses on growing

season estimates to align automatic measurements

with manual measurements. Further, we ensured

that our analyses were robust to gap-filling meth-

ods by calculating growing season FS using three

additional methods (Supplemental Figure 1) from

the R package ‘‘FluxGapsR’’ (version 0.1.0) (Zhao

and others 2020). One method, singular spectrum

analysis, is independent of soil moisture and tem-

perature (Zhao and others 2020), which ensures FS
estimates are not an artifact of the Flux-PIHM

model.

Table 1. Growing Season FS Mean ± Standard Error (g C m-2 180 day-1) by Landscape Position and
Sampling Method

Growing season FS (g C m-2 180 days-1)

2016 2017 2018

Automatic Manual Automatic Manual Automatic

Ridgetop 610 ± 63 513 ± 29 748 ± 34 719 ± 44 1073 ± 8

Planar midslope 926 ± 17 598 ± 36 838 ± 2 761 ± 50 1350 ± 139

Swale midslope 908 ± 204 655 ± 40 1068 ± 291 846 ± 60 1070 ± 295

Valley 1036 ± 240 664 ± 36 876 ± 109 880 ± 54 828 ± 113

Annual precipitation (mm) 719 988 1275

Growing season FS from automatic chambers (n = 2 chambers per landscape position) was calculated as the sum of all gap-filled hourly observations for the 180 days between
May 9 and Oct 15 of each year. Growing season FS from manual sampling (n = 7 to 21 chambers per landscape position) was estimated as a linear interpolation between daily
observations (for example, Pacific and others 2008), which were summed between May 9 to Oct 15. Manual data were not collected in 2018.
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Data Analysis

We first assessed the impact of topographic posi-

tions, climatic variability, and sampling methods on

growing season FS through total least squares (TLS)

regression and repeated measures analysis of vari-

ance (ANOVA). We regressed manual and auto-

matic growing season FS from all gap-filling

methods using TLS regression, which accounts for

variability within both estimates. Further, we ex-

plored the impact of landscape position and sam-

pling method across 2016 and 2017 growing season

FS using a three-way repeated measures ANOVA.

Significant interaction effects were explored sepa-

rately for manual methods and automatic methods

in post-hoc two-way and one-way repeated mea-

sures ANOVAs.

However, these statistical approaches have

weaknesses that we overcame using a Random

Forest (RF) model to explore controls on daily FS
predictions. RF is a supervised machine learning

algorithm used for classification and regression

(Breiman 2001). A detailed description is available

in Hoffman and others (2018). Briefly, RF is built

upon the concept of recursive partitioning, a non-

parametric method that creates decision trees by

recursively splitting response variables at a series of

nodes into clusters of similar observations. This

method is ideal for both our time series and

geospatial data, because it is relatively free of

assumptions regarding the distribution of variables

and regarding the relationships between predictor

and response variables. However, individual deci-

sion trees are sensitive to the training data and

prone to overfitting. RF offers more robust predic-

tions by constructing many independent regression

trees and generating the mean prediction across all

trees. An ensemble of trees is grown using boot-

strapped samples of observations split at a user-

defined number of randomly chosen predictor

variables. From this ensemble, RF algorithms pro-

vide several useful outputs, two of which we dis-

play: variable importance score, which ranks

predictor variables based on the contribution of

each variable to overall model accuracy, and partial

dependence plots, which explore the relationship

between one predictor (or two interacting predic-

tors) and the response averaged across all obser-

vations (Strobl and others 2007).

