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ABSTRACT

Lakes process a disproportionately large fraction of

carbon relative to their size and spatial extent,

representing an important component of the global

carbon cycle. Alterations of ecosystem function via

eutrophication change the balance of greenhouse

gas flux in these systems. Without eutrophication,

lakes are net sources of CO2 to the atmosphere, but

in eutrophic lakes this function may be amplified or

reversed due to cycling of abundant autochthonous

carbon. Using a combination of high-frequency and

discrete sensor measurements, we calculated con-

tinuous CO2 flux during the ice-free season in 15

eutrophic lakes. We found net CO2 influx over our

sampling period in 5 lakes (- 47 to - 1865

mmol m-2) and net efflux in 10 lakes (328 to

11,755 mmol m-2). Across sites, predictive models

indicated that the highest efflux rates were driven

by nitrogen enrichment, and influx was best pre-

dicted by chlorophyll a concentration. Regardless of

whether CO2 flux was positive or negative,

stable isotope analyses indicated that the dissolved

inorganic carbon pool was not derived from het-

erotrophic degradation of terrestrial organic car-

bon, but from degradation of autochthonous

organic carbon, mineral dissolution, and atmo-

spheric uptake. Optical characterization of dis-

solved organic matter revealed an autochthonous

organic matter pool. CO2 influx was correlated

with autochthony, while efflux was correlated with

total nitrogen and watershed wetland cover. Our

findings suggest that CO2 uptake by primary pro-

ducers during blooms can contribute to continuous

CO2 influx for days to months. Conversely, eu-

trophic lakes in our study that were net sources of

CO2 to the atmosphere showed among the highest

rates reported in the literature. These findings

suggest that anthropogenic eutrophication has

substantially altered biogeochemical processing of

carbon on Earth.
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HIGHLIGHTS

� Five of 15 eutrophic lakes in this study were net

CO2 sinks, and influx was driven by indicators of
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autochthony, including chlorophyll a concentra-

tion and autochthonous dissolved organic mat-

ter.

� Nitrogen concentration and percent watershed

wetland cover best predicted CO2 efflux.

� Lakes that were net CO2 sources reported here

have substantially higher efflux rates than olig-

otrophic or mesotrophic lakes previously re-

ported in the literature.

INTRODUCTION

Anthropogenic eutrophication is changing the role

of lakes in the global carbon cycle. Intensification

of industrial agriculture has resulted in massive

increases in fertilizer use and the extent of irrigated

cropland (Foley and others 2005). Extensive culti-

vation alters watershed horizontal permeability,

and thus the rate, timing, concentration, and

quality of inorganic nutrients and dissolved organic

matter (DOM) exported to downstream aquatic

ecosystems (Foley and others 2005; Petrone and

others 2011; Williams and others 2015). Collec-

tively, these processes contribute to degradation of

water quality, hypoxia, and harmful cyanobacteria

blooms (Heisler and others 2008; Brooks and others

2016). In the absence of eutrophication, inputs of

terrestrial DOM to lakes fuel heterotrophic respi-

ration in excess of primary production (Pace and

Prairie 2005; Duarte and Prairie 2005). Coupled

with watershed inputs of inorganic carbon, this

often results in positive net CO2 efflux from surface

waters (Marcé and others 2015; Weyhenmeyer and

others 2015; Wilkinson and others 2016). Because

a disproportionate amount of lake carbon research

has been conducted in northern temperate forested

lakes (Sobek and others 2005; Balmer and Down-

ing 2011) relative to eutrophic, agriculturally im-

pacted systems, the generalization is sometimes

made that lakes function as sources of CO2 to the

atmosphere, that these rates are moderate (that is,

< 50 mmol m-1 d-1), and that daytime influx is

balanced or exceeded by diel respiratory flux

(Kosten and others 2010; López and others 2011).

This may not be true, however, of anthropogeni-

cally impacted aquatic ecosystems.

Anthropogenically eutrophic freshwater ecosys-

tems differ from less impacted lakes in watershed

cultivation and development (Heathcote and

Downing 2011), nutrient concentrations, primary

productivity (Heisler and others 2008; Pacheco and

others 2014), and DOM quality (Williams and

others 2015). These differences substantially alter

how lakes process, store, and export carbon

(Heathcote and Downing 2011; Pacheco and others

2014; Nõges and others 2016; Wilkinson and others

2016). Lakes with agricultural and urban catch-

ments have higher microbial processing rates of

organic matter than those with forested water-

sheds, and a greater contribution of microbial-de-

rived, protein-like compounds (Williams and

others 2010, 2015; Petrone and others 2011) which

tend to persist longer than DOM derived from

higher plants (Kellerman and others 2015). Cou-

pled with elevated nutrient concentrations, this can

correspond with inorganic C uptake by primary

producers exceeding that produced via hetero-

trophic respiration resulting in sustained depletion

of water column CO2 (Morales-Williams and others

2017). In the absence of large inputs of humic,

terrestrial DOM of higher plant origin, it is unclear

whether exogenous CO2 inputs and mineral dis-

solution can support net CO2 efflux from surface

waters when primary production is very high, as is

expected in eutrophic and hypereutrophic lake

ecosystems.

