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ABSTRACT

In terrestrial ecosystem studies, water drainage and

nutrient leaching in the soil profile are estimated

with hydrological models. Comparing modeled re-

sults to empirical data or comparing data from dif-

ferent models is, however, difficult because the

uncertainty of input–output budget predictions is

often unknown. In this study, we developed a

procedure combining a Generalized Likelihood

Uncertainty Estimation and a Monte-Carlo mod-

eling approach to estimate uncertainty in model

parameter estimates and model outputs water

drainage and nutrient leaching fluxes for the

WatFor water balance model. This procedure was

then applied to compare different model opti-

mization strategies (daily soil moisture measure-

ments, monthly measurements of chloride

concentrations in soil solution, and the elution of a

concentrated chloride) at the same experimental

site in a 90-year-old European beech (Fagus sylvat-

ica L.) forest in Brittany (France). We show that the

monitoring data of natural variations of chloride

concentrations in soil solution were the most effi-

cient dataset to calibrate the WatFor model com-

pared to the soil moisture and chloride tracing

experimental data. We also show that water tracing

experimental data are the most efficient data to

estimate the preferential flow generation model

parameters. The optimization strategy had little

influence on the predicted water drainage flux and

nutrient leaching flux at the root zone boundary on

a yearly time scale but influenced water and

nutrient fluxes in the topsoil layers.

Key words: water tracing; water balance model;

chloride; uncertainty; input–output budget; forest

ecosystem; preferential flow; nutrient leaching;

soil; hydrology.

INTRODUCTION

In numerous forest ecosystems throughout Europe

and North America, elevated atmospheric inputs of

anthropogenic inorganic sulfur (SO4
2-) and nitro-

gen (NH4
+ and NO3

-) over the past century have
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contributed to the acidification of forest soils and

surface waters. If not immobilized in the soil or

plants, sulfate and nitrate inputs are leached below

the rooting zone accompanied by cations such as

magnesium, calcium, potassium and aluminum

species (Reuss and Johnson 1986). Atmospheric

inputs of inorganic sulfur have strongly decreased

since the 1980s (Boxman and others 2008;

Vuorenmaa and others 2017) but many studies

have reported elevated pools of exchangeable sul-

fate in the soil (adsorbed during the period of ele-

vated inputs) which, as they slowly desorb, sustain

the sulfate leaching flux in the soil (Hodson and

Langan 1999; van der Heijden and others 2011;

Vuorenmaa and others 2017). Additionally, inputs

of inorganic nitrogen have not systematically de-

creased (Vuorenmaa 2004; Cooper 2005). Conse-

quently, an on-going depletion of exchangeable

nutrient cations (Mg, Ca and K) in the soil due to

elevated nutrient leaching fluxes has been reported

in many forest ecosystems (Huntington and others

2000; Boxman and others 2008; Bedison and

Johnson 2010; van der Heijden and others 2011;

Jonard and others 2012) and has been, in some

cases, related to a degradation of tree nutrition

(Jonard and others 2015; Court and others 2018).

The estimation of nutrient leaching fluxes is

therefore an important stake for forest ecosystem

sustainability. The leaching flux is a major com-

ponent of input–output budgets (Ranger and Tur-

pault 1999), which are used to assess changes in

bioavailable pools of nutrients in the soil over

periods of time ranging from several years to sev-

eral decades and support forest management and

policy decision making (for example, Norton and

Young 1976; Johnson and Todd 1998; Dambrine

and others 2000; Sverdrup and others 2006;

Akelsson and others 2007; Johnson and others

2008; Jonard and others 2012).

As the direct measurement of the draining flux of

water and nutrients is almost impossible in forest

ecosystems (Bormann and Likens 1967), nutrient

leaching in the soil profile and below the rooting

zone is commonly estimated by coupling the

nutrient concentrations measured in the soil water

to the water flux simulated with a hydrological

model. Hydrological models are also useful tools to

predict the availability of water for plant uptake in

the soil which directly impacts forest growth (Bréda

and others 2006; Kirchen and others 2017) and

may also impact nutrient bioavailability (Giesler

and others 1996; Marques and others 1996; Wei-

hermuller and others 2007). Many different

hydrological models exist (for example, Granier

and others 1999; Ogee and others 2003; Simunek

and others 2003; Christiansen and others 2006;

Neitsch and others 2011), varying in their com-

plexity of the representation of water flow mech-

anisms, and compute the change in water content

and water fluxes in the soil profile from input data

(precipitation, potential evapotranspiration, and so

on) and model parameters (soil hydrological prop-

erties, tree and canopy properties, etc.). At the soil

profile scale, measured soil moisture datasets are

most commonly used to calibrate and validate the

hydrological model at each studied site (Granier

and others 1999; Gérard and others 2004). How-

ever, when no soil moisture dataset was available,

other datasets have been used for model calibra-

tion: measured natural variations of chloride con-

centration in soil solution (Legout and others 2016;

Yu and others 2016), experimental water tracing

data (van der Heijden and others 2013). Because

the different datasets do not represent the same

processes, modeling results are likely to depend on

the subjective choice or availability of observational

data used to calibrate hydrological models at the

soil profile scale. For instance, experimental water

tracing data are probably the most adequate data to

demonstrate the occurrence of preferential water

flow in the soil profile and are thus probably the

best calibration dataset choice to model matrix and

preferential water flow. Recent studies of the bio-

logical cycle of chloride (plants and soil micro-or-

ganisms) in forest ecosystems question the non-

reactive transport of chloride in the soil (Öberg and

others 2005; Svensson and others 2012; Montelius

and others 2015) and thus question calibrating the

model with natural variations of chloride concen-

tration in soil solution.