We built the RF model using the R package

‘‘randomForest’’ (version 4.7–1.1) (Breiman and

Cutler 2018). We trained the RF model to predict

observed daily FS using days without any gap-filled

hours (n = 3966) using 16 predictor variables:

mean daily soil water content (m3 m-3); mean

daily soil temperature (�C); cumulative 3-week

precipitation (mm); mean daily air temperature

(�C); planform curvature; profile curvature; stan-

dard curvature; elevation (m); total soil depth (m);

topographic wetness index; 90th percentile daily

green chromatic coordinate; percent soil carbon in

the O Horizon, 0–5 cm, and 5–15 cm; and percent

clay at 0–5 cm and 5–15 cm. Hourly values were

aggregated to mean daily values for soil moisture

and soil temperature, because green chromatic

coordinate data were not reliable at all hourly

timesteps (for example, photographs cannot be

collected at night). Precipitation and air tempera-

ture were aggregated to the timestep with the lar-

gest Spearman rank correlation coefficient

(Benjamini-Hoberg-adjusted p-value < 0.001)

(Spearman 1904; Benjamini and Hochberg 1995).

We optimized the number of trees (ntree) and the

number of predictor variables considered at each

node for splitting (mtry), such that ntree = 1000 and

mtry = 5. After optimization, the RF model was re-

trained on two subsets of the data: swales and

valley floors, which we call convergent (n = 1851),

and planar midslopes and ridgetops, which we call

non-convergent (n = 2115). These datasets were

randomly split into 70% for model training and

30% for model validation. We repeated this split 10

times to estimate the uncertainty of variable

importance scores from subsampling the training

data (as in Saha and others 2021). We assessed

model performance through percent variance ex-

plained and ordinary least squares linear regression

between observed and predicted daily FS for the

validation dataset. All statistical analyses were

performed in R (version 4.1) software (R Core

Team 2018), and code for the Random Forest

model is available via GitHub (https://github.com/

MWKopp/Ecosystems2022).

RESULTS

Growing Season Soil CO2 Efflux
from Continuous Measurements

Our first hypothesis was that adding terrain vari-

ables to standard soil temperature and moisture

predictors would explain significantly more vari-

ance in estimates of growing season and daily FS
across climate variability. We first tested this

hypothesis through repeated measures ANOVA of

growing season FS from continuous measurements

across landscape positions (Supplemental Table 4).

Growing season FS from automatic chambers ran-

ged from 610 ± 63 to 1350 ± 139 g C m-2 180

day-1 across all topography and years (Table 1).
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However, measurements within a landscape posi-

tion varied widely—and, for ridgetop and valley

floors, significantly—across years. Two-way re-

peated measures ANOVA found support for a sig-

nificant effect of year on growing season FS (F

value = 14.539, p value = 0.009) and a significant

interaction effect between year and landscape

position (F value = 8.643, p value = 0.012). These

significant effects seem to be driven by two trends:

(1) FS from ridgetop and valley floors show a

bidirectional response to interannual climate vari-

ability, and (2) FS from non-convergent flow paths

varied more across years. Specifically, growing

season FS from ridgetops increased by 463 g C m-

2 180 day-1 between average estimates from the

driest year (2016) to wettest year (2018), while

valley floors decreased by an average of

208 g C m-2 180 day-1 (Table 1). Though this re-

sponse is less clear for midslopes, planar midslopes

(non-convergent) also showed the highest growing

season FS in the wettest year, with an increase of

424 g C m-2 180 day-1 relative to the driest year

(Table 1). Convergent flow paths varied widely

within years (evidenced by relatively high standard

errors in Table 1), which may have masked re-

sponses across years for swale midslopes. In short,

data from automatic chambers support capturing

topography as a significant interactive predictor of

interannual growing season FS in the Shale Hills

catchment.

Random Forest Modeling of Daily Soil
CO2 Efflux

Our next test of the first hypothesis was to explore

the predictive power of topographic, soil, and cli-

mate variables in modeling daily FS from automatic

chambers using a Random Forest (RF) approach.

We trained a RF model to predict daily FS using 16

variables from days without any missing (that is,

gap-filled) hours of automatic data. Using all data,

the overall final RF model explained 77.8%

(± 0.02) of the variation in the data using 13

variables. Topographic wetness index (TWI), stan-

dard curvature, and green chromatic coordinate

(GCC) were removed from the final model, because

other variables accounted for these mechanisms.

