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ABSTRACT

Excess N deposition has aroused concerns about its

negative impacts on forest ecosystems. A two-year

study was conducted to assess the responses of

stomatal conductance (Gc) and carbon assimilation

(Anet) of dominant tree species (Liquidambar for-

mosana, Quercus acutissima and Quercus variabilis) to

increased N deposition at a canopy and understory

N additions experimental platform in a temperate

deciduous broadleaved forest. Five treatments in-

cluded N addition of 25 and 50 kg ha-1 y-1 onto

either the canopy (C25 and C50) or the understory

(U25 and U50), and a control treatment (CK,

without N addition). Our results showed that nei-

ther canopy nor understory N addition had an

impact on carboxylation capacity (Vcmax), the light

saturated rate of electron transport (Jmax) and leaf-

level net assimilation (AnL) of the studied tree

species. Higher concentrations of N addition (U50

and C50 treatments) exerted negative impacts on

Gc and Anet of L. formosana and Quercus acutissima

under lower precipitation conditions, while lower

concentrations of N addition (U25 and C25 treat-

ments) had minimal impacts on overall ecophysi-

ological function. The U50 treatment increased tree

water use efficiency (WUE) of L. formosana in the

second experimental year. Canopy and understory

N addition generated differential effects on forest

vegetation. The traditional approach with under-

story addition could not fully reflect the effects of

increased N deposition on the canopy-associated

assimilation processes.
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HIGHLIGHTS

� Negative impacts on Gc and Anet merely

occurred at higher N addition rate.

� Negative effects of N addition mainly occurred

when the precipitation was lower.

� Canopy leaf Vcmax and Jmax were unaffected by

external N addition.

� Understory N addition failed to fully reflect the

effect of increased N deposition.

INTRODUCTION

Atmospheric deposition of reactive nitrogen (N)

has increased dramatically over the past century

due to extensive fossil fuel utilization, heavy fer-

tilizer application, expansion of animal husbandry,

and other anthropogenic forcing. (Gruber and

Galloway 2008; Janssens and others 2010; Liu and

others 2013). Previous research has shown that N

deposition has increased from 32 Tg y-1 in 1860 to

103 Tg y-1 in 1993 globally and will continue to

increase up to 195 Tg y-1 by 2050 (Galloway and

others 2004; Galloway and others 2008). N depo-

sition in China has also been among the greatest

globally, and the averaged N deposition rate in

China has increased from 13.2 kg ha-1 in the

1980s to 20.6 kg ha-1 in 2014 (Liu and others

2013). Excess nitrogen deposition has aroused

concerns about its negative impacts on forest

ecosystems (Nakaji and others 2001; Sutton and

others 2008; Bowman and others 2008; Fleischer

and others 2013). Forest ecosystems play an

important role in the global carbon cycle and are

estimated to be a carbon sink with a rate of

1.1 ± 0.8 Pg C y-1 (Pan and others 2011). The

perturbation of increased N deposition, which af-

fects the processes that determine the forest carbon

balance, would potentially influence the carbon

sequestration in global forests and the terrestrial

carbon cycle (Högberg 2007; Thomas and others

2010). Thus, analyzing the responses of carbon

uptake processes to increased N deposition will help

elucidate how N depostition influences the ability

of forest ecosystem to store carbon in the long-term

woody pools.

Due to the geographic and species differences,

forest ecosystems have diverse responses to in-

creased N deposition (Thomas and others 2010;

Chen and others 2015). In the N limited forests,

some studies showed increased N deposition en-

hanced the net primary production (NPP) and

drove carbon sequestration, for example, boreal

Pinus sylvestris forest and northern hardwood forest

(Pregitzer and others 2008; Reay and others 2008;

Lim and others 2015); other research focusing on

the responses of mature N-poor boreal Pinus syl-

vestris to increasing N supply showed no effects on

the long-term shoot-scale carbon uptake (Tar-

vainen and others 2016). In the N saturated forest

ecosystems, external N addition generally had a

minimal or negative impact on NPP (Nadelhoffer

and others 1999; Hyvönen and others 2007; Tho-

mas and others 2010; Chen and others 2015).

Whether the forests located at the climate transi-

tion zone from the warm temperate to subtropical

region are N limited or saturated forest, and how

these forests would respond to increased N depo-

sition remains uncertain.

Many studies addressing the influence of N

deposition on forest carbon assimilation rate and

primary productivity have been conducted; some of

these studies investigated the impacts of N addition

on leaf-level chlorophyll content, Rubisco content

and net photosynthetic rate (Bauer and others

2001; Grassi and others 2002; Liu and others 2018);

some studies explored the effects of N addition

through observing the variation of forest biomass,

stem basal area or branch growth (Xia and Wan

2008; Bedison and McNeil 2009; Eastaugh and

others 2011); while some studies analyzed the re-

sponse of regional forest carbon storage to N addi-

tion using models (De Vries and others 2006;

Churkina and others 2010; De Vries and Posch

2011). The impact of increased N deposition has

been investigated at a specific time point through

the above-mentioned approaches at the leaf, indi-

vidual tree and ecosystem level; however, the

process on how carbon assimilation would respond

to increased N deposition across a period of time

has seldom been reported.