The knowledge and quantification of model

uncertainties is essential to compare different cali-

bration methods (fitted model parameters and

simulated model outputs). Uncertainty assessment

of model simulations is also essential when models

are used to support ecosystem management deci-

sions and policies (Beven 1989). Hydrological

model uncertainties have been addressed by vari-

ous regression and probabilistic approaches: Gen-

eralized Likelihood Uncertainty Estimation (GLUE)

(Beven and Binley 1992), Markov Chain Monte-

Carlo (MCMC) (Kuczera and Parent 1998) or

Bayesian inference approaches (Kavetski and oth-

ers 2006). The GLUE procedure is a relatively

simple and efficient optimization approach, is easy

to implement into the code of existing models, does

not require elevated computational costs (Zheng

and Keller 2007; Yang and others 2008; Shen and

others 2012; Rivera and others 2015), and is com-

monly used in hydrological modeling (Beven and
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Binley 2014). It is ‘‘based upon making a large

number of runs of a given model with different sets

of parameter values, chosen randomly from speci-

fied parameter distributions. On a basis of com-

paring predicted and observed responses, each set

of parameter values is assigned a likelihood of being

a simulator of the system.’’ (Beven and Binley

1992). The majority of the applications of the GLUE

approach to date have been in rainfall-runoff

modeling. To our knowledge, no studies has yet

quantified the uncertainties associated with drai-

nage water fluxes and nutrient leaching fluxes at

the soil profile scale in forest ecosystems.

The objective of this study was to compare three

calibration methods of a simple daily water balance

model, each using a different dataset (daily soil

moisture measurements, monthly measurements

of chloride concentrations in soil solution, and the

elution of a concentrated chloride tracer) and to

evaluate the influence of the calibration method on

model outputs and uncertainty. For the three cal-

ibration datasets mentioned above, we hypothesize

that:

1. Calibrating with daily soil moisture data yields

the best estimation of the distribution of water

uptake and water drainage in the soil profile

2. Calibrating with experimental water tracing

data yields the best model performance for ma-

trix and preferential water flow partitioning

3. When soil moisture data are unavailable, cali-

brating with natural variations of chloride con-

centrations in soil solution yields a comparable

and satisfactory estimation of the distribution of

water uptake and water drainage in the soil

profile

For this purpose, we developed a simple pool and

flux daily water balance model (WatFor) the

structure of which is analogous to most lumped

parameter pool and flux water balance models. A

procedure based upon the GLUE approach was

developed and implemented in the WatFor model

to quantify the uncertainty in model parameter

estimations. Finally, a Monte-Carlo approach was

applied to estimate the uncertainty in the modeled

water drainage and nutrient leaching flux in the

soil profile. We used the monitoring data (soil

moisture and monthly measurements of chloride

concentrations in soil solution datasets) (Legout

and others 2009b) and the experimental chloride

water tracing dataset (Legout and others 2009a)

from the Fougères experimental forest in Brittany

(France). Finally, a Monte-Carlo approach was

applied to estimate the uncertainties in model

outputs (water drainage and nutrient leaching

fluxes).

MATERIALS AND METHODS

Study Site

Site and Soil Description

The study was carried out in the state forest of

Fougères located in Northeastern Brittany in

France (48�23¢4¢¢ N; 1�8¢10¢¢ W). The climate is

temperate oceanic with a mean annual precipita-

tion of 868 mm and a mean annual temperature of

12.9�C for the 1996–2006 decade. Two experi-

mental sites (0.48 ha each) named Fou3 and Fou30

and located in a flat, homogeneous forested area of

5 ha under 90-year-old beech (Fagus sylvatica L.)

were used in this study. The bedrock is granite and

the thickness of the weathered granite varies be-

tween 3 and 5 m (Van Vliet-Lanoë and others

1995). This saprolite is covered by about 1.5 m of

carbonate poor eolian loess (Toutain 1965). Several

authors have recorded the homogeneity of the

Fougères forest soils, that is, the same soil type was

identified for the whole of this area (Toutain 1965;

Legout and others 2008). In 1996, two soil pits

were opened near the experimental site and these

soils were described, sampled by level (Tables 1, 2)

and analyzed. The humus was classified as moder

(Baize and Girard 1998), whereas the soils were

classified as glossic Alocrisols–Néoluvisols (Baize

and Girard 1998) or as glossalbic Cambisols (IUSS

Working Group WRB 2007). Funnel-shaped glossic

tongues, which are wider at the top, appear below

depths of 55 cm and develop vertically down to the

weathered granite.

Soil hydrological properties were measured from

soil cylinders (98 cm2) sampled at 10, 30, 67.5 and

120 cm depth in two soil pits (5 replicates per depth

and per pit). The volumetric water content (h) was

measured at different water potentials (from pF = 0

to 4.2) using a Richards chamber (Table 2).

Ecosystem Monitoring: Data Collection

The monitoring equipment installed at the two

study plots (Fou3 and Fou30) has been described in

detail in two previous studies (Legout and others

2009a; b). Only a brief summary is given here.

Daily weather data were collected at the RE-

NECOFOR HET35 weather station (ICP Forests

network) located in a clearing in the Fougères

forest (48�22¢ N; 1�10¢ W): daily precipitation, air

temperature and relative humidity, wind speed and

direction and soil heat flux (station set up in Jan-
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uary 1997). Daily potential evapotranspiration

(PET) was calculated with the Penmann formula.

In the Fou3 plot, four soil pits (7 m long and 1 m

wide) were opened in 1996 and rapidly equipped

with Time Domain Reflectometry (TDR) probes

(TRIME-TDR Imko1), ceramic cup tension lysime-

ters (0.5 m long) and zero tension plate lysimeters

(0.4 9 0.3 m). TDR probes, tension ceramic cup

lysimeters (TCL and zero tension plate lysimeters

(ZTL) were inserted horizontally into the soil at 10,

30, 55, 80 and 120 cm depth in the undisturbed

soil. After connecting the systems, the pits were

closed, replacing the soil layers in their correct or-

der. In total, four replicates per depth of TCL and

ZTL (except for 80 and 120 cm depth where only

two replicates of ZTL were installed) and one

replicate per depth of TDR probes were installed. In

December 1999, Fou3 was badly damaged by storm

Lothar (Legout and others 2009b): 60% of standing

trees were uprooted and 30% had their trunk

snapped. The Fou30 plot was set up in 2000 close to

the Fou3 plot, in the same forest management plot

but in an area that was not damaged by the Lothar

storm. Two replicates of TDR probes were installed

at 10, 30, 55, 80 and 120 cm depth. Four replicates

of zero tension lysimeters were installed at 0 cm

(just below the humus layer), 10 cm and 30 cm

depth. Eight replicates of ceramic tension-cup

lysimeters were installed at 10 and 30 cm depth

and 16 replicates were installed at 55, 80 and

120 cm depth to capture the spatial variability due

to the presence of glossic structures.