For example, standard curvature is a combination

of planform and profile curvature, and GCC was

highly correlated with air temperature. To compare

predictors of FS and their interactions across

topography, we retrained this model on two subsets

of the overall data: convergent (swales and valleys)

and non-convergent areas (planar midslopes and

ridgetops). These models explained 76.92%

(± 0.03) of the variation in data from convergent

areas and 79.87% (± 0.02) of the variation from

non-convergent areas.

We compared predictions from the final RF

models with observations in our validation dataset

to assess model performance. Pearson correlations

between predicted and observed daily FS showed

strong positive correlation from convergent

(r = 0.82, p value < 0.001) and non-convergent

areas (r = 0.89, p value < 0.001). Ordinary least

squares linear regression between observations and

predictions yielded an average slope of 1.00

(± 0.00) and 1.02 (± 0.02) for convergent and

non-convergent areas, respectively. As such, we

consider model performance to be robust.

To understand the variables driving RF model

predictions, we calculated variable importance

scores and partial dependence plots. Variable

importance scores are a metric that ranks predictors

based on the relative contribution of each variable

to overall model accuracy. For convergent flow

areas, the most important variables influencing FS
were 5-cm soil temperature and mean daily air

temperature, which showed a median percent in-

crease in mean square errors across models of

71.07 ± 0.10 and 54.26 ± 0.10, respectively (Fig-

ure 3). For non-convergent areas, the most

important variable was also soil temperature

(68.89 ± 0.15); however, this was closely followed

by 3-week antecedent precipitation (64.29 ± 0.19)

and 5-cm volumetric soil water content

(64.15 ± 0.22). Whereas variable importance

scores explore the relationship between all predic-

tors, partial dependence plots explore the rela-

tionship between one predictor (here, soil

moisture) or the interaction of two predictors

(here, soil moisture and temperature) and the re-

sponse averaged across all observations. For non-

convergent areas, soil moisture and daily FS dis-

played a monotonically increasing relationship

with a greater amplitude of change in FS (Fig-

ure 4a). For convergent areas, soil moisture and

daily FS displayed a parabolic relationship (Fig-

ure 4b). These relationships remain even when

accounting for the interactive effects of soil tem-

perature (Figure 4c and Figure 4d). Overall, RF

models suggest that accounting for convergent flow

may change the relative importance of and rela-

tionship between dominant predictors and daily FS.

Comparing Growing Seasons Estimates
Across Automatic and Manual Methods

Our second hypothesis was that automated cham-

ber methods will provide the same FS estimates as
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manual sampling when aggregated to the growing

season temporal scale and catchment spatial scale.

However, three-way repeated measures ANOVA

(Supplemental Table 4) found a significant effect of

method (F value = 7.280, p value = 0.021) on

growing season FS estimates, as well as a significant

interaction effect between year (2016–2017) and

method (F value = 7.866, p value = 0.019).

To test the magnitude of the method effect, and its

interaction with year, we compared growing season

FS estimates from both methods using total least

squares linear regression. We found growing season

FS estimates from automatic methods to be 1.25

(± 0.08) times greater than manual estimates across

all landscape positions and both years (Figure 5). This

effect tended to be greater in a dry year (1.45 ± 0.06)

than an average year (1.11 ± 0.06) and greater in

convergent (1.27 ± 0.11) than non-convergent

(1.21 ± 0.10) areas (Supplemental Table 5).

We ensured that this difference was not an arti-

fact of gap-filling automatic estimates by repeating

regressions with three other gap-filling methods,

both across and within years; regardless of treat-

ment of automatic data, estimates from automatic

chambers were consistently greater than from

manual methods (regression slope with a 95%

confidence interval > 1 in Supplemental Table 5).