Sap flow measurements have been tested as a

robust approach to estimate canopy stomatal con-

ductance in large numbers of studies (Pataki and

others 1998a; Ewers and others 2005; Tang and

others 2006), and can be applied to calculate car-

bon assimilation (Anet) together with physiological

and environmental parameters (Köstner and others

2008). Some studies consider the whole canopy as
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a layer to estimate assimilation rate without taking

the environmental heterogeneity inside the canopy

into account (Hu and others 2010; Wang and

others 2014), which would cause estimation errors.

The Canopy Conductance Constrained Carbon

Assimilation (4C-A) model, which is a multilayer

model based on sap flux-based canopy stomatal

conductance, has been developed and provides a

feasible approach to estimate Anet continuously

(Schäfer and others 2003; Hu and others 2019a).

In reality, N retention by the forest canopy is also

a key issue in determining the effects of atmo-

spheric N deposition on forest ecosystems (Guerri-

eri and others 2010; Guerrieri and others 2011;

Fenn and others 2013). However, the traditional

understory N addition approach, in which N solu-

tion or fertilizer was sprayed directly onto the

understory plants or forest floors (Mo and others

2008; Ward and others 2012; Lu and others 2014),

did not include the influences of N deposition on

the canopy-associated processes (Zhang and others

2015). For purpose of better simulating the realistic

N deposition in forest canopies, some studies used

aircraft to spray N solution onto the canopy (Adams

and others 2007; Gaige and others 2007; Dail and

others 2009). Nevertheless, these experiments had

the disadvantage that the N solution may not be

sprayed uniformly onto the canopy (Zhang and

others 2015).

A manipulative experimental platform with both

canopy and understory N additions has been

established in a deciduous broadleaved forest lo-

cated in Central China to investigate the effects of

increased atmospheric N deposition on a forest

ecosystem. Our experiment was carried out based

on this platform, and the main objectives of this

study were: (1) to examine the possible effects of

canopy and/or understory N addition on stomatal

conductance (Gc) of dominant tree species; (2) to

analyze how canopy and understory N additions

influence the canopy carbon assimilation (Anet) and

tree water use efficiency (WUE); (3) to compare the

effects of traditional understory N addition and

canopy N addition on Gc and Anet of dominant tree

species.

METHODS

Study Site

The experimental site is located in the Jigongshan

National Nature Reserve, Henan Province, Central

China (31� 46¢–31� 52¢ N, 114� 01¢–114� 06¢ E). The
region is located at the climate transition zone from

warm temperate to subtropical, with an annual

precipitation of 1119 mm and annual average

temperature of 15.2 �C (Zhang and others 2015).

Our experiment was conducted in a broadleaved

deciduous forest with the dominant tree species of

Liquidambar formosana Hance, Quercus variabilis

Blume and Quercus acutissima Carruth. The impor-

tance values of these species, which were calcu-

lated as the average value of relative dominance,

density and frequency (Kent 2011), were estimated

at this site. The three selected dominant species had

an importance value of 0.20, 0.15 and 0.14,

respectively, which are far higher than those of the

coexisting tree species Acer buergerianum (0.06) and

Celtis sinensis (0.05) and of the other species in the

community. The main shrub layer species include

Lindera glauca, Vernicia fordii and Acer buergerianum,

and the herb plants including Lygodium japonicum

and Ophiopogon japonicas are sparsely distributed.

The soil is a sandy loam with a pH of 4.6. The soil

total nitrogen content and organic matter at 20-cm

depth are 0.08% and 2.1%, respectively (Zhu and

others 2017).

Experimental Design

The nitrogen addition treatments, which were ini-

tiated in April 2013 and are still being conducted

until the present, are as follows: (i) canopy addition

of 25 (C25) and 50 (C50) kg N ha-1 y-1; (ii)

understory addition of 25 (U25) and 50 (U50) kg N

ha-1 y-1; and (iii) control treatment (CK, without

N addition). Four blocks were established at the

forest site, and the 5 treatments were assigned to 5

plots in each block in a completely randomized

block design. The spraying radius of the canopy N

addition is 17 m, leaving the central area of 400 m2

for sampling. The plots were separated by at least

20 m buffer zone to minimize lateral contamina-

tion of N solution (Zhang and others 2015). In

addition, the plots were not set at the same slope

aspect to minimize the effects of upper plots

impacting lower plots to the greatest extent.

The canopy spraying system was built in the

center of each canopy N addition plot to simulate N

deposition onto the canopy. Details about the

spraying system are presented in Zhang and others

(2015). Nitrogen solution for understory N addition

plots was sprayed 1.5 m above the ground by an

automatic irrigation system, which was made up of

5 sprinklers evenly distributed in each plot.

NH4NO3 solution of targeted concentration was

added to the plot as low intensity precipitation

(� 3 mm per event) monthly from April to Octo-

ber. The first addition was carried out about a week

before all the buds had burst (around April 15th),
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and the final addition was performed in the middle

of October during leaf senescence. There was no

nitrogen solution added to the CK plots. The total

added N solution amount was 21 mm y-1,

accounting for less than 2% of annual precipita-

tion. Thus, the confounding effect caused by water

addition is negligible in this study.

