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ABSTRACT

Livestock grazing is the most extensive human land

use and one of the key drivers of the conversion of

tropical forests into grasslands. Livestock effects on

vegetation structure are complex, as they can pre-

vent tree recruitment and growth through brows-

ing and trampling, but they can also affect

vegetation indirectly through fire interactions.

However, a systematic analysis of the overall effects

of livestock across the global tropics is lacking. We

analyzed remote sensing data on vegetation height

and cover, climate, and fire as well as ground data

on livestock density. We used generalized linear

models and structural equation models to analyze

the effects of livestock on fire regimes and vegeta-

tion structure. Across the global tropics, higher

livestock densities are associated to lower fire fre-

quency and a higher cover of shrubs and dwarf

trees. This pattern occurs across continents, and is

particularly pronounced at intermediate precipita-

tion levels (1000–1500 mm y-1) where fire fre-

quency is highest. In those regions, fire frequency

is on average 49% lower in areas with high versus

low livestock densities. South America has much

higher livestock density and lower fire frequency

than Africa and Asia–Australia across the whole

precipitation gradient. Our findings suggest that

livestock grazing reduces fire incidence through

grass consumption and favors shrubs and a sparse

cover of trees in regions where forests could

potentially exist. Livestock can thus be a strong

modifier of the climatic effect on vegetation struc-

ture, and livestock management changes can im-

pact the structure and functioning of savannas and

grasslands throughout the global tropics.
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HIGHLIGHTS

� We analyze livestock effects on fire and vegeta-

tion patterns in the global tropics.

� Fire frequency is negatively correlated with

livestock across the tropics.

� Livestock favors shrubs and low tree cover in

areas which could support forests.
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INTRODUCTION

Livestock grazes approximately one-third of the

global land surface and about half of the world’s

savannas and grasslands. In the tropics, livestock

ranching extends over 32 million km2, twice the

area covered by tropical moist forest (Asner and

others 2004; Thornton and Herrero 2010). Despite

this enormous extent, the effects of livestock

management on vegetation structure have never

been assessed globally. Livestock effects are hotly

debated because regional- and site-level studies

have described both increases and decreases in

woody cover expansion with contrasting conse-

quences for the long-term provision of ecosystem

services. Grazing can promote woody encroach-

ment (Scholes and Archer 1997; Roques and others

2001; Eldridge and others 2011) by shifting com-

petitive interactions between herbaceous and

woody plants in favor of the latter (Walter 1939;

Knoop and Walker 1985; Belsky and Blumenthal

1997) or by reducing grasses that fuel fires (Bond

2008; Stevens and others 2017). On the other

hand, livestock can limit woody expansion through

direct browsing and trampling on tree seedlings and

saplings (Huntly 1991; Prins and van der Jeugd

1993; Griscom and others 2005; Holmgren and

others 2006; Chaturvedi and others 2012; Staver

and Bond 2014; Bernardi and others 2016b; Etch-

ebarne and Brazeiro 2016). Browsing can also af-

fect tree growth by causing apical damage and

activating lateral buds, which results in dwarf trees

with a bushy architecture (Huntly 1991; Bond and

Midgley 2001; Holmgren 2002; Archibald and

Bond 2003).

The effects of grazing on fire dynamics may be

particularly important for shaping the structure and

functioning of tropical and subtropical terrestrial

ecosystems. Fire may maintain open grasslands and

savannas because trees are more susceptible than

grasses to fire events. Grasses regrow fast after fire

and thereby provide fuel for a subsequent fire. This

creates a grass-fire positive feedback that maintains

sparse tree cover. As a result of such a strong fire-

filtering process, savanna ecosystems are domi-

nated by fire-resistant woody species with traits

well adapted to frequent fires (Archibald and others

2009; Hoffmann and others 2012). The grass-fire

feedback has been proposed as the main mecha-

nism explaining bimodal patterns in tropical tree

cover (Hirota and others 2011; Staver and others

2011; van Nes and others 2018) and canopy height

(Xu and others 2016; Xu and others 2018) in the

1000–2000 mm y-1 precipitation range. This im-

plies that tropical forest and savanna can be alter-

native stable states separated by tipping points

(Scheffer and others 2009; Hirota and others 2011).