Over the 1999–2004 monitoring period, soil

solution samples were collected from each lysime-

ter every 28 days per depth. Before analysis, sam-

ples collected with ceramic cups were bulked to

obtain four composite samples per depth (one for

each side of the pit). Samples collected by zero

tension lysimeters were bulked to obtain 1 com-

posite sample per depth. The samples collected with

zero tension lysimeters were filtered rapidly in the

laboratory through a 0.45 mmMetriciel Membrane

Filter and stored in the dark at 2�C while waiting

for analysis. The ceramic cup solutions were not

filtered, the pore size of the ceramic being

0.45 mm. Cl- and NO3
- concentrations in samples

were analyzed by colorimetric methods (Traacs

2000, Bran and Luebbe) and Ca concentrations

were measured by ICP-AES (Inductively Coupled

Plasma-Atomic Emission Spectrometry; JY 180 Ul-

trace, Jobin–Yvon).

Soil Water Tracing Experimental Design

In March 2006, in the Fou30 plot, 31 mm of a

chloride-enriched solution (616 mg l-1) were ap-

plied to an experimental plot that encompassed the

instrumented areas. The water used was pumped

from a forest stream located near the site, stored in

a large plastic tanker and NaCl, CaCl2 and MgCl2
were added to the tanker to obtain a 616 mg l-1

chloride solution. The enriched solution was

sprinkled onto the soil using an oscillating ramp to

simulate precipitation under the canopy. To obtain

a homogeneous application and to avoid border

effects, the simulated precipitation was applied to

two plots (6 9 11 m) surrounding each pit. The

tracer application on March , 2006 was followed by

three simulated rain applications (stream water

Table 1. Chemical Properties of the Soil at the Fougères Experimental Forest

Depth pHwater Soil carbon Exchangeable pool

ECEC Al Mg Ca K BS

g kg-1 cmolc kg
-1 cmolc kg

-1 cmolc kg
-1 cmolc kg

-1 cmolc kg
-1 %

0–10 3.94 0.06 44.64 4.4 5.88 0.37 5.32 0.48 0.25 0.05 0.36 0.10 0.22 0.02 14.4 1.7

10–20 4.34 0.04 16.16 1.7 3.32 0.26 3.03 0.41 0.06 0.01 0.11 0.04 0.09 0.01 10.2 2.8

20–30 4.4 0.03 10.94 1.2 2.58 0.19 2.24 0.33 0.03 0.01 0.07 0.02 0.08 0.01 10.5 2.3

30–40 4.4 0.03 7.1 1.4 2.10 0.20 1.85 0.39 0.02 0.01 0.07 0.03 0.07 0.01 11.0 2.0

40–50 4.4 0.02 5.05 0.8 2.80 0.35 2.64 0.46 0.04 0.01 0.06 0.02 0.09 0.01 11.4 3.5

50–60 4.4 0.03 3 0.8 3.50 0.74 3.43 0.85 0.05 0.01 0.05 0.00 0.10 0.02 11.7 6.6

60–70 4.4 0.02 2.35 0.4 4.65 0.45 4.24 0.51 0.13 0.06 0.07 0.02 0.13 0.01 10.5 3.7

70–80 4.4 0.03 1.7 0.2 5.80 0.59 5.04 0.50 0.21 0.11 0.08 0.04 0.15 0.02 9.3 2.3

80 -90 4.5 0.03 1.5 0.1 6.20 0.37 5.17 0.33 0.41 0.14 0.11 0.05 0.16 0.01 12.8 2.7

90–100 4.6 0.05 1.3 0.2 6.60 0.41 5.30 0.44 0.60 0.27 0.14 0.08 0.16 0.01 16.3 5.0

100–110 4.7 0.04 1.35 0.1 6.55 0.29 4.92 0.35 0.72 0.25 0.16 0.07 0.16 0.01 17.8 4.7

110–120 4.8 0.06 1.4 0.2 6.50 0.41 4.54 0.54 0.84 0.43 0.17 0.11 0.15 0.01 19.3 7.9

Values in italic font represent the standard deviation.
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without chloride enrichment) on March 9

(16.8 mm), March 10 (15.3 mm) and lastly on

March 14, 2006 (14.9 mm). The average rainfall

intensity for the tracer application was 4.4 mm h-1

and the three successive simulated rainfall events

without chloride enrichment were, respectively,

5.6, 5.1 and 2.5 m h-1.

After the tracer application, soil solution samples

from each lysimeter were collected individually.

During the first week, the sampling frequency

varied from 6 to 24 h, but then decreased gradually

to reach 1 month at the end of the experiment

(September 1, 2007). In the laboratory, zero ten-

sion lysimeter samples were filtered through

0.45 lm Metriciel membrane filters. All the sam-

ples were stored in the dark at 2�C and chloride was

analyzed rapidly by colorimetry (Traacs 2000, Bran

et Luebbe). The quantification limit of this method

was 0.2 mg l-1. The precision of this method is less

than 5% and control standards were systematically

measured during sample sequences for quality

control. For the water tracer experiment, individual

samples were not bulked together for analysis.

The monitoring of the elution of the enriched

chloride tracer solution in the soil profile evidenced

preferential flow paths (Legout and others 2009a)

and showed that around 17% of the applied tracer

mass transited in the soil via these preferential flow

paths.