Although manual data were only collected in 2016

and 2017, simulating annual FS estimates for

manual methods by randomly drawing from the

automated chamber dataset across 2016–2018 also

found consistently lower estimates than automatic

methods (Supplemental Figure 1).

DISCUSSION

We present one of the first multi-year continuous

soil CO2 efflux (FS) datasets to capture the inter-

actions of both complex terrain and significant

precipitation variability in a temperate deciduous

forest. Leveraging this dataset, we found a bidi-

rectional response of FS across the catchment to

increasing interannual water availability. We dis-

cuss the mechanisms driving this response as well

as their implications for predicting and monitoring

FS in complex terrain.

Figure 3. Variable importance scores from Random Forest models for daily soil CO2 efflux (FS) predictions trained on only

observed data from (A) non-convergent areas (ridgetops and planar midslopes) and (B) convergent areas (swales and

valley floors). Variables are ranked by relative importance for predicting FS, where a greater percent increase in mean

square error indicates greater importance in the model. Ten variable importance scores were calculated by a Random

Forest model built on ten separate random subsamples of training data. These ten variable importance scores are

represented as a box plot corresponding to each variable to estimate uncertainty. Random Forest models were trained on

observation only (that is, not gap-filled) data from automated flux chambers.
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Figure 4. Partial dependence plots of dominant predictors on daily FS from Random Forest models. Partial dependence

plots show the average relationship between modeled 5-cm soil moisture and daily FS across a non-convergent areas

(ridgetops and planar midslopes) and b convergent areas (swales and valley floors). Multipredictor partial dependence

plots show the average interactive effect of modeled 5-cm soil moisture and temperature on daily FS across c non-

convergent areas and d convergent areas. White areas in multipredictor plots are regions outside of the observed range

used to train the Random Forest model. Random Forest models were trained on observation only (that is, not gap-filled)

data.
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Using Automated Chambers to Estimate
FS Responses Across Topography
and Climate

The significance of complex terrain for C storage

and fluxes has generated a pressing need to

understand and predict the response of FS to cli-

mate variability across topographic gradients (for

example, Rotach and others 2014; Senar and others

2018). Yet maximizing spatial coverage in moni-

toring FS has relied on manual sampling methods

(for example, Riveros-Iregui and others 2012;

Savage and Davidson 2001), which limit sampling

frequencies to coarse timescales (for example,

Hanson and others 1993) that may miss significant

short-term (sub-daily) responses to climatic dis-

turbances. Automatic chambers offer an opportu-

nity to monitor FS at a fine temporal resolution;

however, their cost limits spatial replication. With a

sampling design that explicitly accounts for terrain,

we find that hillslope position is a significant con-

trol on interannual FS (Supplemental Table 4) be-

yond what can be captured by instantaneous soil

moisture and temperature.

A key finding is that terrain position determines

the direction of response to traditionally measured

soil and climatic predictors of FS. Specifically,

growing season FS from ridgetops at Shale Hills

increased with increasing interannual water avail-

ability, while valley floors showed decreasing an-

nual FS in increasingly wet years (Table 1). These

results not only corroborate previous research that

interannual precipitation variability leads to a

bidirectional response of FS in complex terrain

(Riveros-Iregui and others 2012; Berryman and

others 2015), but expand this exploration from

drought/non-drought comparisons in semiarid and

(sub)alpine forests to record annual precipitation in

a humid temperate forest. While we found a con-

siderable range in both hourly FS (0.00 g C m-2 h-

1 to 1.78 g C m-2 h-1) and growing season FS
(610 ± 63 to 1350 ± 139 g C m-2 180 day-1), this

range is comparable to other FS observations in

Figure 5. Regression between estimated growing season FS (g C m-2 180 days-1) from manual and automatic chamber

methods. The red dashed line indicates a theoretical 1:1 line. The black line indicates the total least squares linear

regression between methods (slope = 1.25) with a 95% confidence interval shaded in gray. Regression coefficients are

similar regardless of gap-filling methods for automatic methods (see Supplemental Table 5). Vertical standard error lines

are greater (that is, more variability along the y axis), because automatic chambers have fewer replicates (n = 2) relative to

manual sampling (n = 7 to 21, depending on landscape position).
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temperate forests (Giasson and others 2013).