By consuming grass biomass, livestock grazing can

mediate this fire feedback, thereby shaping vege-

tation structure in an indirect way. This effect, to-

gether with the limitation of tree recruitment and

growth, could potentially lead to large-scale effects

on vegetation distribution and structure.

Given the widespread presence of livestock and

their potential effects on fire regimes and vegeta-

tion, here we assess the interactions between live-

stock density, fire occurrence, and vegetation

structure across the global tropics.

METHODS

Global Databases

Our study region is the global tropics and subtropics

between 15�N and 35�S, a region selected for

consistency with previous works (Hirota and others

2011; Staal and others 2016; Xu and others 2016;

van Nes and others 2018) (Figure 1). We generated

a 0.1� 9 0.1� fishnet with approximately 500,000

grid cells covering the study region. For each grid

cell, we collected estimates of livestock density, fire

frequency, tree cover, shrub cover, mean annual

precipitation, and precipitation seasonality. Live-

stock density was obtained from the FAO Gridded

Livestock of the World modeled dataset at 1 km

resolution (Robinson and others 2014) and ex-

pressed in 250-kg-equivalent animal units called

Tropical Livestock Units (TLU) using a scale of 0.7

for cattle, 0.5 for buffaloes and 0.1 for goats and

sheep (FAO 1999). To avoid pseudoreplication of

nested environmental variables that are included in

the FAO model, we averaged the model values for

each administrative division following Bernardi

and others (2016b). We differentiated between

high and low livestock densities, defined as being

above and below the pantropical average value of

TLU (7 TLU km-2). This value is equivalent to

1750 kg km-2 which is very similar to the value

(1500 kg km-2) around which fire frequency in

Africa decreases rapidly (Archibald and Hempson

2016). We performed our analysis for different

precipitation ranges.

Fire frequency was derived by calculating burned

frequency (burns per year) from the standard

MODIS burned area product MCD45 (Roy and

others 2008) for the years 2002–2010. We consid-

ered the start of each year in April and the end in

March the next year, coinciding with the annual

global minimum fire activity during March–April

(Giglio and others 2013), to generate annual com-

posite burned area maps.
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Tree cover data were extracted from the MODIS

Vegetation Continuous Field (VCF) Collection 5

dataset for the year 2009 (DiMiceli and others

2011). The MODIS VCF product estimates tree

cover as the woody cover taller than 5 m. To esti-

mate woody cover below this 5 m lower limit (in-

cluding dwarf trees and shrubs, hereafter referred

to as shrub cover for simplification), we used a

remote sensing dataset (LiDAR) of global vegeta-

tion height (Los and others 2012). The 5 m

threshold between trees and shrubs coincides with

standard life forms definitions (Pérez-Harguin-

deguy and others 2016) and is supported by ob-

served distributions of global vegetation height for

trees and shrubs (Scheffer and others 2014; Xu and

others 2016). The LiDAR dataset of vegetation

height was assembled using measurements (‘‘foot-

prints’’) collected by the Geoscience Laser Altime-

ter System (GLAS) on the Ice, Cloud and land

Elevation Satellite (ICESat) during the years 2003–

2009. It gives the vegetation height distribution

between 0–70 m in 0.5 m intervals per 0.5� 9 0.5�

Figure 1. Differences in fire frequency, tree cover and shrub cover associated with tropical livestock density. A Mean fire

frequency averaged in 100 mm mean annual precipitation bins for sites with above-average (TLU ‡ 7 units km-2, light

dots) versus below-average (TLU < 7 units km-2, dark dots) livestock densities, B tree cover (%), C cover of shrubs and

dwarf trees (%), D region of analysis.
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grid cell. The shrub cover was calculated as the

percent of LiDAR footprints falling in the 1–5 m

range over the total footprints for each cell. We

tested for the robustness of our estimates using a

different canopy height range (0.5–1.5 m for the

lower height) to define dwarf trees and shrubs, but

this did not yield significantly different results.

Climate data were obtained from the Climate

Research Unit (CRU) database at 0.5� resolution for

the period 1951–2002 (Jones and Harris 2013),

from which we derived mean annual precipitation

(MAP) and precipitation seasonality. As measure of

seasonality, we used Markham’s Seasonality Index

(MSI) (Markham 1970).