Environmental Monitoring

A temperature (T, �C) and relative humidity (RH,

%) sensor (HygroClip2, Rotronic, Switzerland) and

a photosynthetic photon flux density (PPFD,

lmol m-2 s-1) sensor (XST-SQ110, Davis Instru-

ments, USA) were mounted on a supporting frame

and connected to a data logger (DL2e, Delta-T De-

vices, UK) at an open site approximately 50 m

away from the experimental platform. The sensors

read every 30 s, and the 10-min averaged data

were recorded. Precipitation (P, mm) was provided

by the Jigongshan meteorological station located

about 2 km away from the plots. The vapor pres-

sure deficit (VPD, kPa) was calculated according to

Campbell and Norman (1998):

VPD ¼ ae
bT
Tþcð Þ 1� RHð Þ ð1Þ

where a, b and c are fixed parameters (0.611 kPa,

17.502 (unitless) and 240.97 �C, respectively), T is

temperature in degrees Celsius, and RH is relative

humidity as a ratio.

Physiological and C Isotope
Measurements

The leaf samples of the three dominant tree species

in the canopy for all the plots were obtained using a

pole pruner in the summer of 2018. Daytime

mitochondrial respiration rate (Rd, lmol m-2 s-1),

carboxylation capacity (Vcmax25, lmol m-2 s-1) and

the light saturated rate of electron transport

(Jmax25, lmol m-2 s-1) scaled to 25 �C were ob-

tained from the response curve of leaf net assimi-

lation (AnL) to internal CO2 concentration (AnL -

Ci curve) which was measured with a Li-Cor 6400

portable photosynthesis system (Li-Cor Instru-

ments Inc., Lincoln, NE, USA). The photosynthetic

photon flux density was set to be 1200 lmol m-2

s-1 when measuring the AnL - Ci curve. The

method to estimate Rd, Vcmax and Jmax is described

in Sharkey and others (2007). In total, the leaves of

18 L. formosana (n under CK, U25, U50, C25 and

C50 treatment was 3, 5, 3, 4 and 3), 20 Q. acutissima

(n under CK, U50, C25 and C50 was 4, 5, 6 and 5)

and 21 Q. variabilis (n under CK, U25, U50, C25

and C50 was 3, 5, 3, 5 and 5) trees in all the

experimental plots were obtained and measured.

The leaves with for gas exchange measurements

were scanned with a commercial scanner to

determine the leaf area and then dried at 60 �C to a

constant dry weight. The specific leaf area (SLA,

m2 kg-1) was calculated by dividing leaf area by

leaf dry weight. Then the dried leaves were ground

into powder using a ball bearing mill and encap-

sulated in tin capsules for N content determination

and 13C isotopic analysis (IsoPrime100, Elemental,

Germany). In addition, the leaf N content and SLA

of the three dominant tree species in the canopy for

all the plots in 2015 were also measured.

Sap Flow Measurement and Scaling Up
to Canopy Stomatal Conductance

In total, 41 L. formosana, 25 Q. acutissima and 52 Q.

variabilis trees in all the experimental plots were

selected for sap flow monitoring during the grow-

ing season (from Apr. 1st to Nov. 14th) of 2014 and

2015. Information on the sample trees of L. for-

mosana, Q. acutissima and Q. variabilis under each

treatment is shown in Table S1 in Supplementary

Material. The one-Way ANOVA showed no

remarkable differences (P > 0.05) in diameter at

breast height (DBH) among the five treatments for

the three species. The self-made Granier-type sen-

sors were inserted into the sapwood of the sample

trees and connected to the data logger (DL2e,

Delta-T Devices, UK) to monitor stem sap flow.

Details about the installation of the sensors and the

method of converting temperature difference data

to sap flux density (Js, g m-2 s-1) were described in

Hu and others (2019b).

The original empirical Granier equation has been

tested to be applicable for most but not all species

(Bush and others 2010). Even so, the original

Granier equation has been applied to estimate Js of

other sweetgum and oak trees (Granier and others

1994; Phillips and others 1996; Pataki and others

1998b; Bovard and others 2005; Oishi and others

2008), indicating the practicability of using the

Granier method in this study. Furthermore, we

used the original Granier equation for the three

species and assumed that there existed ignorable

impacts on the comparison of the N addition

treatment effects because the source of estimation

error was the same for the 5 treatments. However,

the limited applicability of the original empirical

Granier equation would restrict the Js and gc
comparison with other tree species measured in

previous studies using the calibrated Granier

equation.
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All the sap flow sensors on the same trees were

replaced by new sensors in April 2015 before we

began the second-year monitoring. As an insect

attack damaged some sap flow sensors during the

middle of July in 2014, the data during this period

were not analyzed. Additionally, there was only

one Q. acutissima selected for sap flow measurement

under the U25 treatment as there existed no Q.

acutissima for several plots, we could not conduct

comparative analysis and did not analyze the effect

of the U25 treatment on Q. acutissima.