Moreover, these estimates are comparable to

observations from forests in complex terrain (Ber-

ryman and others 2015; Riveros-Iregui and McG-

lynn 2009) and modeled estimates for our study

site (Shi and others 2018). In short, continuously

monitoring a few key positions in complex terrain

identified a bidirectional response of FS to inter-

annual climate variability within comparable ran-

ges to manual monitoring across an order of

magnitude more spatial replicates (for example,

Riveros-Iregui and others 2009; Primka 2021).

UntanglingMechanismsof theBidirectional
Response: Moisture-Versus Diffusion-
Limited FS

Our work advances FS research by showing that

monitoring soil moisture and temperature variation

is not enough to estimate and predict FS—land-

scape context is critical for knowing how soil

moisture affects FS. We hypothesize that the bidi-

rectional response of FS to interannual water

availability hinges on the spatial distribution of

mechanisms dominantly limiting FS: diffusion

limitations in areas receiving convergent flows, and

water limitations to biological activity in non-con-

vergent areas.

In convergent areas, such as swales and valley

floors, FS responds based on a parabolic relation-

ship with soil water content (Riveros-Iregui and

others 2012). Generally, FS peaks at intermediate

soil moisture conditions (Doran and others 1991),

which we confirm for our site in Random Forest

models (Figure 4b, d). In topographic positions

with wetter soils, such as the deep, clay-rich valley

floors at Shale Hills (Lin and others 2006), persis-

tent high soil moisture reduces diffusivity, and

oxygen availability limits aerobic respiration

(Hodges and others 2019). However, these wet sites

could dry under reduced hydrologic connectivity,

such as during a summer drought, which could

promote a large release of CO2 from enhanced

microbial and root respiration (Davidson and oth-

ers 1998; Senar and others 2018). This is one likely

explanation for the flush of FS from the valley floor

in 2016. Under the dry conditions of 2016, valley

floor soils may have dried enough to increase

oxygen diffusion into the soil surface, increasing

aerobic respiration. A concurrent study at Shale

Hills measured soil pO2 at nearby valley floor

position and found a marked increase in %O2 at all

soil depths in the drought summer of 2016 relative

to the summer of 2017 (Hodges and others 2019).

This increase in soil pO2 may have allowed for the

breakdown of available C substrates. Alternatively,

increased diffusivity in 2016 may have allowed

accumulated soil pCO2 to move from soil storage

into the atmosphere (Hassenmueller and others

2015). In contrast, increased precipitation in 2018

may have led to soils that were too wet for maxi-

mum FS. Under saturated conditions, there is lim-

ited diffusion of pO2 for aerobic respiration; and,

even when microbial communities switch to

anaerobic respiration (evidenced by redox features

in Lin and others 2006, and direct measurements of

pCO2/pO2 in Hodges and others 2019), limited

diffusion leads to a build-up of pCO2 rather than a

flush of FS (Hassenmueller and others 2015). This

may explain the decrease in FS from convergent

areas at high volumetric soil water content (Fig-

ure 4b). In short, shifts in biological activity and

diffusivity may explain interannual FS variability in

valley floor positions at Shale Hills, leading to large

fluxes in drought years and lower fluxes in wet

years.

By contrast, interannual variability in FS from

non-convergent areas, such as ridgetops and planar

midslopes, may reflect water limitation to biological

activity rather than limitation by low O2 or slow

CO2 diffusion. Whereas convergent areas display a

parabolic relationship with soil moisture, daily FS
from non-convergent areas monotonically in-

creased with increasing soil moisture (Figure 4a).