We excluded from all datasets the areas covered

by croplands, water or bare ground, as defined as

categories [11–30 and 190–230] in the 2009

European Space Agency (ESA) Globcover dataset at

300 m resolution. Analyses were performed using

ArcGIS 10.0 and R 3.2.3.

Data Analyses

We used Generalized Linear Models (GLM) to

correlate fire frequency (number of burns), tree

cover and shrub cover (%) with explanatory vari-

ables. Explanatory variables were mean annual

precipitation (MAP), Markham’s Seasonality Index

(MSI), fire frequency (F) and livestock density

(LD). The analysis included the whole tropics and

subtropics between 15�N and 35�S. We used a

Poisson distribution for fire frequency and used

ordinary least square models for the tree and shrub

cover models. We applied an arcsine-square root

transformation for tree cover, following Hirota and

others (2011). Variables were scaled. We used a

random subsample of 1% of the points and selected

the best models with the bestglm function based on

the Akaike Information Criterion (AIC). Spatial

autocorrelation in the model residuals was assessed

using Moran’s I. We found weak spatial autocor-

relation indicated by rather low Moran’s I values

(Table S1 in Supporting Information). We also de-

tected weak multicollinearity among the explana-

tory variables (Pearson’s q < 0.45 in all cases). The

statistical analyses were performed in R 3.2.3 with

the packages bestglm (McLeod and Xu 2011) and

geoR (Ribeiro Jr and Diggle 2001).

To facilitate a comprehensive understanding on

how the focal factors interact with each other, we

developed a conceptual model based on the ob-

served relationships between variables for the

whole area of study area. We constructed a piece-

wise structural equation model (SEM) to test this

network of relationships using the piecewiseSEM

package (Lefcheck 2016) in R 3.2.3. Although there

may be complex causal relationships among live-

stock, fire, and vegetation, the SEM allows us to

propose a ‘‘minimal model’’ (van Nes and Scheffer

2005) and to statistically test for predicted rela-

tionships between the main variables. We per-

formed bootstrapping with 1000 repetitions, using

randomly selected 1000 points per run. The ob-

served relationships based on bootstrapping are

highly consistent with those based on all data

points, indicating that our results are not biased by

the repeated sampling of coarse-grained data.

RESULTS

Across the tropics, high livestock density correlates

with lower fire frequency (p < 0.001; Table S1).

Fire frequency is highest at intermediate precipi-

tation levels (Figure 1A). However, at which level

it peaks depends on livestock density. At low live-

stock density, fire frequency remains high up to

1500 mm annual precipitation whereas at high

livestock density, fire frequency declines sharply

after 1000 mm y-1. Within this 1000–1500 mm y-1

range, fire frequency is on average 49% lower at

high livestock density. We also find differences in

vegetation structure between sites with low and

high livestock densities. High livestock density

correlates with lower tree cover (Figure 1B;

p < 0.001) and higher shrub cover (Figure 1C;

p < 0.001), especially at precipitation levels above

1500 mm y-1.

We synthesized these relationships among live-

stock density, fire frequency and vegetation struc-

ture into a conceptual model (Figure 2) and

assessed them using structural equation models

(SEMs). We found that livestock has significant

negative effects on fire frequency and tree cover

(p < 0.001), and an indirect positive effect on

shrub cover through suppressing tree cover (Fig-

ure 3). Based on the patterns reflected in Figure 1,

we also developed SEMs for three different subsets

of mean annual precipitation (MAP): dry areas

(MAP < 1000 mm y-1), intermediate precipita-

tion areas (1000 £ MAP < 1500 mm y-1) and

wet areas (MAP ‡ 1500 mm y-1). We found that

the negative effects of livestock on fire only become

significant above 1000 mm y-1 precipitation (Fig-

ure S1).