Dissolved inorganic carbon (DIC) in lake surface

waters is primarily derived from mineral dissolu-

tion and the bicarbonate buffering system, but is

further mediated by a diversity of sources including

equilibration with the atmosphere, heterotrophic

respiration, and watershed inputs (Bade and others

2004). The balance between CO2 produced via

these mechanisms and that fixed by primary pro-

duction affects the potential flux of CO2 between

the lake surface and the atmosphere, though net

flux is ultimately controlled by turbulence at the

air–water interface (Kling and others 1992; Del

Giorgio and others 2009) and physical mixing

events (that is, gas release at fall turnover). Thus,

although high rates of primary production fix large

quantities of inorganic carbon during bloom

events, the combined effects of processes that

facilitate net efflux (heterotrophy, mineral disso-

lution, physical mixing) may prevent eutrophic

and hypereutrophic lakes from acting as net CO2

sinks. Alternately, if inorganic carbon contributions

from watershed sources and heterotrophy are small

relative to autochthonous carbon from primary

production, eutrophic lakes would be expected to

maintain continuous negative flux (CO2 flux into

the lake) during periods of stable stratification.

The purpose of this study was to investigate the

variability in magnitude and duration of CO2 flux

in eutrophic and hypereutrophic lake ecosystems

and to assess the relative influence of biological and

physical parameters on CO2 flux direction and rate.

We assessed the source of inorganic carbon pools

and quality of dissolved organic matter across 15
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eutrophic lakes using stable isotopic and optical

methods. Using high-frequency pH and tempera-

ture measurements, we calculated continuous CO2

flux over one ice-free season in these systems and

partitioned variability in flux attributable to

endogenous (that is, primary production and au-

tochthonous organic matter) or exogenous (wa-

tershed inputs) sources. We hypothesized that

periods of net CO2 influx would be correlated with

variables associated with endogenous biological

mechanisms and that net efflux would correlate

with physical mixing and DIC sourced from min-

eral dissolution rather than the degradation of

terrestrial organic matter.

MATERIALS AND METHODS

Site Selection and Sampling Design

Fifteen eutrophic lakes were chosen along an

orthogonal gradient of watershed cultivation and

interannual variability in Cyanobacteria domi-

nance (Table 1, S1). These sites were selected based

on long-term survey data from 132 lakes monitored

by the Iowa State Limnology Laboratory between

2000 and 2010 (Ambient Lake Monitoring Pro-

gram: https://programs.iowadnr.gov/aquia/Progra

ms/Lakes). All lakes in this study are relatively

shallow (< 7 m max depth), and 13 of 15 are man-

made. They are all algal-dominated systems and do

not have productive macrophyte communities.

Eight lakes are classified as dimictic (Arrowhead,

Badger, Beeds, East Osceola, George Wyth, Keo-

mah, Silver-Dickinson, and Springbrook); seven

are polymictic (Blackhawk, Center, Five Island,

Orient, Lower Gar, Silver-Palo Alto, and Rock

Creek), though Silver-Dickinson did not stratify

during our sampling season (Figure 1). Lakes were

sampled for standard biological, chemical, and

physical parameters during the ice-free season of

2012 once at ice-out, twice per week in May and

June, once per week in July and August, and once

per month until the onset of ice cover. Samples for

DOM characterization and stable isotope analysis of

dissolved inorganic carbon (d13CDIC) were collected

once in April, at every second sampling event in

May, June, July, and August, and at every sam-

pling event in September and November.

Water Quality Measurement
and Analysis

Lakes were sampled at the historic deep point

(Table S1), which is the deepest point in each lake

based on historical bathymetry. These sites have

been sampled regularly by state monitoring pro-

grams for more than 15 years, so have been used

here for consistency. If a thermocline was present

(based on visual inspection of plotted thermal

profile data at the time of sampling, YSI multipa-

rameter sonde), integrated upper mixed zone water

column samples were collected above the thermo-

cline to a maximum 2 m depth using a vertical

column sampler. If no thermocline was present,

2 m integrated column samples were collected

unless the lake was less than 2 m deep, in which

case samples were collected 0.5 m above maximum

depth so as not to disturb the sediment. Samples

were stored in coolers on ice until delivery to the

laboratory within 24 h of collection, then kept at

4�C and processed to a stable state or analyzed fully

within 36 h of collection. Total phosphorus (TP),

dissolved organic carbon (DOC), and alkalinity (as

mg l-1 CaCO3) were analyzed using standard APHA

methods (2012). Chlorophyll a samples were fil-

tered onto GF/C filters, frozen, then sonicated and

extracted in cold acetone under red light, and

analyzed fluorometrically (Arar and Collins 1997;

Jeffrey and others 1997). Total nitrogen (TN) and

nitrate (NO3
2-) were analyzed using the second

derivative method (Crumpton and others 1989).

TN was analyzed as NO3
2- after autoclave digestion

with sodium hydroxide and persulfate. Vertical

profiles of dissolved oxygen (DO), specific con-

ductivity, temperature, and pH were measured

with a YSI multiparameter sonde.