Ridgetops at Shale Hills have thinner, sandier soils

that drain quickly (Lin and others 2006). In a dry

year, water in soil pores may be disconnected,

limiting dissolved organic carbon (DOC) supply for

microbial activity and lowering heterotrophic res-

piration (Papendick and Campbell 1981). Similarly,

drought stress on trees could limit photosynthesis

or C allocation to new or maintained root growth,

lowering autotrophic respiration (Bryla and others

1997; Wang and others 2014). Supporting this

hypothesis, minirhizotron data from the same

spatially distributed sites in this study showed de-

creased root tip production in drier years relative to

wetter years in 2016–2018 (Primka IV and others

2022). In a wet year, water in soil pores is con-

nected, which allows water and DOC to reach

microbial communities, increasing heterotrophic

respiration. Additionally, tree roots may also access

shallow water near the soil surface, upon which

most trees at Shale Hills depend for water uptake

(Gaines and others 2015), such that growth and

maintenance root respiration are not water limited.

Together, these sources contribute to an increase in

FS in wet years such that ridgetop FS equals or

exceeds FS from valley floors (Table 1; Supple-

mental Table 3), despite valley floor soils having
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greater C storage (Andrews and others 2011) and

soil pCO2 (Hassenmueller and others 2015; Hodges

and others 2019). Overall, contrasting limiting

factors on FS across convergent and non-conver-

gent areas lead to opposing responses of FS across

interannual climatic variability.

Implications for Predictions: Random
Forest Models Unveil Topography-
Mediated Interactions with Soil Moisture

Random Forest (RF) models are among the ma-

chine learning tools rapidly improving predictions

of soil greenhouse gas emissions (for example, Saha

and others 2021). For example, Lu and others

(2021) found RF models outperformed ten com-

mon process-based terrestrial ecosystem models for

global FS predictions. As such, coupling automatic

chamber data with RF models offers one of the best

methods to model complex interactions among

drivers of FS at fine temporal scales (Lu and others

2021). Our RF models found soil temperature, soil

moisture, and climate variables were dominant

predictors of FS, but their relative importance

(Figure 3) and relationship with daily FS (Figure 4)

differed between areas receiving convergent flow

or not.

We expected that soil temperature would have

great predictive power, because soil temperature is

the most common predictor used to model FS (for

example, Arrhenius 1889; van’t Hoff 1898; Lloyd

and Taylor 1994). While soil temperature did have

high importance values in RF models across the

landscape, soil moisture and 3-week antecedent

precipitation were nearly as important for predict-

ing daily FS from non-convergent areas (Figure 3).

Other topographic (elevation and curvature) and

soil (texture, C, and total depth) characteristics had

low importance values in non-convergent areas

(Figure 3a). By contrast, daily FS from convergent

areas had higher importance values for soil and air

temperature, with moderate predictive power from

moisture variables (soil and 3-week precipitation)

and some predictive power from curvature, surface

and O horizon soil C, and total soil depth (Fig-

ure 3b). If further studies find that these results

hold true in other ecosystems, then simple and

remotely sensed terrain metrics may improve

which predictors we choose to scale FS from small

but topographically complex catchments to larger

scale models.

Relative to soil temperature, the relationship

between FS and soil moisture varies widely across

studies, which has hampered the development of

empirical equations translating soil moisture

parameters into reliable FS predictions (Lou and

others 2006). Generally, optimum FS is predicted to

occur at intermediate soil moisture, whether in

statistical correlations (for example, Doran and

others 1991) or more complex mechanistic models

(for example, Davidson and others 2011). Beneath

some soil moisture threshold, FS is most limited by

slow diffusion of soluble C substrates into extra-

cellular enzymes and by microbes involved in

decomposition (Papendick and Campbell 1981),

which can lead to dormancy in microbes and

diminish heterotrophic respiration (Fierer and

Schimel 2002). Similarly, drought conditions can

decrease photosynthesis, which decreases translo-

cation of photosynthates to the rhizosphere for root

respiration (Ruehr and others 2009). Under these

dry soil conditions, FS has a positive—sometimes

even linear (Jassal and others 2008)—relationship

with soil water availability yet has little response to

soil temperature (Suseela and others 2012).