South America has much higher livestock den-

sity and lower fire frequency than Africa and Asia–

Australia across the whole precipitation gradient

(Figure 4). Despite these differences in magnitude,

we find that fire frequency peaks between 1000–
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1500 mm y-1 of precipitation across all continents

(Figure 4). This is also the precipitation range

where the effect of livestock on fire is largest for all

continents. As done for the global tropics, we

developed SEMs for each continent at the same

three levels of MAP (Figure S2). In Africa, livestock

has a negative effect on fire across climates,

whereas in Asia–Australia this is the case only at

intermediate and high precipitation, and in South

America only at intermediate precipitation (Fig-

ure S8). Curiously, the effect of livestock on fire

turns weakly positive in the wet regions of South

America.

DISCUSSION

Our results suggest that livestock reduces fire fre-

quency across the global tropics (Figures 1, 3;

Table S1). This is in line with local and regional

studies showing that grazing limits fire occurrence

by either reducing the availability of grass fuel

(Bond 2008), or by forming grazing lawns that act

as barriers for fire spread (Leonard and others 2010;

Hempson and others 2015b).

Sites with higher livestock densities have sparser

tree cover (Figures 1B, S3) but a denser cover of

low-statured woody plants (dwarf trees and shrubs)

(Figures 1C, S4). This is likely the net result of

conflicting effects of livestock on trees and shrubs.

Livestock includes grazers and mixed feeders that

differ in foraging behavior and preferences for

herbaceous and woody plants (Shipley 1999). On

the one hand, regenerating trees and shrubs may

benefit from fire suppression in grazed lands,

especially when grazers control grass growth (Bel-

sky and Blumenthal 1997; Scholes and Archer

1997; Roques and others 2001; Asner and others

2009; D’Odorico and others 2012). On the other

hand, by browsing and trampling on young seed-

lings and saplings, livestock can also limit tree

recruitment, resulting in a reduction in tree cover

after a few decades of foraging. Also, browsing at

early growth stages can favor multi-stemmed,

shorter-sprouted trees which can contribute to the

increased shrub cover detection in areas with high

livestock density. Cultural views of livestock man-

agers can also contribute to removing regenerating

trees (Holmgren and Scheffer 2017) despite their

potential positive effects on forage productivity

(Bernardi and others 2016a). Therefore, trees need

time and favorable growth conditions to escape

from the control imposed by herbivory and people

(Holmgren and others 2006; Bond 2008; Scheffer

and others 2008; Hoffmann and others 2012).

The apparent effects of livestock on fire and

vegetation structure have important implications

for our interpretation of the biogeographic distri-

Figure 3. Piecewise structural equation model. Positive

relations in blue arrows, negative in red. Dashed arrows

indicate a strong mutual effect. All tested relationships

have p values < 0.001. Numbers indicate coefficient

estimates of relationships. The light-blue boxes indicate

climatic variables (MAP, mean annual precipitation;

MAP2, quadratic term of MAP; MSI, Markham’s

Precipitation Seasonality Index), the green boxes

represent ecosystem variables (Livestock, livestock

density; Fire, fire frequency; Trees, tree cover; Shrubs,

cover of shrubs and dwarf trees). R2s for component

models are shown in the boxes of response variables. The

Fire model is fitted using generalized linear model with

Poisson distribution, the Trees and Shrubs models are

fitted using ordinary least square models (Color

figure online).

Figure 2. Conceptual model of the relationships

between livestock, grass cover, fire frequency and tree

and shrub cover. Positive effects are indicated by pluses

and negative effects by minuses; dashed lines indicate

indirect effects. Livestock grazing reduces grass cover and

thereby fuel for fire, favoring woody expansion;

however, livestock grazing also limits tree growth,

favoring shrubs and dwarf trees which are highly

susceptible to fire.
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butions of forests and savannas. Remote sensing

studies suggest that savannas and forests can be

alternative stable states (Hirota and others 2011; Xu

and others 2016), maintained by a grass-fire feed-

back (Staver and others 2011; Hoffmann and others

2012; Murphy and Bowman 2012; van Nes and

others 2018). Also, local- and regional-scale studies

using empirical (Archibald and others 2005; Ar-

chibald and Hempson 2016; Dantas and others

2016) and modeling approaches (van Langevelde

and others 2003; Suding and others 2004; Staal and

others 2018) indicate that herbivory can replace

fire as main disturbance generating alternative tree

cover states. Our analysis shows that livestock can

control tree recruitment despite the reduction in

fire frequency. In these regions, livestock likely

promotes sparse woody vegetation with a shrubby

architecture that can persist in the absence of fire.