High-frequency pH and temperature sensors

were deployed between 1.5 and 2 m depth at the

deep point of each lake (TempHion pH/ISE/redox

sensor probes; accuracy ± 0.2�C; 0.2 pH units;

0.1% mV). Measurements of pH and temperature

were recorded every 15 min during the ice-free

season (early April through late November 2012) in

order to calculate continuous CO2 flux. For model

calibration, discrete measurements of CO2 were

made at each sampling event using a Vaisala

GMT220 atmospheric probe modified for aquatic

measurements (Johnson and others 2009). Using

methods described and field-tested in Johnson and

others (2009), we fitted the atmospheric sensor

with a custom-made gas-permeable membrane

sealed at the sensor base with plasti-dip. Continu-

ous sensors were calibrated monthly and cleaned

weekly at each sampling event to remove any

biofouling. Minimal biofouling did not affect sensor

precision or rate of drift. The calibration reset sen-

sor drift and its linearity in response to pH change.

Continuous sensor reported pH values were com-

parable and reliable within each lake and precise

with measurements made 15 min apart. After cal-
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Figure 1. Time series of average daily CO2 flux (mmol C m-2 d-1) calculated for lakes in this study and corresponding

thermal heatmap visualizing seasonal stratification patterns. Color legend units are �C. Black lines on flux plots are

modeled flux; gray lines are 95% confidence intervals.
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Figure 1. continued
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ibration, continuous sensor reported pH often dif-

fered from that measured discretely with the YSI

sonde. Here, we consider the YSI pH estimate the

true value and continuous sensor reported pH

values were linearly adjusted to better match YSI

measurements (see data correction below and

Plates S1–S15).

High-Frequency Data Correction and CO2

Modeling

Continuous, high frequency pH and temperature

measurements were averaged by the hour for the

full measurement period (Plates S1–S15). Hourly

averaged temperature values were used in the

pCO2 calculation without further manipulation.

Hourly averaged pH values were corrected for sys-

tematic error and drift by adjusting the pH values

based on their deviation from the discrete pH

measurements. The difference between hourly

average and measured pH at each discrete sampling

event was then linearly interpolated at an hourly

interval between sampling events. The hourly

interpolated pH difference was added to the hourly

averaged, high-frequency pH measurement. Next,

for each lake, 90% confidence intervals were cal-

culated for the adjusted pH values and pH values

that fell outside the 90% confidence interval were

removed. Finally, adjust pH values within the 90%

confidence interval for each lake were visually

checked by plotting the time series and adjusted pH

values were manually removed if they deviated

more than 1 pH unit from discrete value or they

were noisy (rapid hour by hour bidirectional pH

change). The final hourly averaged, adjusted pH

values were used to calculate pCO2. The impact of

these adjustments is displayed in the supplemental

Figure 1. continued
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information (Plates S1–S15). All pH cleaning and

adjustment steps took place in R using base pack-

ages (R Core Team 2015).

Continuous aqueous pCO2 was calculated based

on carbonate equilibria using corrected hourly,

adjusted pH and temperature data (Plates S1–S15),

and linearly interpolated discrete measurements of

alkalinity and conductivity (Stumm and Morgan

1996). Calculated pCO2 generally overestimate

measured pCO2 in Iowa lakes (Plates S1–S15),

which was also found in Wisconsin lakes (Golub

and others 2017). To correct for this overestima-

tion, calculated pCO2 was modeled with measured

pCO2 for each lake and this linear fit was used to

predict pCO2 concentration. For each model, the

slope, intercept, coefficient of variation, root-

mean-squared error (RSME), and relative squared

error (RSE) of the mean and median predicted

value were calculated (Table S2). RSE of the med-

ian varied widely across lakes, ranging from 7% for

Silver Lake (Dickinson) to 80% for Springbrook

Lake. For all but three lakes, R2 was greater than

0.60 and RSE of the median was less than 38%.

RSME ranged from 76 ppm for Center Lake to

267 ppm for Badger Lake. Random error in the

influence of high pH values on pCO2 was not

quantified in this study, but the RSE of each pre-

dicted model tended to be higher than the com-

bined systematic and random error of 7.7%

reported in Golub and others (2017). This suggests

that random measurement error was likely not the

main driver of error between measured and cal-

culated pCO2. Given the uncertainty around cal-

culated pCO2 concentrations, linear model

predicted pCO2 concentrations were considered the

best approximation of direct pCO2 measurement

(Plates S1–S15) and predicted pCO2 was used in

this study to estimate flux.

Hourly flux was calculated as described in Bal-

mer and Downing (2011) and Wilkinson and oth-

ers (2016) using the equation

FCO2ðtÞ ¼ CO2ðtÞ � CO2ðeqÞ
� �

� kH
� �

� kCO2ðtÞ ; ð1Þ

where CO2(t) is the concentration of CO2 in surface

water at time t, CO2eq is the average atmospheric

equilibrium concentration at the time of sampling

in 2012 (393 ppm, NOAA Earth System Research

Laboratory, http://www.esrl.noaa.gov/), kH is the

Henry’s law constant for CO2 at time t, and kCO2(t) is

the piston velocity. kH was calculated using the

equation

e
�58:0931þ90:5069� 100

Temph2oðtÞ
þ22:294�log

Temph2oðtÞ
100

� �
;

where Temph20 is water temperature (�K) at time t.

kCO2(t) was calculated using the equation

kCO2ðtÞ ¼
2:07þ0:215�windðtÞ1:7

100

�
1911�118:11�Temph2oðtÞþ3:452�Temp2h2oðtÞ�0:04132�Temp3h2oðtÞ

600

 !�0:5

;

where wind(t) is the wind speed (m s-1) measured

at a height of 10 m at a frequency of 1 to 10 min

and average at an hourly time interval (t) (Wan-

ninkhof 1992; Cole and Caraco 1998; Wilkinson

and others 2016). Wind data were downloaded

from the MESONET network (http://mesonet.agro

n.iastate.edu/request/download.phtml?network=A

WOS) for the nearest Iowa Automated Weather

Observation System (IA-AWOS) to each lake. Be-

cause an atmospheric average was used (393 ppm,

NOAA Earth System Research Laboratory, http://

www.esrl.noaa.gov/), rather than direct, on-site

measurements of atmospheric CO2, additional

uncertainty exists for flux values close to atmo-

spheric equilibrium.