After converting temperature difference data to

sap flux density, the whole-tree transpiration (Et,

g s-1) was calculated as follows

Et ¼ JsAs ð2Þ

where As is sapwood area and Js is the converted

sap flux density, and As was determined based on

the established relationship between DBH and As

(Hu and others 2019b; Oishi and others 2008). The

radial variation of Js should be taken into consid-

eration (Phillips and others 1996; Schäfer and

others 2000) when using Eq. (2), and the radial

variation of JS was calculated according to equa-

tion (3) in Pataki and others (2011). In addition,

the sapwood area may also be influenced by N

addition. The maximal annual radial growth was

about 4 mm for the three studied tree species

(Zhang and others 2018; Yu and others 2019). If N

addition influenced annual radial growth by 50%

(that is, 2 mm) for a tree with the DBH of 30 cm,

the sapwood area would be only altered by 1.8%.

Therefore, the effects of N addition on sapwood

area were minimal, and As was estimated using the

same equation for each tree species under different

N addition treatments.

To analyze the stomatal responses to N addition,

sap flux-based canopy stomatal conductance (Gc)

which reflects the stomatal behavior and is closely

related to carbon uptake was estimated in our

study. Gc for each individual tree was calculated

using a simplified Penman–Monteith equation

(Köstner and others 1992):

Gc ¼ ELqGv
T þ 273

VPD
ð3Þ

where q is the density of water (998 kg m-3), GV is

the universal gas constant adjusted for water vapor

(0.462 m3 kPa K-1 kg-1), T (�C) is air temperature,

and EL (m s-1) is the transpiration per unit of leaf

area with consideration to the time lags between

sap flux measured on the stem at breast height and

the canopy environmental variables (Phillips and

others 1997), and calculated by dividing Et by tree

leaf area. Total leaf area of each individual tree was

calculated as the product of the SLA and leaf

weight (W, kg) which was estimated according to

biomass equations for each dominant tree species.

The detailed method for determining leaf area is

described in Hu and others (2019b).

The leaf area index (LAI) was also measured

using a LI-2000 plant canopy analyzer (LI-2000, LI-

COR, USA) during May 2015 among the five

treatments, and was not significantly different

among the treatments. Likewise, there was no

remarkable difference in the litterfall weight mea-

sured in December 2015 among the five treatments

(Figure S1 in the Supplementary Material;

P > 0.05), indicating that N addition treatments

exerted no impact on leaf biomass and area at that

time. Thus, the leaf area was estimated using the

same biomass equation for each tree species under

different N addition treatments.

Estimation of Anet and WUE Using
the 4C-A Model

Photon flux density varies at different layers in the

canopy, thus the canopy was divided into several

layers (each layer has a depth of 1 m), and leaves

were divided into two light categories, that is, sunlit

and shaded leaves. The proportion of foliage in

each light category along with its incident PPFD at

each layer was calculated according to Campbell

and Norman (1998) in half hour increments. Car-

bon assimilation rate (Anet) for both sunlit and

shaded leaves at each layer can be acquired by

solving the following two equations (Vico and

others 2013):

Anet ¼
k1 ci � C�ð Þ
k2 þ ci

� Rd ð4Þ

Anet ¼ gc ca � cið Þ ð5Þ

where Ci is intercellular CO2 concentration, Ca is

the ambient atmospheric CO2 concentration, C* is

the CO2 compensation point in absence of dark

respiration, Rd is the daytime mitochondrial respi-

ration rate, k1 and k2 are parameters related to the

photosynthetic parameters (the detailed calculation

is explained in Vico and others (2013)), and gc is

the stomatal conductance to CO2. The gc was ob-

tained by constraining the estimated optimal con-

ductance using the stomatal optimization approach

to the sap-flow-based conductance, and the de-

tailed calculation process was presented in Hu and

others (2019a). The leaf physiological parameter

Vcmax in 2015 was obtained from the N content

(g m-2) measured in 2015 and the established

relationship between N content and Vcmax from the
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measurements in 2018 (Figure S2; Kattge and

others 2009), and the Jmax (or Rd) in 2015 was then

obtained from the following relationship between

Vcmax and Jmax (or Rd) from the measurements in

2018: Jmax = 0.92 9 Vcmax + 18.26 (P < 0.001,

R2 = 0.36), Rd = 0.039 9 Vcmax - 0.55

(P < 0.001, R2 = 0.35). To take the seasonal vari-

ation of Vcmax and Jmax into consideration, the day

length-based scalar was used to modify the mea-

sured Vcmax and Jmax to obtain their values for a

given day (Bauerle and others 2012):

Vcmax modified ¼ Vcmax measured �
dayl

daylmax

� �2

ð6Þ

Jmax modified ¼ Jmax measured �
dayl

daylmax

� �2

ð7Þ

where dayl and daylmax are the day length for a

given day and the annual maximum day length,

respectively. In addition, both the measured and

modified Vcmax and Jmax were the values scaled to

25 �C; therefore, the temperature adjustment was

made according to Katul and others (2010) and

Hikosaka and others (2007).

The tree canopy-level water use efficiency

(WUE) was calculated as follows:

WUE ¼ Anet;total

Et;total
ð8Þ

where Anet,total and Et,total represent the total spe-

cies-specific tree canopy carbon assimilation esti-

mated by the 4C-A model and transpiration

calculated from sap flow measurements during the

growing season (from Apr. 1st to Nov. 14th),

respectively.

Statistical Analysis and Gap Filling

One-way ANOVA followed by a Duncan’s test was

used to test the differences in Vcmax, Jmax, N con-

tent, Gc, Anet and WUE among the five treatments.