WatFor Hydrological Model Description

WatFor is a daily water balance model composed of

two modules that, respectively, compute the fluxes

of water and a non-reactive solute such as chloride

in forest ecosystems (van der Heijden and others

2013; Legout and others 2016; van der Heijden and

others 2017). WatFor accounts for canopy rainfall

interception, throughfall, soil water content change

and water drainage in the soil profile. The hydro-

logical module of WatFor was inspired from the

structure of the BILJOU water balance model

(Granier and others 1999). A description of the

hydrological module of the WatFor model is given

in Figure 1. The non-reactive solute transport

module was inspired from a previous model which

was developed to simulated the transport of deu-

terium tracer applied on the forest floor (van der

Heijden and others 2013). The model inputs are

daily rainfall and daily potential evapotranspira-

tion. The soil profile is divided into different layers

(user-defined) and for each layer, the following

parameters are required: layer thickness, bulk

density (kg m-3), fraction of stones (> 2 mm) (no

unit), water uptake distribution parameter in the
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layer (fraction of total water uptake), volumetric

water content (m3 m-3) at wilting point (hWP),

field capacity (hFC) and saturation (hSat).
Precipitation interception was calculated using a

simplified version of the interception model pro-

posed by Aussenac (1968) and used in the BILJOU

model. If the daily rainfall is below the fitted

threshold (Inthresh), the canopy intercepts 100% of

rainfall. If the daily rainfall exceeds Inthresh, inter-

ception is calculated as a linear function of rainfall

(Figure 1) where the slope (a) of the linear model is

fitted and the intercept (b) is computed from the

value of the Inthresh parameter as follows:

In tð Þ ¼ a� RF tð Þ þ b ð1Þ

b ¼ Inthresh � 1� að Þ ð2Þ

where, In tð Þ is the canopy rainfall interception

(L m-2 day-1) at time step t, and RF tð Þ is the daily

rainfall (L m-2 day-1) at time step t. Although this

interception model does not allow for canopy sat-

uration, it is a simple model requiring few param-

eters; it accounts for the evaporation of intercepted

water between rainfall events occurring the same

day; and it has been proven to successfully repro-

duce canopy interception for different tree species

(Legout and others 2016).

The daily evapotranspiration flux (T) from each soil

layer is computed from the daily potential evapo-

transpiration and the water uptake distribution

parameter in each soil layer. The model allows

changes in the water uptake profile when the soil

water content becomes limiting for water uptake.

When the relative extractable water (soil water

between field capacity and wilting point) is below

0.4, the potential evapotranspiration flux from the

given soil layer is reduced (Granier and others

1999). When the actual water uptake in the soil

layer is below of the layer potential evapotranspi-

ration, the difference between potential and actual

evapotranspiration is transferred to the soil layer

directly below.

Water fluxes in the soil Each soil layer is divided

into two types of water flow: preferential flow

(macropores) and matric flow (micropores). The

daily throughfall flux is divided into two compo-

nents (preferential and matric flow) as a function of

throughfall intensity and the moisture content of

the topsoil layer (Figure 1). When the throughfall

flux is below the preferential flow threshold model

parameter (representing the infiltration capacity in

mm day-1 of the topsoil layer), 100% of the

throughfall flux is directed into the micropores.

When the throughfall flux exceeds this threshold, a

flux of water equal to the threshold is directed into

the micropores and the remaining throughfall flux

is directed into the macropores. The value of the

preferential flow threshold model parameter varies

with the soil moisture content of the topsoil layer.

Preferential flow threshold parameters for the field

capacity and wilting point soil moistures are fitted

during the calibration process. The preferential

flow threshold is then linearly interpolated at each

time step.

Water flows vertically in the soil profile as both

matric and preferential flow. In the micropores,

matric flow between two soil layers is generated

when the soil moisture exceeds the field capacity

moisture (hFC). In the macropores, water is not

bound to the soil and flows to the macropores of

the layer directly below. In each soil layer,

depending on the micropores soil water content, a

fraction of the preferential water flux is redirected

to the micropores as follows:

QPF!M tð Þ ¼ WFC �W tð Þ½ � � PF2M ð3Þ

where, QPF!M tð Þ is the flux of water from the

macropores toward the micropores (mm) at time

step t, WFC is the soil water content at field capacity

(mm), W tð Þ is the soil water content at time step t

(mm), and PF2M is a user-defined model parameter

comprised between 0 and 1 (unitless). Finally,

matric water flow occurs when the soil water

content of the soil layer exceeds field capacity.

Non-reactive transport of chloride Model inputs are

composed of monthly atmospheric inputs of Cl: Cl

concentrations in rainfall and Cl dry deposition.

Dry deposition was calculated from the bulk pre-

cipitation and throughfall monitoring data assum-

ing no canopy exchange (Adriaenssens and others

2013). In the model, the input flux of Cl from

rainfall and dry deposition are mixed to form the Cl

throughfall flux (concentrations in throughfall are

corrected for canopy interception). The throughfall

flux of Cl is then divided into the macro- and

micropores according to the preferential flow gen-

eration formula described above. In the soil, Cl

concentrations are computed from the mixing of

the different water pools and fluxes. WatFor as-

sumes no Cl uptake by plants, soil macro or micro

biota and no interactions with soil particles (for

example, surface adsorption).

WatFor Parameter Optimization
Procedure

A numerical optimization procedure based on the

Generalized Likelihood Uncertainty Estimation

(GLUE) approach was developed to (1) estimate
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model parameters for which the best fit between

modeled and measured datasets is obtained, and (2)

quantify uncertainties associated with parameter

estimations. This procedure is ‘‘based upon making

a large number of runs of a given model with dif-

ferent sets parameter values, chosen randomly

from specified parameter distributions. On a basis

of comparing predicted and observed responses,

each set of parameter values is assigned a likelihood

of being a simulator of the system.’’ (Beven and

Binley 1992).

This procedure was applied to simultaneously

estimate the preferential flow generation parame-

ters, and, for each soil layer, the root distribution

and PF2M parameters. To limit the number of

parameters to estimate, the parameters were opti-

mized for the following soil layers: 0–20 cm, 20–

40 cm, 40–60 cm, 60–100 cm and 100–120 cm

(that is, model parameters were assumed to be

equal between for the 0–10 cm and 10–20 cm

layers, for example). These layers were selected

following the distribution of TDR probes and

lysimeters in the soil. The different steps of the

procedure are summarized in Figure 2. The opti-

mization procedure was applied to the three cali-

bration datasets independently: daily soil moisture

measurements (noted h optimization), monthly

measurements of chloride concentrations in TCL

solutions ([Cl]Nat optimization), and the elution of

a concentrated chloride ([Cl]Tracer).