Stable Isotope Analysis

To characterize the source of the inorganic carbon

pool, d13CDIC samples were filtered in the field to

0.2 lm and injected into helium gas-flushed septa-

capped vials pre-charged with H3PO4 to cease bio-

logical activity and to sparge CO2 (Raymond and

Bauer 2001; Beirne and others 2012). Samples

were measured via a Finnigan MAT Delta Plus XL

mass spectrometer in continuous flow mode con-

nected to a Gas Bench with a CombiPAL

autosampler. Reference standards (NBS-19, NBS-

18, and LSVEC) were used for isotopic corrections,

and to assign the data to the appropriate isotopic

scale. Average analytical uncertainty (analytical

uncertainty and average correction factor) was

± 0.06&. Samples were analyzed by standard iso-

tope ratio mass spectrometry methods (IRMS), and

reported relative to the Vienna Pee Dee Belemnite

in & (Equation 2).

d13CSample ¼ 13C=12C
� �

sample
= 13C=12C
� �

VPDB
�1

h i

� 1000:

ð2Þ

DOM Characterization

To assess the source and quality of DOM and con-

centration of DOC, water samples were syringe

filtered in the field using 0.2-lm pore size poly-

carbonate membrane filters (Millipore) paired with
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combusted GF/F pre-filters. A small volume of

sample was passed through filters to rinse prior to

collecting samples. Samples were then collected in

acid-washed and combusted amber glass bottles

and stored on ice until returning to the laboratory,

then stored at 4�C until analysis. Samples were

optically characterized by generating absorbance

spectra and excitation–emission matrices (EEMs,

Horiba Aqualog UV–Vis benchtop fluorometer/

spectrophotometer). Absorbance scans (240 to

600 nm, 3 nm interval) and fluorescence EEMs

(excitation: 240 to 600 nm, 3 nm interval; emission

213.7 to 620.5 nm, 3.28 nm interval) were run

simultaneously at a fixed 5 nm bandpass. A Milli-Q

water blank was run daily. Sample EEMs were

corrected for inner filter effects and instrument bias

and then blank subtracted (Cory and others 2010;

Williams and others 2010; Murphy and others

2010). EEMs were standardized to Raman Units

using the area under the Raman peak from the

daily Milli-Q blank scan.

Optical indices were calculated to evaluate DOM

source (fluorescence index, FI), level of degrada-

tion (b/a ratio), and humification (humification

index, HIX). FI, modified from McKnight and oth-

ers (2001), was calculated as the ratio of emission at

470 nm to emission at 520 nm at an excitation of

370 nm and is an indicator of DOM source material

(terrestrial or microbial). The b/a ratio, an indicator

of DOM degradation, was calculated using the

excitation wavelength at 310 nm as the emission

intensity at 380 nm divided by the emission

intensity maximum between 420 and 435 nm

(Parlanti and others 2000; Wilson and Xenopoulos

2008). HIX was calculated as the ratio of peak area

under emissions 434–480 nm and 300–346 nm at

255 nm excitation (Zsolnay and others 1999), with

corrections described in Ohno (2002).

Statistical Analysis

We used regression tree and random forest analysis

to identify environmental predictor variables for

CO2 flux. This approach was chosen because it is

robust to outliers, does not assume data indepen-

dence or normality, and handles missing data well.

First, we generated a regression tree model using

the rpart package (Therneau and others 2017) to

predict the magnitude of instantaneous influx or

efflux from discrete variables, including chl a,

d13CDIC, FI, b/a, HIX, surface water temperature,

wind gust speed, average wind speed, precipitation

(daily average), sampling site depth, epilimnetic

DO, TP, TN, DOC, thermocline depth, and Schmidt

stability from all lakes. Thermocline depth and

Schmidt stability were calculated using rLakeA-

nalyzer (Winslow and others 2017). The time

step of CO2 flux used in this analysis was mat-

ched to that of discrete predictor variables. We

used default settings and pruned the tree by

setting the maximum tree depth to 4. Second,

we generated a random forest model using the R

randomForest package (Liaw and Wiener 2002).

Using this approach, we generated ensembles of

regression trees based on 500 randomized boot-

strap samples of training data, where the num-

ber of variables tried at each node split was

informed by RMSE.