The trees under each specific treatment in all the

four blocks were compared to each other, that is,

the n for the statistical analysis was the number of

trees instead of the block number. Some sap flow

data are missing because of power or equipment

failure, and the percentage of missing data for each

individual tree was 23.6 ± 0.06%. The relationship

between the Js and environmental factors (PPFD

and VPD) was established seasonally for each indi-

vidual tree by a nonlinear regression analysis

and used to fill the Js gaps (P < 0.05). The equa-

tion form was as follows: Js ¼ að1� e�m�VPDÞ
ð1� e�n�PPFDÞ. The average determination

coefficient of these equations was 0.82 ± 0.01

(mean value ± standard error) ranging from 0.41

to 0.97, with 91.3% of the determination coeffi-

cients above 0.70.

RESULTS

Environmental Factors

This experiment was conducted during the growing

season (from Apr. 1st to Nov. 14th) in 2014 and

2015. The daily average photosynthetic photon

flux density (PPFD) ranged from 6 to 516 lmol m-

2 s-1 for the entire measurement period, with daily

mean vapor pressure deficit (VPD) in the range of

0–2.1 kPa and daily average temperature (T) from 4

to 33 �C (Figure 1). The total precipitation (P)

during the growing season in 2014 and 2015 was

966 and 894 mm, respectively. The average PPFD

and P in autumn were lower than those in spring

and summer (Figure 1; Hu and others 2019b).

Effects of N Addition on Gc

Results showed that there was no remarkable dif-

ference (P > 0.05) in DBH among the five treat-

ments for the three studied species (Table S1), and

daily average Gc was not correlated with DBH for

trees in the CK plots (P > 0.05). Thus, the differ-

ence in Gc among the treatments should result from

the N addition rather than from tree size. During

the first year (2014), both canopy and understory N

addition had no influence on the daily average Gc

of L. formosana and Q. variabilis (P > 0.05; Fig-

ure 2). However, C50 treatment reduced Gc of Q.

acutissima in April and June (P < 0.05). However,

the case during the second year (2015) was differ-

ent. The understory N addition exerted a greater

impact on Gc than canopy N addition. The U50

treatment reduced Gc of L. formosana in autumn

(P < 0.05).

Effects of N Addition on Physiological
Properties

The N addition had no influence on leaf N content

measured in 2018 for all the three studied tree

species (P > 0.05; Figure 3). Carboxylation capac-

ity (Vcmax) and the light saturated rate of electron

transport (Jmax) of the three species were obtained

in 2018 from the response curve of leaf net

assimilation to internal CO2 concentration. Neither

canopy N addition nor understory addition exerted

an impact on Vcmax or Jmax of the three dominant

tree species (P > 0.05; Figure 4). Similar to the

responses of Vcmax and Jmax, the leaf-level AnL un-
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der PPFD of 1200 lmol m-2 s-1 and CO2 concen-

tration of 400 ppm was also unaffected by N addi-

tion (P > 0.05; Figure 4).

Effects of N Addition on Tree-Level Anet

The canopy instantaneous Anet within a day ranged

from 0 to 7.6 lmol m-2 s-1, and the average of

Anet during the whole day was estimated to analyze

the effects of N addition on carbon assimilation

(Figure 5). During the first year, both canopy and

understory N additions had no impacts on the daily

average Anet modeled with 4C-A for the three

species (P > 0.05; Figure 5). The understory N

addition exerted greater impacts in the second year,

whereby the U50 treatment reduced Anet of L. for-

mosana and Q. acutissima in autumn (P < 0.05,

Figure 5).

Effects of N Addition on WUE

Both canopy and understory N additions did not

exert impacts on tree water use efficiency (WUE) of

Q. acutissima and Q. variabilis during the two

experimental years (P > 0.05; Figure 6). N addi-

tion treatments had no influence on the WUE of L.

formosana in the first year, whereas L. formosana

with U50 treatment presented a higher WUE than

those with CK and other treatments in the second

year (P < 0.05; Figure 6).

DISCUSSION

Influences of N Addition on Gc and Anet

Higher concentrations of N addition decreased

stomatal conductance and carbon assimilation of

the dominant species during some periods across

the two full growing seasons of this experiment,

while lower concentrations of N addition exerted

no impact on plant physiological function investi-

gated here. It is generally acknowledged that there

is a dose–response relationship between external N

input amount and tree physiological behavior such

as net primary production (Magill and others 1998;

Bobbink and Hettelingh 2011; de Vries and others

2014; Chen and others 2015). Increased N deposi-

tion enhanced the NPP and drove carbon seques-

tration in N limited forests (Magnani and others

2007; Pregitzer and others 2008), whereas external

N addition had a minimal or negative influence on

NPP in N saturated systems (Nadelhoffer and others

1999; Hyvönen and others 2007; Chen and others

2015). The negative impacts of high N addition on

Figure 1. Daily mean photosynthetic photon flux density (PPFD), vapor pressure deficit (VPD), temperature (T) and daily

precipitation (P) during the growing season (from Apr. 1st to Nov. 14th) in 2014 and 2015 at the experimental site (Hu and

others 2019b).
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Gc and Anet during some periods and minimal im-

pacts of low N addition indicated that the studied

forest was under conditions of nitrogen saturation.