First, the boundaries (minimum and maximum)

for each parameter were set (Figure 2-1). For the

Figure 1. Depiction of the WatFor forest hydrological model.
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water uptake distribution and PF2M factors in each

soil layer, the minimum and maximum parameter

values were set to 0 and 100%. The minimum and

maximum preferential flow generation parameters

(both field capacity and wilting point) were set to 0

and 30 mm day-1. Then, a set of parameters is

randomly selected (Figure 2-2) within these

boundaries (random selection following an even

distribution). The WatFor is then run over the da-

taset period (1999–2004 for the h and [Cl]Nat da-

tasets and 2006–2007 for the [Cl]Tracer dataset)

(Figure 2-3). From the modeled data, indicators of

the goodness of fit between modeled and measured

data are computed (Figure 2-4). For the [Cl]Nat and

[Cl]Tracer datasets, the mean absolute error (i.e.,

absolute difference between the modeled and

measured monthly chloride concentrations) was

used as the goodness of fit indicator. The mean

absolute error was calculated for each TCL depth

(10, 30, 55, 80 and 120 cm). For the h dataset, gi-

ven the cycling nature of the dataset, the mean

absolute error indicator was not efficient enough to

discriminate the best model runs. Instead we used

an indicator counting the number of days for which

the modeled soil moisture was within ± 10% of

the measured soil moisture. This count indicator

was also calculated for each TDR depth (10, 30, 55,

80 and 120 cm). The scores of each goodness of fit

indicator and the associated model parameters are

stored (Figure 2-5) and a new set of randomly se-

lected parameters is generated (Figure 2-2). This

cycle was replicated n times. After the last replicate,

the stored parameters are ranked according to each

of the five indicators. If a parameter set yielded an

indicator below (for the TDR dataset) or above (for

the ‘‘Nat Chloride’’ and ‘‘Tracer Chloride’’ datasets)

a user-defined quantile level (p), the parameter set

was rejected (Figure 2-6). From the remaining

population of parameters, new parameter bound-

aries are defined (Figure 2-7) and the cycle is re-

peated (N iterations). The modeled parameter

boundaries after 10 iterations are used to estimate

the range of optimal model parameters and quan-

tify their associated uncertainty. The repeatability

of estimated parameter boundaries was estimated

by repeating the whole procedure five times and

Figure 2. Description of the Generalized Likelihood Uncertainty Estimation optimization procedure.
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calculating the standard deviation for each param-

eter boundary.

Different values for the optimization procedure

parameters (N, n and p) were tested (Figure S1).

These tests showed that, for n values below 2.5Æ103,
the optimization procedure converged toward

narrow ranges (Figure S1-A) but the repeatability

of this convergence was poor (data not shown). For

n values above 5.0Æ103, the convergence was simi-

lar but the convergence was more repeatable when

nwas set to 104. The quantile level parameter pwas

rather sensitive (Figure S1-B). For values equal or

above to 60%, the optimization procedure con-

verged toward narrow but poorly repeat-

able ranges. For values below 50% the

convergence of the procedure over 10 iterations

was unsatisfactory. For these reasons, the opti-

mization procedure parameters were set at 104

replicates per iteration and a quantile level of 50%.

Convergence and repeatability with these two

parameters is shown in (Figure S1-C). Five esti-

mates of parameter boundaries were obtained from

five different optimization procedure runs to

monitor repeatability. Parameter boundaries pre-

sented in this study are the average value of these

five replicates.

The three optimization strategies were compared

using different indicators. Firstly, the performance

of the optimization procedure was assessed using

the model parameter convergence and the

repeatability of the convergence described previ-

ously. Secondly, the performance of each strategy

at reproducing the three datasets (daily soil mois-

ture, monthly chloride concentrations and chloride

tracing experiment) was assessed visually and by

calculating the mean and root means square error

between the modeled and measured datasets. Fi-

nally, model outputs (water drainage, nutrient

leaching and their associated uncertainties) were

compared between strategies.

Water Drainage Flux and Nutrient
Leaching Flux Uncertainty

The uncertainty in the water drainage fluxes was

estimated by applying a Monte-Carlo modeling

approach. First, model parameters were randomly

selected within their uncertainty range estimated

by the GLUE modeling approach described above.

Then the model was run over the 1999–2005 per-

iod to compute the daily water drainage flux. The

nutrient leaching flux was calculated as the product

of the monthly water drainage flux (ma-

tric + preferential flow) and measured TCL solute

(Ca, NO3 and Cl) concentrations at the corre-

sponding depth (solute concentrations were ran-

domly selected from a normal distribution defined

from the monthly average and standard deviation

concentration). This procedure was iterated 104

times and the standard deviation of the 104 repli-

cated water drainage and nutrient fluxes were

computed on a monthly and yearly time scale.

To test the influence of water type selection on

modeled results, the Monte-Carlo was applied a

second time to the ‘‘Nat Chloride’’ calibration da-

taset. The nutrient leaching flux was decomposed

into a matric component (product of the monthly

water matric drainage flux and measured TCL so-

lute concentrations) and a preferential component

(product of the monthly water preferential drai-

nage flux and measured ZTL solute concentra-

tions).

RESULTS

Model Parameter Estimates

The lowest uncertainty for water uptake distribu-

tion parameter in each soil layer (Table 3) was

obtained with the [Cl]Tracer strategy followed by the

h strategy and the [Cl]Nat strategy. The repeatability

of the optimization procedure was best for the h
strategy (standard deviations) and poorest for the

[Cl]Tracer strategy. The predicted ranges by all three

strategies were in general agreement with one an-

other. However, the water uptake distribution was

slightly lower in the 0–20 cm layer and slightly

higher in the 40–60 cm layer for the [Cl]Tracer
strategy. The preferential flow parameter uncer-

tainty was highest (infiltration capacity at the

wilting point and field capacity) for the h opti-

mization. For the [Cl]Nat strategy, only the infil-

tration capacity at field capacity parameter

converged to values between 5.7 and 8.8 mm

day-1. The [Cl]Tracer strategy was the most efficient

to estimate preferential flow parameters. The

infiltration capacity at field capacity converged to

values between 6.6 and 6.9 mm day-1 and the

infiltration capacity at wilting point converged to

values between 15.0 and 25.9 mm day-1. For the

PF2M parameter (water flux from macro to

micropores), none of the three strategies converged

satisfactorily. � for these parameters were above

94% for the h strategy, above 51% for [Cl]Nat and

above 41% for [Cl]Tracer.