To identify predictors of net CO2 flux (sum of

calculated continuous flux over ice-free sampling

season, n = 15), we first built a classification tree

model using static predictor variables, including

maximum depth (Zmax), watershed-to-lake area

ratio (WA/LA), and four land use categories (per-

cent wetland, percent water, percent pasture, and

percent row-crop agriculture). We limited land use

to these four categories to avoid overfitting the

model and used a minimum of three observations

in a node for a split to be attempted, with a

requirement that each split decrease overall lack of

fit by a factor of 0.0001. Second, we generated a

classification random forest model using the same

variables and 500 randomized bootstrap samples of

training data limited to two variables tried at each

split. Terminal nodes were averaged across all trees

to generate the relative importance of each pre-

dictor variable.

RESULTS

Water Chemistry and Meteorology

Water quality data are summarized in Table 1 and

Supplementary Table 1. Across the study period,

TN ranged from 0.2 mg l-1 in Lake Orient in July,

to 17.1 mg l-1 in Badger Lake in May. With the

exception of Arrowhead, Badger, and Springbrook

Lakes (7 to 33 lg TP l-1, 7 to 88 lg l-1, and 10 to

89 lg l-1, respectively), all sampling sites had eu-

trophic or hypereutrophic TP concentrations across

sampling events (TP > 25 lg l-1), ranging from

27 lg l-1 in Beeds Lake to 885 lg l-1 in Lake Ori-

ent. The highest DOC concentrations were mea-

sured in October in Blackhawk Lake (14.6 mg l-1),

and the lowest in April in East Lake Osceola

(2.7 mg l-1). 2012 was a severe drought year in the

Midwestern USA, so average rainfall across sites

was minimal (4.82 ± 2.15 mm). Average lake

depth was 4.0 ± 1.55 m, and thermocline depth

was 0.85 ± 1.26 m (Table S1).
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CO2 Flux

The magnitude of net CO2 flux for the ice-free

season was negative for 5 lakes and positive for 10

lakes (Table S4). The largest net efflux for the ice-

free season was observed in Badger Lake

(11,755 mmol m-2), and the largest net influx in

Lake Orient (- 1865 mmol m-2). Average daily

flux across sites and sampling events ranged from

- 45.4 to 757.3 mmol m-2 d-1 (Figure 1). Across

lakes, the largest efflux events were observed dur-

ing spring or fall mixing (Figure 1), while mini-

mum values of both influx and efflux were

observed during periods of stratification (Figure 1).

The longest period of calculated continuous influx

(negative flux, day and night) was 73 days in Lake

Orient, while the longest period of calculated net

efflux (positive flux, day and night) was 96 days in

Lake Arrowhead out of 193 days of continuous

sampling (Figure 1).

Organic and Inorganic Carbon Sources

Across seasons and sites, the DOM pool was dom-

inated by autochthonous, degraded organic matter,

not of higher plant origin (Table S3; Figure 2; b/a:
0.77 ± 0.05; FI: 1.6 ± 0.06; HIXOhno: 0.82 ± 0.06).

b/a, an indicator of the level of degradation of the

DOM pool, ranged from 0.65 (degraded) in

Springbrook Lake in April to 0.91 (newly pro-

duced) in Arrowhead Lake in July. FI values ran-

ged from 1.5 to 1.8 and did not show substantial

variation across sites or seasons. Values approach-

ing 1.8 indicate microbial and algal leachate; lower

values approaching 1.2 indicate terrestrial organic

matter of higher plant origin or soil organic matter.

HIX, indicative of DOM humic content, was be-

tween 0.54 (not humic) and 0.92 (humic), with the

lowest values in Blackhawk Lake in August, and

highest in Five Island Lake in July. Mean d13C
signatures of the ambient DIC pool were

- 1.16 ± 3.40&, with a range of - 12.57 to 5.78&

(Figure 3). The highest d13CDIC values were mea-

sured in Center Lake in September, and the lowest

in Lake Orient in July.

Predictors of Discrete CO2 Flux

Discrete CO2 flux was best predicted by chl a and

TN concentration. Regression tree models revealed

that discrete CO2 influx across eutrophic lakes in

this study was best predicted by chl a concentration

greater than or equal to 24 lg l-1, while efflux was

predicted by TN greater than 12 mg l-1 and chl a

less than 24 lg l-1 (Figure 4). At high concentra-

tions of chl a, instantaneous wind speed equal to or

exceeding 13 m s-1 predicted with the highest rate

of influx, followed by HIX < 0.82. When chl a

concentration was less than 24 lg l-1, efflux was

predicted by DO less than 9.3 mg l-1 and b/a less

than 0.76 (Figure 4). The random forest model

explained 31.25% of variation in the discrete da-

taset and indicated that the most important pre-

dictor of CO2 flux is chl a, followed by TN and HIX

(Table 2).

Predictors of Net CO2 Flux

Using static predictors, we found that net CO2 in-

flux during the ice-free season was best predicted

by lack of watershed wetland cover (< 0.5%) by

both classification tree and random forest models

(Figure 5, Table 3). When percent wetland ex-

ceeded 0.5, the classification tree model predicted

that lakes are rendered CO2 sinks only if their WA/

LA is less than 14, and Zmax is less than 5.3. When

percent wetland cover exceeds 0.5, lakes are pre-

dicted to be CO2 sources if WA/LA is greater than

14, or if WA/LA is less than 14 but Zmax is greater

than 5.3. The random forest classification model

ranked the relative importance of each static pre-

dictor as follows: % wetland, % pasture, % water,

Zmax, WA/LA, and agriculture (Table 3).