However, we suggest that some non-convergent

areas may never reach or remain at volumetric soil

water contents above this intermediate optimum

long enough to decrease FS, leading to a relation-

ship which appears monotonically increasing ra-

ther than parabolic (Figure 4a), even when

accounting for interactive effects with soil temper-

ature (Figure 4c). Despite training RF models with

data from 2018, the wettest year on record in the

state of our study site, FS from non-convergent

areas does not display the decrease expected by

limited diffusion of soluble-C and O2. Overall, the

flush of FS from water-limited non-convergent soils

in a wet year may suggest a shift in the topographic

positions dominantly contributing to catchment-

level FS at Shale Hills as the climate transitions

toward wetter conditions (Ning and others 2012).

Implications for Methods: Targeting
Control Points of Between-Method
Variability

A current hypothesis in FS research is that manual

and automatic chamber methods, although imbued

with different biases (Yao and others 2009), bal-

ance a spatial and temporal tradeoff that produce

similar estimates, particularly when scaling up

across time (Savage and Davidson 2003). While

both methods capture interannual variability in

growing season FS across the Shale Hills watershed,

the choice of method significantly affected the

magnitude of estimates (Supplemental Table 4).

Estimates from automatic chambers averaged

1.25 ± 0.08 times greater than from manual

methods (Figure 5). Underpinning this variability is
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an interactive effect between methods, climate, and

landscape positions. We find the difference be-

tween methods was most pronounced in a dry year

(2016) and in areas receiving convergent flow

(swales and valley floors) (Supplemental Table 5).

Specifically, we find estimates from automatic

chambers in a dry year to be 1.45 ± 0.06 greater

than from manual estimates across the catchment,

which is significantly more than in an average year

(1.11 ± 0.06). These findings caution that the

assumption of consistent FS estimates across sam-

pling methods may hold true under average cli-

matic conditions in well-drained landscapes but

may be violated in areas receiving convergent flow.

There are several explanations for differences

between methods at this site. First, automatic

chambers may be biased by aspect. Shale Hills is a

V-shaped catchment with a north- and south-fac-

ing slope. Although manual methods captured

variability across aspect, automatic chambers were

located on the south-facing slope, which may have

greater FS from relatively greater SOC storage

(Andrews and others 2011) and more solar radia-

tion leading to warmer soils. As such, automatic

chambers may overrepresent, and thus overesti-

mate, the ‘‘hot spots’’ in the catchment. However, a

more likely explanation is that manual methods

may be biased by an underestimation of diurnal

variation. A growing body of research finds that

accounting for nighttime fluxes leads to higher FS
estimates from automatic chambers, whether from

lags in response to physical and biological changes

(Makita and others 2018; Phillips and others 2011)

or from measurement bias (Brændholt and others

2017). At Shale Hills, there is preliminary evidence

of pronounced diurnal variation (Kopp, unpub-

lished data), which automatic chambers more

accurately capture (Yao and others 2009). This

explanation is further supported by our simulated

manual sampling, which found notably lower an-

nual FS estimates from all automatic chambers

when excluding nighttime observations (Supple-

mental Figure 1). These findings support previous

suggestions that the fine temporal resolution of

automatic chambers combined with the spatial

distribution of manual methods complement

landscape-scale monitoring of greenhouse gas

emissions (Savage and others 2014). In complex

terrain, we further refine this suggestion to strate-

gically place automatic chambers at ecosystem

control points (Bernhardt and others 2017) dis-

proportionately responsive to climatic variability,

such as valley floors (activated in dry years) and

ridgetops (activated in wet years).