In addition, some studies (Aber and others 1989;

Magill and others 1998) have demonstrated that

excess N addition would increase the emissions of

nitrous oxide after the forest had become N satu-

rated. Zhang and others (2015) reported that U50

treatment increased N2O emission in 2013–2014 at

the same study site, which also indicated that the

studied forest was under conditions of N saturation.

The Vcmax and Jmax of all the three dominant

species were not affected by N addition in our re-

search, which effectively preserved photosynthetic

capabilities (Fernández-de-Uña and others 2016).

Likewise, N addition had no influences on Vcmax

and Jmax of hybrid larch saplings (Mao and others

2012) and Acer saccharum (Talhelm and others

2011). However, some studies demonstrated that

higher N supply led to higher Vcmax of Eucalyptus

grandis seedlings (Grassi and others 2002) and old

growth shoots of spruce (Tomaszewski and Siev-

ering 2007). Many studies have shown Vcmax and

Jmax had a positive correlation with N content for

broadleaved trees (Bauer, Berntson and Bazzaz

2001; Ripullone and others 2003; Calfapietra and

others 2005; Kattge and others 2009; Walker and

others 2014). Leaf N content was not affected by N

addition treatments in our research (Figure 3), and

consequently photosynthetic parameters (Vcmax

and Jmax) were also unaffected by N addition.

The Anet of the three dominant species was de-

creased by N addition during some periods in our

study, indicating that the ability of the broadleaved

deciduous forests to sequester carbon would be

weakened. According to the estimation method of

photosynthesis rate, Anet was determined by two

aspects including: (1) photosynthetic parameters

(for example Vcmax and Jmax) and (2) the stomatal

conductance (Gc) (Vico and others 2013). Our re-

sults showed that photosynthetic capacity indicated

by Vcmax and Jmax was not affected by N addition,

and, thus, N addition treatments inhibited Anet

primarily by decreasing Gc, which is highly corre-

Figure 2. Effects of canopy and understory nitrogen additions on daily average sap flux-based stomatal conductance (Gc)

of L. formosana (A), Q. acutissima (B) and Q. variabilis (C). CK, U25, U50, C25 and C50 represent control treatment,

understory addition of 25 kg N ha-1 y-1, understory addition of 50 kg N ha-1 y-1, canopy addition of 25 kg N ha-1 y-1

and canopy addition of 50 kg N ha-1 y-1, respectively. Different lowercase letters denote significant differences (a = 0.05)

in Gc among five treatments during a specific month using one-way ANOVA followed by a Duncan’s test.
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lated with the transpiration process, instead of

affecting photosynthetic capacity.

Previous research conducted at the same N

addition experimental site has confirmed that N

addition significantly reduced pH and increased

exchangeable Al3+ (Shi and others 2016). Thus, the

negative impacts of N addition on carbon assimi-

lation induced by the suppression on transpiration

and Gc may result from the soil acidification caused

by excess N addition (Bobbink and Hettelingh

2011; Phoenix and others 2012; Shi and others

2016; Carter and others 2017). Furthermore, soil

acidification caused by N addition would sequen-

tially lead to increased dissolution of aluminum,

which could damage fine root development and

consequently reduce water uptake (Schulze 1989;

Godbold and others 2003; Bobbink and Hettelingh

2011). Moreover, the decreased soil water potential

resulting from the pulsed N addition under low soil

moisture situations (Lohm and others 1977; Qin

and others 2014) might exert negative influences

on transpiration and carbon assimilation as well, as

it is generally recognized that transpiration is pos-

itively related to soil water potential (Jarvis and

Jarvis 1963; Novák and others 2005). The soil wa-

ter content at this research site was low during

some periods because the monthly precipitation

was as low as 28–34 mm for several months (Fig-

ure 1).

Apart from the altered soil chemical properties,

the effects of canopy N addition on canopy prop-

erties were also responsible for the negative im-

pacts on Gc. Canopy uptake of N compounds by the

foliage from wet deposition has been confirmed in

many studies (Harrison and others 2000; Ignatova

and Dambrine 2000; Sievering and others 2000;

Sievering and others 2007; Sparks 2009). Foliar

uptake of external N solution might lead to the less

negative leaf water potential (uL) initially as the

concentration of sprayed NH4NO3 solution was

low, and then leaf water potential usually would

adjust to approximately 0 MPa at night (Koch and

others 1994; Fisher and others 2006). However,

NO3
- or NH4

+ might exist in the apoplast or cellular

vacuoles for a period before eventual assimilation

(Britto and Kronzucker 2002; Sparks 2009). When

transpiring the same amount of water in the fol-

lowing few days, the leaves with accumulated

NO3
- or NH4

+ would exhibit a more negative uL

which had a higher potential to induce partial

stomatal closure and reduce stomatal conductance

(Cochard and others 2002; Brodribb and Holbrook

2003; Brodribb and others 2003). Hence, the re-

tained NO3
- or NH4

+ resulting from canopy uptake

of external N solution would result in an earlier

stomatal closure and reduce carbon assimilation

eventually.