Figure 2. Distribution of DOM quality indices measured

in this study. A Fluorescence index (FI). Indicator of

DOM source material. B b/a ratio. Index of DOM

degradation C Humification index (HIX).
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DISCUSSION

Our results indicate that anthropogenically eu-

trophic and hypereutrophic lakes exhibit extreme

rates of CO2 flux associated with autochthony and

land use. Five of the 15 lakes in this study main-

tained CO2 influx, day and night, for days to

months at a time (Figure 1, Supplemental plates

S1–S15). In these lakes, atmospheric influx was

predicted by indicators of autochthonous primary

production (chlorophyll a, dissolved oxygen, newly

produced dissolved organic matter) and small

watershed-to-lake area ratios (Figures 4, 5). Lakes

that were net CO2 emitters over the sampling

period had rates at the high end of literature re-

ported values and were best predicted by nitrogen

enrichment and wetland cover. This reflects spring

post-drought release of nitrogen from agricultural

soils in lakes with large watershed-to-lake area

ratios (Howarth and others 2012; Al-Kaisi and

others 2013; Loecke and others 2017). Previously

reported net flux rates for oligotrophic and meso-

trophic lakes have ranged from 0.58 to

Figure 3. Distribution of isotopic composition of

dissolved organic carbon (d13DIC) across lakes and

sampling events. Values between - 25 and - 30&

indicate heterotrophic degradation of terrestrial organic

matter. - 15 to - 10& reflect degradation of bloom

organic matter when primary producers are taking up

mineral bicarbonate (� - 10&) rather than CO2.

- 8.5& indicates atmospheric CO2. Few observations of

d13DIC of atmospheric origin are likely attributable to

rapid fractionation by surface blooms at the air–water

interface (for example, Morales-Williams and others

2017). Values between - 10 and 0& and higher reflect

mineral dissolution and methanogenic fermentation.

Figure 4. Regression tree model visualizing predictors of

discrete CO2 flux. Terminal node values represent

instantaneous flux rates where influx appears on the

left, and efflux on the right. TN indicates total nitrogen

(mg l-1), chl.a indicates chlorophyll a (lg l-1), DO

indicates epilimnetic or surface (integrated 2 m)

dissolved oxygen (mg l-1), HIX indicates the

humification index, and BA indicates the beta/alpha

index.

Table 2. Relative Importance of Predictor
Variables of Discrete CO2 Flux in Random Forest
Regression Model

Predictor Importance (IncNodePurity)

Chl a 6311

TN 5800

HIX 4101

DO 3354

Precipitation 3243

d13CDIC 2672

BA 2448

TP 2363

Wind gust speed 2281

DOC 2204

Wind speed 2166

Schmidt stability 1487

Epilimnion temperature 1438

Site depth 1032

FI 990

Thermocline depth 576

Importance is estimated by IncNodePurity which indicates the total decrease in
node impurities from splitting on the variable averaged over all attempted trees
and measured by residual sum of squares.
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4.08 mol m-2 sampling period-1 (Figure 6;

Table S4; Stets and others 2009; Jones and others

2016) compared to net efflux rates in eutrophic

lakes reported here ranging from 0.33 to

11.76 mol m-2 sampling period-1 (Figure 6;

Table S4). Because stable isotope analyses did not

show evidence of degradation of terrestrial organic

matter, these large flux events may be a result of

nitrate and nitrite photodegradation (Brezonik and

Fulkerson-Brekken 1998; Schwarzenbach and

others 2003) primed by accumulated auto-

chthonous organic matter in eutrophic and

hypereutrophic lakes. Nitrate and nitrite are

important intermediates in the photochemistry of

freshwater lakes, generating hydroxyl radicals

(*OH) that are rapidly scavenged by all types of

DOM (allochthonous and autochthonous) at

approximately equal rates (Brezonik and Fulker-

son-Brekken 1998). This suggests that eutrophica-

tion processes resulting from both nitrogen and

phosphorus loading can fundamentally alter gas

flux and the contribution of inland waters to the

global carbon budget, but that eutrophic lakes vary

substantially in response due to regional variability

in land use and land cover characteristics (Balmer

and Downing 2011; Jones and others 2016;

Ouyang and others 2017).

Across sites and seasons, we found that the or-

ganic matter pool was primarily autochthonous in

our study lakes. Stable isotope analysis indicated

that DIC was derived from the atmosphere and

mineral dissolution, rarely from heterotrophic

degradation of terrestrial organic matter (Figure 3).

These findings demonstrate that human activity

and eutrophication have not only degraded water

quality and altered organic matter composition in

lakes (Foley and others 2005; Li and others 2008;

Williams and others 2015), but may have much

farther reaching effects on CO2 flux and the role of

lakes in the global carbon cycle. With increased

land use alteration for agriculture and urban cen-

ters, more freshwater ecosystems will be subject to

these pressures and may shift to eutrophic and

hypereutrophic states (Foley and others 2005;

Heisler and others 2008). This will depend on local

conservation laws, as eutrophication in some parts

of the world has leveled off or is declining due to

fertilizer use restrictions (Bennett and others 2001).

In the agricultural Midwest USA, however, where

industrial row-crop agriculture dominates the

landscape, reductions in non-point source nutrient

pollution remain voluntary and are not enforced.