Though such ecosystem control points may be

relatively rare on the landscape, their pronounced

variability for between-method variation has

implications for scaling FS across space. To consider

these implications, we performed a simple spatial

scaling exercise to estimate average catchment-

scale growing season FS. We weighted the average

growing season FS from convergent or non-con-

vergent flow paths by their relative area within

Shale Hills (that is, 22% of total catchment area is

convergent, while 78% is non-convergent, as in

Smith and others 2017). In 2016 (a dry year), we

estimate average catchment-scale growing season

FS to be 813 and 578 g C m-2 180 day-1 from

automatic and manual methods, respectively. In

2017 (an average year), we estimate average

catchment-scale FS to be 824 and 760 g C m-

2 180 day-1 from automatic and manual methods,

respectively. These estimates are consistent with

our within-year regressions between methods and

emphasize that the choice of method could lead to

similar catchment-scale estimates in an average

growing season or to about 28.9% error when

failing to capture ‘‘hot moments,’’ such as from

convergent areas in a dry year or at night. This

error may be substantial even when hot moments

are relegated to patches representative of a small

fraction of the total catchment area. In short, FS
monitoring designs in complex terrain may need to

account for significant interactive effects between

methods and landscape positions, particularly as

interannual climatic conditions become increas-

ingly variable.

CONCLUSIONS

We use one of the first multi-year FS sampling

schemes that captures both fine spatial and tem-

poral heterogeneity to demonstrate that hillslope

position and shape can explain variance of daily,

seasonal, and interannual FS estimates from a

temperate deciduous forest in complex terrain. By

capturing fine spatial heterogeneity, we find that

landscape context is critical for understanding how

FS (bidirectionally) responds to soil moisture. We

hypothesize this response hinges on the spatial

distribution of limiting factors on FS—slow diffu-

sion limits FS from areas receiving convergent

flows, and water availability for biota limits FS from

non-convergent areas. Although soil saturation

limitations on FS are well known in wetland and

laboratory soil incubations, our work contributes to

an understanding of when and where this process

occurs in upland soils and the factors that govern its
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spatial distributions. Even in upland soils, our re-

sults show that accounting for convergent flow

paths can change the relative importance and

relationship of predictors of daily FS. Further, by

capturing fine temporal heterogeneity, we find that

the choice of sampling frequency has a significant

effect on growing season FS estimates.

Moreover, our findings could have implications

for scaling FS to global predictions in Earth System

Models (ESM) by demonstrating how sub-grid

topographic heterogeneity can lead to significant

spatiotemporal variability of FS within less than 1–

km2. In a review of 16 ESMs, Todd-Brown and

others (2013) found that most ESMs could not

reproduced grid-scale spatial heterogeneity of soil C

or its decomposition. The authors posited that this

poor performance was due, in part, to inadequate

representations of topographic and soil moisture

interactions, with some models assuming all soil C

decomposition has a monotonically increasing

relationship with soil moisture regardless of land-

scape position (Todd-Brown and others 2013). Our

research suggests that sub-grid FS may display a

parabolic relationship with soil moisture depending

on lateral redistribution of water, yet this redistri-

bution is rarely included in ESM land models

(Clark and others 2015). Clark and others (2015)

recommend using ESMs that capture sub-grid soil

moisture heterogeneity, such as the Catchment

model (Koster and others 2000) or the tiled

hydrology implementation of the LM3 model

(Subin and others 2014), to resolve uncertainties in

land–atmosphere fluxes. We further suggest that, if

our results hold true elsewhere, ESMs could

incorporate simple and remotely sensed terrain

metrics to partition the parabolic relationship be-

tween sub-grid soil moisture and FS into the full

range (that is, decreasing FS at high soil moisture

for convergent areas) or a range drier than the

inflection point (that is, monotonically increasing

FS for non-convergent areas). Future work should

test how this approach might improve current

uncertainty in spatial patterns of soil C and its

decomposition across global ecosystems.
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