Species-specific responses of Anet to N addition

have been observed in this research. Canopy N

addition only impacted the Anet of Q. acutissima,

while that of Q. variabilis and L. formosana was

unaffected. The differences in tree height of the

studied three tree species may be responsible for

the different response patterns. In our research, Q.

acutissima (21.2 m) was higher than Q. variabilis

(17.9 m) and L. formosana (17.4 m; P < 0.05). The

N deposition was first intercepted by Q. acutissima

due to its higher tree height, and consequently the

Anet of Q. acutissima was more influenced by canopy

N deposition. However, understory N addition

negatively affected both Q. acutissima and L. for-

mosana, while the effects of N addition on Q. vari-

abilis were minimal. The Anet responses to excess N

addition may be determined by root resistance to

acidification and Al3+ (Godbold and others 2003;

Lu and others 2010; Bobbink and Hettelingh 2011),

and which factor played the key role needs to be

further investigated.

WUE was analyzed based on the measured Et

and Anet in our research, instead of intrinsic WUE

from the stable C isotope composition measure-

ments which could not help elucidate whether the

WUE response was caused by assimilation, water

consumption or both. The N addition treatments

Figure 3. Effects of canopy and understory nitrogen

additions on leaf nitrogen content (N; g m-2) in 2018.

CK, U25, U50, C25 and C50 represent control treatment,

understory addition of 25 kg N ha-1 y-1, understory

addition of 50 kg N ha-1 y-1, canopy addition of 25 kg N

ha-1 y-1 and canopy addition of 50 kg N ha-1 y-1,

respectively. Different lowercase letters denote

significant differences (a = 0.05) in N content among

the five treatments.
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had no impacts on the WUE of Q. variabilis, while

WUE of L. formosana was increased in the U50

treatment in the second year. Although there was

no significant difference in WUE of Q. acutissima

between CK and C50 treatments using one-way

ANOVA followed by a Duncan’s test, WUE with

C50 treatment was significantly higher than that

with CK treatment in the first year using the

independent sample t test (P < 0.05). Several

previous studies also showed that plants with

higher N supply presented a higher WUE (Ripul-

lone and others 2004; Dordas and Sioulas 2008;

Vadeboncoeur and others 2016), which is in

accordance with our results. The Vcmax and Jmax

Figure 4. Effects of canopy and understory nitrogen addition on carboxylation capacity (Vcmax), light saturated rate of

electron transport (Jmax) and leaf-level carbon assimilation (AnL) of L. formosana (A), Q. acutissima (B) and Q. variabilis (C)

in 2018. CK, U25, U50, C25 and C50 represent control treatment, understory addition of 25 kg N ha-1 y-1, understory

addition of 50 kg N ha-1 y-1, canopy addition of 25 kg N ha-1 y-1 and canopy addition of 50 kg N ha-1 y-1, respectively.

Different lowercase letters denote significant differences (a = 0.05) in Vcmax, Jmax or AnL among five treatments. The leaf-

level AnL was measured under PPFD of 1200 lmol m-2 s-1 and CO2 concentration of 400 ppm.
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were not affected by N addition treatments in our

research, indicating the photosynthetic capacity

was unaffected. However, U50 treatment decreased

Gc of L. formosana in the second year based on the

sap flow measurements, and C50 treatment re-

duced Gc of Q. variabilis during the first year (Fig-

ure 2). It is generally accepted that lower Gc would

give rise to an increased WUE for a given photo-

synthetic capacity (Martin and others 2010; Flexas

and others 2016; Franks and Britton-Harper 2016).

Consequently, the reduced Gc caused by U50 or

C50 treatment resulted in an increase in WUE,

while the photosynthetic capacity was unaffected.

The negative effects of N addition on Anet mainly

occurred in May, Sep., Oct. and Nov. during which

the monthly rainfall was lower than 100 mm

(Figure 5), and N addition seldom exerted negative

influences under the condition of adequate rainfall.

The potential reasons for the minimal effects were:

(i) the rainfall could wash away the external N

retained on the canopy, reducing the negative ef-

fects on leaves; (ii) greater precipitation contributes

to higher soil moisture levels, which in turn allows

for greater stomatal conductance and may thereby

weaken the effects of external N addition on pho-

tosynthesis (Sievering and others 2007); (iii) the

higher soil moisture induced by larger rainfall

could decrease the H+ concentration and thereby

alleviate soil acidification.

Canopy and understory N additions affected this

forest ecosystem through different patterns:

understory N addition treatment had intense im-

pacts on soil chemical properties (Lu and others

2014; Shi and others 2016; Carter and others

2017), while canopy addition exerted influences on

leaf physiological properties directly as well as soil

Figure 5. Effects of canopy and understory nitrogen additions on daily average carbon assimilation (Anet) of L. formosana

(A), Q. acutissima (B) and Q. variabilis (C). CK, U25, U50, C25 and C50 represent control treatment, understory addition of

25 kg N ha-1 y-1, understory addition of 50 kg N ha-1 y-1, canopy addition of 25 kg N ha-1 y-1 and canopy addition of

50 kg N ha-1 y-1, respectively. Different lowercase letters denote significant differences (a = 0.05) in Anet among the five

treatments during a specific month.
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chemical properties, but with a lesser amount

affecting the soil due to canopy interception (Har-

rison and others 2000; Zhang and others 2015).