Recent changes to the U.S. Clean Water Rule fur-

ther reduce regulatory oversight of headwater

streams, wetlands, and groundwater, which will

have cascading impacts on lakes. Our results indi-

cate that land use alterations and eutrophication

can substantially influence CO2 flux rates, both as

sustained influx resulting in net CO2 sinks or as

very large seasonal CO2 efflux.

In these lakes, flux was negatively correlated

with variables associated with eutrophication and

primary productivity. Previous work in experi-

mentally eutrophied ecosystems has suggested that

the magnitude of the inorganic carbon demand of

autochthonous primary producers will be less than

the combined contributions of exogenous water-

shed CO2 inputs and heterotrophic degradation of

terrestrial organic matter (Wilkinson and others

2016). Although this may be accurate in northern

temperate lakes having high contributions of ter-

restrial plant-derived, humic, and aromatic organic

Figure 5. Classification tree model visualizing static

predictors of net CO2 flux, indicated as a net source or

sink. WtoL indicates watershed-to-lake area ratio, and

Zmax indicates maximum lake depth.

Table 3. Relative Importance of Categorical
Predictor Variables of Net CO2 Flux in Random
Forest Classification Model

Predictor Importance

(MeanDecreaseGini)

% Wetland 1.46

% Pasture 1.34

% Water 0.99

Zmax 0.89

Watershed to lake area 0.84

% Agriculture 0.74

Importance is estimated by MeanDecreaseGini, which informs splits based on
contribution of the variable to model accuracy and degree of misclassification.
Higher values indicate greater predictive importance.
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carbon (Sobek and others 2005; Kothawala and

others 2014), it is not the case in lakes with agri-

cultural watersheds and autochthonous carbon

pools. This is evidenced by previous studies (Bal-

mer and Downing 2011; Pacheco and others 2014)

and our 5 lakes having net CO2 influx during the

open water season. Optical characterization of

DOM in these 5 lakes indicated that their organic

matter pools were dominated by compounds

resembling newly produced bacterial and algal

leachate with low humic content (Table S3). Cor-

respondingly, our model indicated that non-humic

DOM (HIX < 0.82) was an important predictor of

CO2 influx at high chl a concentration.

Although 5 of the lakes in this study exhibited

net CO2 influx, 10 showed the opposite trend and

were net emitters of CO2. High efflux was best

predicted by TN and watershed wetland cover.

There was a severe drought in 2012 in the Mid-

western USA, resulting in high nitrate accumula-

tion in agricultural soils (Al-Kaisi and others 2013),

which has been shown in many studies to increase

nitrate export during rain events (Watmough and

others 2004; Mosley 2015). Badger Lake, which

Figure 6. Range of flux values previously reported in literature across trophic state. Data sources and sampling periods can

be found in Supplemental Table S4.
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had more than double the net efflux than any

other lake in this study (11,755 mmol m-2), also

had record high nitrate levels in 2012, ranging from

0.4 to 16.8 mg NO3-N l-1 with a mean value of

9.4 ± 5.8 mg NO3-N l-1. One possible explanation

for the co-occurrence of elevated nitrate concen-

trations and flux rates is the photodegradation of

nitrate and nitrite in surface waters. This process

would generate hydroxyl radicals which mineralize

organic carbon, increasing CO2 efflux (Brezonik

and Fulkerson-Brekken 1998; Molot and others

2003; Filstrup and Downing 2017). It is also pos-

sible that DIC export during rain events could re-

sult in outgassing of terrestrially derived CO2,

though TN was consistently the best predictor of

efflux in our regression tree and random forest

models.

With the exception of Badger Lake, rates of net

efflux during the 2012 ice-free seasons in these

lakes (April 1 to mid-November) ranged from 327

to 5474 mmol m-2. These values are in a compa-

rable range of previous studies in temperate lakes

and reservoirs (Kosten and others 2010; Barros and

others 2011; Pacheco and others 2014; Jones and

others 2016), but on average 3 to 4 times higher

than previous studies in the same lakes (Pacheco

and others 2014) and more recent studies in arti-

ficially fertilized northern temperate lakes

(Wilkinson and others 2016) (Figure 6, Supple-

mental Table S4). Calculated flux in Blackhawk

Lake reported in Pacheco and others (2014) was

determined based on monthly discrete measure-

ments, compared with high-frequency measure-

ments in this study. Discrete daytime

measurements do not capture nighttime respiratory

flux that high-frequency sensors do and may miss

large transient fluxes associated with mixing

events. The largest periods of efflux in our study

occurred during spring and fall mixing (Figure 1).

These periods were not captured in Wilkinson and

others (2016), which calculated flux for 100 days

between late May and late August, and is one

possible explanation for the large difference in net

efflux between the two studies of lakes with com-

parable trophic status. Similar seasonal trends were

found by Jones and others (2016) across a gradient

of oligotrophic to eutrophic lakes, where the

majority of annual efflux occurred during spring

and fall mixing events, and by Trolle and others

2012 where calculated CO2 influx and efflux was

lowest in summer months across 151 Danish lakes.