Simulation of the Measured Datasets

Daily soil moisture dataset For all three optimization

strategies, the range of variation of soil moisture

between winter and summer periods was very
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similar between measured and modeled datasets

(Figure 3). Over the entire period modeled soil

moisture values were mostly within measurement

uncertainty. Certain hydrological events during the

vegetation period were not accurately reproduced

in amplitude but the dynamics of drying and wet-

ting were reproduced. In general, the modeled

rewetting of soil porosity was faster compared to

the measured data. The differences in root mean

square error between modeled and measured soil

moisture (Table 4) for the three optimization

strategies were small but show that soil drying and

wetting dynamics were best reproduced by the soil

moisture optimization strategy.

In the topsoil (10 cm depth), uncertainty was

slightly lower for the [Cl]Tracer strategy (average:

0.3%; maximum: 3.4%) compared to the h (0.5%;

maximum: 4.1%) and [Cl]Nat (0.6%; maximum:

4.9%) strategies. For the deeper soil layers, uncer-

tainty in soil moisture predictions was very similar

between all three optimization strategies except at

120 cm depth where the [Cl]Tracer strategy uncer-

tainty was higher (average 0.8%; maximum: 5.4%)

compared to the h (0.5%; maximum: 4.0%) and

the [Cl]Nat (0.6%; maximum: 4.3%) strategies.

Natural variations of chloride concentrations The

slight increasing trend observed in the monitoring

of natural chloride concentrations in soil solution at

10 and 80 cm depth was reproduced by the WatFor

model for all three optimization strategies (Fig-

ure 4). Seasonal variations of chloride concentra-

tions were not accurately reproduced but the

concentration levels and the range of seasonal

variation were reproduced. Similarly to uncertain-

ties in soil moisture predictions, the uncertainty in

natural chloride concentration predictions was

lower for the [Cl]Tracer strategy in the topsoil:

average 5.4 lmol l-1 and maximum 25. 2 lmol l-1

at 10 cm depth compared to 13.1 and 17.9 lmol l-1

(average) and 71.3 and 97.1 lmol l-1 (maximum),

respectively, for the h and the [Cl]Nat strategies. At

55, 80 and 120 cm depth, model uncertainties were

very similar between the three optimization strate-

gies.

Chloride tracer experiment The WatFor model was

also able to correctly reproduce the general elu-

tion peak trends for all three optimization

strategies (Figure 5). The spatial variability of

measured chloride concentrations was high,

especially in depth (spatial variability of water

flow velocity) but an elution peak was observed

in all individual lysimeters (Legout and others

2009a). The best fit was obtained for the [Cl]Tracer
strategy. At 10 and 30 cm depth (data not

shown), the modeled elution peak occurred atT
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Figure 3. Modeled (black line) and measured (red line) daily volumetric soil moisture variations (%) at 10 and 80 cm

depth for the three optimization strategies (h, [Cl]Nat and [Cl]Tracer) over the 1999–2004 period. The gray and red area

around the lines represents the uncertainty in modeled and measured data (Color figure online).

Table 4. Mean Error and Root Mean Square Error Between the Measured and Modeled Data (Daily Soil
Moisture, Monthly Natural Chloride Concentrations and Water Tracing Experiment Chloride Concentrations)
for the Three Optimization Strategies

Optimization Dataset

Daily soil moisture Monthly natural [Cl] Tracing exp. [Cl]

ME (%) RMSE (%) ME (lmol l-1) RMSE (lmol l-1) ME (lmol l-1) RMSE (lmol l-1)

h 4.5 7.4 - 27.5 119.6 714 1777

1.8 4.9 68.6 153.0 740 1703

1.1 3.8 83.6 143.5 - 225 536

1.1 3.5 59.5 145.6 - 273 482

0.6 2.2 41.8 80.8 - 114 360

[Cl]Nat 4.1 7.1 - 18.6 124.1 670 1508

0.4 4.8 64.0 144.9 406 1482

1.8 4.1 29.9 107.4 - 697 962

1.2 3.7 29.9 129.1 - 295 380

1.1 2.6 1.7 50.0 - 289 340

[Cl]Tracer 5.2 7.9 - 50.1 115.6 566 1501

3.9 5.9 4.9 107.7 85 949

0.7 4.5 48.5 134.2 - 556 764

0.8 3.3 12.8 114.1 - 292 373

- 0.4 2.5 27.6 77.9 - 205 303
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the same for all three optimization strategies and

was close to the measured elution peak but the

amplitude of the elution peak exceeded the

measured data. The modeled amplitude of the

peak was greatest for the h strategy and lowest

for the [Cl]Tracer strategy. At depths below 55 cm,

the amplitudes of the modeled elution peaks

were much closer to the measured data. The h
optimization dataset differed from i) the other

two strategies and ii) the measured data: modeled

elution peaks occurred sooner. The [Cl]Nat strat-

egy also reproduced very satisfactorily the tracing

experiment data (Table 3). The percentage of

modeled preferential flow with the [Cl]Nat strat-

egy ranged from 16 to 39% over the 1999–2004

period, which was similar to the [Cl]Tracer strat-

egy: 19–44%. Though differences between the

[Cl]Nat and [Cl]Tracer strategies were small (Fig-

ure 5), the amplitude and occurrence of elution

peaks at 80 and 120 cm (data not shown) were

best reproduced by the [Cl]Tracer strategy. Finally,

the modeled data (modeled chloride concentra-

tions in micropores soil water) presented in Fig-

ure 5 does not enable one to observe the

measured preferential flow elution peak that

occurred in the first weeks after the application of

the chloride tracer (Legout and others 2009a).