Due to the different influencing patterns, the ca-

nopy and understory N addition consequently

generated different impacts on Gc and Anet. Canopy

N addition treatment exerted negative effects on Gc

in the first experimental year for Q. acutissima,

whereas understory addition treatment had no

influences. The case in the second experimental

year was different, that is, the understory N addi-

tion reduced Gc and Anet of L. formosana and Q.

acutissima. The negative effects of understory N

addition occurred during the second year may be

explained by the cumulative effects of prolonged N

addition, for example, more severe acidification

(Phoenix and others 2012; Mao and others 2017;

Zeng and others 2017), which can be indicated by

the lower daily average Anet in 2015 compared to

that in 2014 under N addition treatments (Fig-

ure S3). Thus, the traditional understory addition

approach could not fully reflect the effects of in-

creased N deposition on the canopy-associated

photosynthetic process, which was indicated by the

different responses of Gc and Anet to canopy and

understory N addition.

Uncertainty Analysis

The leaf physiological parameters (Vcmax, Jmax and

Rd) in 2014–2015 were obtained from the mea-

sured N content in 2014–2015 along with the

established relationship between N content and leaf

physiological parameters from data collected during

Figure 6. Responses of tree water use efficiency (WUE) to different nitrogen addition treatments for three studied tree

species in 2014 and 2015. CK, U25, U50, C25 and C50 represent control treatment, understory addition of 25 kg N ha-1 y-

1, understory addition of 50 kg N ha-1 y-1, canopy addition of 25 kg N ha-1 y-1 and canopy addition of 50 kg N ha-1 y-1,

respectively. Different lowercase letters denote significant differences (a = 0.05) in the WUE among five treatments

examined with one-way ANOVA followed by a Duncan’s test.
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2018 in our research. To analyze the estimation

errors, the influences of the Vcmax and Gc variation

on Anet were investigated. Our results showed that

10% underestimation of Vcmax would lead to a

1.8 ± 0.2% underestimation of Anet, while 10%

Vcmax overestimation may cause a 1.4 ± 0.2% Anet

overestimation. However, the influences of Gc

variation on Anet were larger than those of Vcmax

variation, that is, 10% underestimation and over-

estimation of Gc may lead to 5.1 ± 0.7% and

4.6 ± 0.7% Anet variation, respectively. Overall, Gc

plays a more important role in governing the Anet

variation, and the influences of Vcmax on Anet were

minimal.

Leaf area, which plays an important role gov-

erning Gc and Anet, may also be influenced by N

addition (Ewers and others 2001; Hubbard and

others 2004; Samuelson and others 2008; Bartko-

wiak and others 2015; Maggard and others 2016).

In this research, LAI was not affected by N addition,

which was in accordance with the research on the

effects of fertilization on Pinus taeda (Ward and

others 2015). Although there were no significant

differences in total leaf area among different N

addition treatments, there may exist species-speci-

fic leaf area response to N addition, for example, N

addition increased the leaf area of one tree species,

while it decreased that of another tree species. If

the leaf area was altered by N addition, the re-

sponses of Anet to N addition would be different to

what was observed in this research. Only the har-

vest method can obtain the leaf area accurately,

and suitable non-destructive method of species

specific leaf area estimation was not found due to

the overlap of leaves from surrounding trees. Thus,

a developed non-destructive method of tree leaf

area estimation in the future research would help

better elucidate the responses of leaf area and Anet

to N addition for individual tree.

Responses of carbon assimilation to increased N

deposition depend upon the experimental year due

to the cumulative effects of prolonged N addition.

Our results showed that the daily average Anet in

2015 was lower than that in 2014 under N addition

treatments (Figure S3), indicating the more intense

negative effects on tree-level Anet resulting from

the prolonged N addition. Additionally, there were

no significant differences in N content between

2014–2015 and 2018 for the three studied tree

species (P > 0.05), suggesting the potential pho-

tosynthetic activity to N addition were both unaf-

fected with either 1–2 years or 5 years of N

addition. As the stomatal conductance was merely

measured during 2014–2015, only the short-term

effects of N addition on tree-level Anet were ana-

lyzed in this research, and whether the long-term

effects of N addition on tree-level Anet would be

different needs further investigation.

There were only two L. formosana individuals

measured with sap flow density under the U50

treatment in this study, which might make a weak

statistical analysis. More sap flow measurements

and carbon assimilation estimation of L. formosana

under U50 treatment would provide stronger evi-

dence to support the conclusion that U50 treatment

reduced Anet and Gc of L. formosana in 2015. How-

ever, the observed significant differences in Anet

and Gc of L. formosana between CK and U50 treat-

ment (P < 0.05) in 2015 could still prove that U50

treatment reduced the Anet and Gc of the studied

two L. formosana individuals in this study.

CONCLUSION

Higher concentrations of N addition exerted nega-

tive impacts on Gc and Anet of L. formosana and Q.

acutissima during periods of lower precipitation in

the broadleaved deciduous forest located at the

climate transition zone from the warm temperate

to subtropical zone, and increased WUE of L. for-

mosana during the growing season. Lower concen-

trations of N addition had no impacts on dominant

tree species. Canopy and understory N additions

affected carbon assimilation through different

ways, and consequently generated distinct impacts

on vegetation. The traditional understory addition

approach could not fully reflect the effects of in-

creased N deposition on the canopy-associated

assimilation processes.
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