Stable isotopic analysis of DIC pools across all

lakes in this study ranged from - 12.57 to 5.78

d13CDIC &, indicating they were derived primarily

from mineral dissolution and atmospheric sources,

but not from heterotrophic degradation of terres-

trial organic matter (Figure 3). While d13CDIC was

not an important predictor of CO2 flux in our

models, our measured range demonstrates that the

inorganic carbon in these lakes is not sourced from

degradation of terrestrial organic matter, which is

an important determinant of efflux in northern

temperate and boreal lakes. Published values of

d13CDIC in lake surface waters generally range from

- 29.6 to + 2.6&, where the lowest values indicate

heterotrophic degradation of terrestrial organic

matter (Bade and others 2004). Depending on

proximity to industry and urban areas, atmospheric

sources range from - 7.5 to - 12&, though the

global atmosphere is fairly well mixed and has a

nominal value of around - 8.5& (Mook 1986;

Boutton 1991). At high pH values, chemically en-

hanced diffusion can result in fractionation that

would decrease d13CDIC values (Bade and Cole

2006). If bloom-forming phytoplankton are taking

up mineral bicarbonate rather than CO2, hetero-

trophic degradation of autochthonous material

should result in d13CDIC values between - 15 and

- 10& (Morales-Williams and others 2017). Va-

lues associated with carbonate dissolution typically

span from - 15 to 0&; however, such values (and

higher) can also be attributable to sediment me-

thanogenic fermentation in shallow systems

(Boutton 1991). Due to high rates of water column

primary productivity, hypolimnetic hypoxia and

anoxia, and sediment organic carbon accumulation

in these systems (Heathcote and Downing 2011),

methanogenic fermentation is a plausible expla-

nation for elevated d13CDIC values measured in this

study.

Non-humic DOM was a predictor of CO2 influx

at high chl a concentration in hypereutrophic

lakes, demonstrating that autochthonous carbon is

an important driver of CO2 dynamics in these sys-

tems. Optical characterization of DOM indicated

that across lakes, the organic matter pool was

composed primarily of endogenous material, both

fresh and degraded, with moderate humic content

(Table S3, Figure 2). Average FI values, indicating

DOM source material, were 1.6 ± 0.06. Values

approaching 1.2 would indicate terrestrial organic

matter of higher plant origin, while values

approaching 1.8 are reflective of algal and microbial

leachate (McKnight and others 2001). The average

value of b/a across sites and sampling events was

0.77 ± 0.05, suggesting mixed contributions of

fresh and degraded material in these lakes. Lower

values of b/a indicate DOM is highly degraded

(� 0.5), while higher values indicate the DOM pool

is fresh or recently produced (� 1.0) (Parlanti and
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others 2000; Wilson and Xenopoulos 2008). Simi-

larly, HIX values in our study suggested contribu-

tions of humic organic matter in the DOM pool.

Because FI values indicate the DOM pool is of

microbial and algal origin, and d13CDIC values do

not indicate degradation of terrestrial organic

matter is occurring in these systems, these HIX

values are likely attributable to microbial humics

and reflect rapid processing of endogenous mate-

rial. These patterns are supported by the b/a ratio,

which suggests a large portion of the DOM pool in

these lakes has been processed and degraded.

Our results demonstrate that anthropogenically

eutrophic lakes can function as significant sources

and sinks of CO2. While previous work with some

exceptions has demonstrated that lakes generally

act as net sources of CO2 to the atmosphere (Cole

and others 1994; Sobek and others 2005; Wilkinson

and others 2016), we show that inorganic carbon

uptake by primary producers can far exceed con-

tributions from heterotrophy and mineral dissolu-

tion. Although two-thirds of our study sites were

net CO2 emitters, we show that hypereutrophic

lakes with less than 0.5% watershed wetland cover

maintained negative flux (that is, continuous CO2

uptake) for months at a time, meaning high rates of

primary production in these impacted ecosystems

was not balanced or exceeded by respiration or

exogenous DIC inputs (Wilkinson and others

2016). Lakes that were net sources of CO2 had

substantially higher flux rates than oligotrophic or

mesotrophic lakes previously reported in the liter-

ature, and these trends were best predicted by

nitrogen enrichment. Our findings further indicate

that the carbon supplies of these lake food webs are

supported by autochthonous sources, have mini-

mal contributions of terrestrial organic matter, and

are cycled by autochthonous processes, as evi-

denced by both optical characterization of DOM

and stable isotope analyses. Taken together, these

findings further demonstrate that anthropogenic

eutrophication has fundamentally changed lake

biogeochemistry, gas flux, and their role in the

global carbon cycle. As global land use changes to

accommodate a large and growing human popu-

lation, it is likely that more freshwater ecosystems

will shift to eutrophic and hypereutrophic states

(Cole and others 2007; Tranvik and others 2009) in

regions where non-point source pollution remains

unregulated. The impacts of these processes on lake

carbon cycles will depend on the extent of

eutrophication and regional scale watershed char-

acteristics. In our models, nitrogen loading was the

strongest predictor of extreme efflux rates in eu-

trophic lakes, and net influx was best predicted by

chlorophyll and lack of watershed wetland cover.

Extensive watershed cultivation without wetland

buffers would be expected to drive lakes toward net

CO2 sinks, while post-drought nitrogen release

from agricultural watersheds is expected to result in

high rates of CO2 efflux. It will, therefore, be crit-

ical to integrate eutrophic and hypereutrophic

systems into the global carbon budget and evaluate

the effects of these changes at global scales.
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Nõges P, Cremona F, Laas A, Martma T, Rõõm EI, Toming K,
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