Model Outputs for the Different
Optimization Strategies

Water Drainage Flux

The study period 1999–2004 covered years with

variable weather conditions. The years 2003 and

2004 were very dry years and predicted water

drainage in the soil profile was low (Table 5): from

144 ± 5 to 151 ± 4 mm year-1 in 2003 at 120 cm

depth. The year 2000 was the wettest year of the

period: from 562 ± 7 to 564 ± 12 mm year-1 in

2000 at 120 cm depth.

At all depths, the annual water drainage fluxes

were lowest for the [Cl]Nat and highest for the

[Cl]Tracer strategies (Table 5). Differences between

optimization strategies were greater for the topsoil

layers (10 and 30 cm depth): the maximum dif-

ference was 61.3 mm at 10 cm depth (2002) and

114.8 mm at 30 cm depth (2000). Differences be-

tween optimization strategies decreased with

depth. At 80 and 120 cm depth, the predicted an-

nual water drainage fluxes were very similar for

Figure 4. Modeled (black line) and measured (red line) natural chloride concentration variations (lmol l-1) in tension-

cup lysimeters solutions at 10 and 30 cm depth for the three model parameter optimization strategies (‘‘Soil moisture,’’

‘‘Natural chloride’’ and ‘‘Tracer chloride’’) over the 1999–2004 period. The gray and red area around the lines represents

the uncertainty in modeled and measured data (Color figure online).
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the three different optimization strategies. The

maximum difference was 36.3 mm at 80 cm depth

(2004) and 30 mm at 120 cm depth (2004). The

uncertainty in the modeled annual water drainage

flux was very low (Table 5). Uncertainties were

relatively similar at all depths and only slightly

decreased with depth. At 30 cm depth, uncertain-

ties ranged from 5.9 to 11.0 mm year-1 for the h
strategy drainage fluxes, from 4.9 to 9.8 mm year-1

for [Cl]Nat, and from 4.2 to 8.4 mm year-1 for

[Cl]Tracer. At 80 cmdepth, uncertainties ranged from

4.8 to 11.7 mm year-1 for the h strategy drainage

fluxes, from 3.6 to 6.5 mm year-1 for [Cl]Nat, and

from 3.1 to 6.5 mm year-1 for [Cl]Tracer.

Nutrient Leaching Flux

No significant differences of annual nutrient leaching

flux were observed between the three optimization

strategies at 30 cm and 80 cm depth (Table 6). In

general, [Cl]Nat leaching fluxes were the lowest and

[Cl]Tracer leaching fluxes were the highest. However,

these differences were very small. At 30 cm depth,

the greatest annual leaching flux difference between

optimization strategieswas 0.1 kg ha-1 year-1 for Ca

(in 2001), 0.5 kg ha-1 year-1 for NO3 (in 1999) and

2.6 kg ha-1 year-1 for Cl (in 1999). At 80 cm depth,

the greatest annual leaching flux difference between

optimization strategieswas 0.1 kg ha-1 year-1 for Ca

(in 2001), 0.3 kg ha-1 year-1 for NO3 (in 1999) and

3.1 kg ha-1 year-1 for Cl (in 2001). For all three

optimization strategies, the model uncertainty asso-

ciatedwith predicted annual leachingfluxeswas very

similar between optimizations but decreased with

depth. For example, the Ca leaching flux uncertainty

ranged from 10 to 44% at 30 cm depth and from 4 to

19% at 80 cm depth. Uncertainties varied quite sub-

stantially between the different solutes. The highest

model uncertainties were observed for NO3: relative

standarddeviations ranged from10 to103%at30 cm

depth and from 18 to 72% at 80 cm depth.

The annual leaching flux was calculated by

coupling zero tension lysimeter solutions to the

modeled preferential water flow and tension-cup

lysimeters solutions to the modeled matric flow

(ZTL + TCL) Table 6). Ca, NO3 and Cl concentra-

tions varied quite substantially between soil solu-

tion types (ZTL or TCL) (Figure S2), most especially

Figure 5. Modeled (black line) and measured (red line) elution of the chloride tracer (lmol l-1) in tension-cup lysimeters

solutions at 80 and 120 cm depth for the three model parameter optimization strategies (‘‘Soil moisture,’’ ‘‘Natural

chloride’’ and ‘‘Tracer chloride’’) over the 2006–2007 period (Chloride tracer applied on March 8th 2006). The gray and

red area around the lines represents the uncertainty in modeled and measured data (Color figure online).
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for Ca. At 30 cm depth, the annual leaching flux

was on average greater (1.6 fold for both Ca and Cl)

and smaller (0.5 fold for NO3) for the ‘‘ZTL + TCL’’

method compared to the ‘‘TCL’’ method. At 80 cm

depth, for Cl, the annual leaching fluxes were very

similar between the ‘‘TCL’’ and ‘‘ZTL + TCL’’

methods. For NO3, the leaching fluxes were on

average greater for the ‘‘ZTL + TCL’’ method (re-

spectively, from 1.6 to 2.9 fold); however, differ-

ences were not significant due to the elevated

standard deviations (Table 6). Finally, for Ca, the

leaching flux was also greater (from 2.0 to 3.4 fold)

for the ‘‘ZTL + TCL’’ method and these differences

were significant.

DISCUSSION

The three calibration methods were compared

according to the uncertainty range of predicted

model parameters, the repeatability of the model

parameter uncertainty ranges, the goodness of fit

between modeled and measured data and finally

the uncertainty in the predicted water drainage

flux. Though the results showed only small varia-

tions in the modeled water drainage (Table 5) and

nutrient leaching outputs (Table 6), differences

between calibration methods were sufficiently sig-

nificant and enable one to discuss the efficiency of

each method according to the objective of the

modeling exercise:

1. Daily soil moisture calibration dataset was the

most efficient to model distribution of water

uptake and water drainage in the soil profile

(Table 4; Figure 3)

2. The experimental water tracing calibration da-

taset was the most efficient to model the parti-

tioning of matrix and preferential water flow in

the soil profile (Table 4; Figure 5)

3. The natural variations of chloride concentra-

tions in soil solution was the most versatile

calibration dataset and was efficient for model-

ing both preferential water flow, water uptake

distribution and water drainage in the soil pro-

file (Table 4).