The reduction of fire frequency at higher live-

stock densities becomes significant across the

tropics above 1000 mm of mean annual precipita-

tion, as productivity increases. It is particularly

significant at intermediate precipitation (1000–

1500 mm y-1) where tropical flammability is

highest (Figure S1). Effects of livestock density on

shrub cover become stronger with precipitation

(Figures 1, S1), as the overall probability of closed

canopies increases (Hirota and others 2011; Staal

and others 2016).

Significant differences exist among continents in

the structure and composition of vegetation. Se-

parate evolutionary histories leading to different

functional and architectural traits may explain

some of these differences, and how they are shaped

by the interplay of climate, soils and disturbances

(Lehmann and others 2014). However, the precise

mechanisms are still not fully understood. We

propose that livestock distribution could partially

account for differences in fire frequency and woody

vegetation across the tropics. Our remote sensing

analyses pave the road for building a holistic pic-

ture on the role of livestock in those complex

ecological interactions. Only through detailed field

observations and experiments will we be able to

disentangle which mechanisms drive continental

differences.

The openness of South American landscapes has

puzzled naturalists and ecologists for centuries

(Darwin 1890). These landscapes are found in re-

gions with relatively high precipitation and low fire

frequency conditions that generally favor tree

establishment. Yet tree cover is low. Our results

indicate that high livestock densities in South

America play a fundamental role in maintaining

these open landscapes. These results agree with

findings for southeastern South America (Bernardi

and others 2016b). Interestingly, we also find that

high livestock density is associated with an increase

in fire frequency in the wettest regions. This in-

crease in fire frequency could be explained by

grazing management practices in these areas with

very high productivity, where grazing alone would

be insufficient to maintain open landscapes. Here,

rangers use fire as a tool to clear vegetation and

prevent regrowth of closed forests (Uhl and

Buschbacher 1985; Fearnside 1990; Mistry 1998).

Herbivory is known to reduce fire frequency in

large regions of Africa (Archibald and Hempson

2016). At present, livestock is the dominant her-

bivore, and the distribution of livestock in Africa is

similar to the natural herbivore distribution (Ar-

chibald and Hempson 2016; Hempson and others

2017). Unlike South America, where livestock

densities are high across the precipitation spectrum,

Figure 4. Livestock density (blue circles) and fire frequency (brown circles) as a function of precipitation for A South

America, B Africa, and C Australia. Values averaged over 100 mm bins of mean annual precipitation (Color figure online).
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in wetter regions of Africa, fire is the main con-

sumer of grass biomass and livestock densities are

lower (Figure 4). This could be the case in regions

with leached, poor-nutrient soils (Hempson and

others 2015a). In those regions, recurring fires can

maintain tall grasses with low palatability and

therefore can impose a dietary constraint especially

for mesoherbivores (Waldram and others 2008;

Archibald and Hempson 2016). However, intense

grazing by, for example, large herds of wildebeest,

can overcome this limitation and reduce fire

occurrence (McNaughton 1984). A relevant ques-

tion is whether a potential expansion of livestock

into wetter areas in Africa could lead to significant

reductions in the occurrence of fire (Venter and

others 2017) and to significant changes in ecosys-

tem structure (Bucini and Hanan 2007; Hempson

and others 2017; Venter and others 2017).

We observed no significant relationship between

livestock and fire below 1000 mm y-1 for South

America and Asia–Australia (Figure S2). This may

be explained by lower herbivore densities in these

dry regions or be related to the predominance of

large widespread fires (Hantson and others 2017)

regardless of livestock densities.

In conclusion, our results suggest that in tropical

regions where wild large herbivores are no longer

dominant, livestock management may shape the

structure of savannas and grasslands by maintain-

ing sparse tree cover, reducing fire frequency and

favoring the expansion of shrubs and dwarf trees.

Therefore, changes in current livestock manage-

ment regimes can impact fire frequency and may

result in structural vegetation changes and woody-

cover transitions.
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