Distribution of Water Availability
and Uptake in the Soil

Although the performance of the WatFor model at

reproducing soil moisture variations in the soil was

similar (Table 4) and satisfactory (mostly within

the measurement uncertainty) for all three cali-

bration strategies (Figure 3), soil drying and

wetting dynamics were, unsurprisingly, best

reproduced by the h strategy. Interestingly, the

goodness of fit between modeled and measured soil

moisture obtained with the [Cl]Nat strategy was

very similar to the h strategy because monitoring

soil moisture at experimental or monitoring sites is

expensive, such datasets are often unavailable and

hydrological models can only be calibrated using

the natural variations of chloride concentration in

the soil solution (Jonard and others 2012; Zanchi

and others 2014; Yu and others 2016). The results

of this study suggest that [Cl]Nat datasets may be

used to calibrate water balance models when no

soil moisture monitoring data are available.

The goodness of fit of the [Cl]Tracer strategy for

the soil moisture dataset was poorer than the two

other strategies (Table 4; Figure 3). Soil drying

dynamics in the upper part of the soil profile were

slower and less intense than observed in the mea-

sured data and the two other optimization strate-

gies. These differences are explained by different

estimated water uptake distribution parameters in

the [Cl]Tracer strategy (Table 3). Although the

uncertainty range for the root distribution param-

eters was lowest for the chloride tracer optimiza-

tion strategy (Table 3), the repeatability of the

upper and lower boundary estimates was also

lower compared to the two other strategies. Water

tracing experiments may thus not be best adapted

to estimate the water uptake distribution parame-

ters. This discrepancy between optimization

strategies may be explained by the fact that the data

from the water tracing experiment only covered ca

1.5 hydrological years (March 2006–December

2007). This single tracing experiment may not be

representative of the inter-annual climate vari-

ability observed over the 1999–2005 period. In the

h and [Cl]Nat strategies, model parameters were

optimized over a range of years (1999–2004) that

(1) did not overlap with the chloride tracing

experiment (2006–2007) and (2) varied from very

dry (for example, 2003 with 780 mm of rainfall) to

very wet (for example, 2000 with 1295 mm of

rainfall), while 2006 and 2007 were average years

with 992 mm and 1195 mm of rainfall, respec-

tively.

In the context of climate change, the resistance

and resilience of forest stands to drought is an

important concern in the forest management

community. Severe and/or repetitive droughts

may lead to a reduction of forest productivity

(Piovesan and others 2008; Kirchen and others

2017), tree mortality (Hülsmann and others 2016)

and in certain cases forest dieback (Bréda and

Quantifying the Uncertainty in Modeled Water Drainage 691
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others 2006) particularly in European Beech (Fa-

gus sylvatica L.) stands (Lebourgeois and others

2005; H. and others 2006). The response of tree

growth to drought has been shown to vary be-

tween beech stands probably in relation to soil

properties and soil hydrology (Lebourgeois and

others 2005; Pascale and others 2007). Forest soil

hydrological models such as WatFor enable to

predict soil water availability as a function of cli-

matic variables, study the water uptake strategies

of tree species (Granier and others 1999) and

therefore help understand and predict the conse-

quences of climate change of forest ecosystems.

Coupling forest growth and mortality models with

hydrological models may contribute to explain the

observed temporal and spatial variability of

ecosystem response to droughts (Hülsmann and

others 2016) and improve our understanding of

the relation between water availability in the soil,

reduced forest productivity and increased tree

mortality. Because modeled predictions of reduced

forest productivity and/or tree mortality and/or

forest dieback in the context of climate change

greatly influence future forest policies and forest

management (Allen and others 2010), it is

essential to evaluate and report the uncertainties

associated with model simulations (Beven 1989).

This is particularly true because singular extreme

drought events are likely to have a stronger im-

pact on tree species distribution limits than long-

term trends (Rasztovits and others 2014). It may

also be noted that model uncertainty assessment is

essential to compare the performance of different

models in a robust manner and hence improve

existing models.

The results of this study show that the GLUE

procedure is an efficient method to partly auto-

mate the model calibration procedure and to

estimate uncertainties associated with model

simulation of soil water content (Figure 3). Our

results suggest that soil moisture datasets are the

best choice to calibrate hydrological models in the

scope of predicting water availability in the soil

over time and that natural variations of chloride

concentration in soil solution may be used as a

substitute calibration dataset or validation dataset.

This particular result opens the possibility of

modeling forest soil hydrology, and thus coupling

soil hydrology models with forest productivity and

tree mortality models, in a broader range of

monitored ecosystems for which no soil moisture

data are available (for example, the European ICP

Forest Network).

Water Transfer Velocity and Importance
of Preferential Water Flow in the Soil
Profile

In many study cases, water tracing experiments

have provided conclusive evidence of the occur-

rence of preferential flow paths in the soil and are a

preferred tool to characterize and quantify these

flow paths (Deeks and others 2008; Allaire and

others 2009; Legout and others 2009a; van der

Heijden and others 2013; Yan and Zhao 2016). In

agreement, the results of the GLUE procedure

suggest that experimental water tracing data are

the most relevant of the three strategies to estimate

preferential flow generation model parameters. The

topsoil field capacity infiltration parameter bound-

aries strongly converged to a range of likely values

from 6.6 to 6.9 mm day-1 (Table 3). These

threshold values are within the 0.1 to 1 mm h-1

given for topsoils of loam and clay texture in Jarvis

(2007). Additionally, although the range of likely

values for the wilting point infiltration parameter

remained broad, the [Cl]Tracer strategy yielded the

best estimation for this parameter from a conver-

gence and repeatability point of view.

The modeling results also show that the perfor-

mance of the model at reproducing the water

tracing experiment with the [Cl]Nat calibration

strategy was very close to the [Cl]Tracer strategy.

This suggests that [Cl]Nat may also be used to esti-

mate preferential flow generation model parame-

ters. For both calibration strategies, the modeled

proportion of preferential flow was higher than

estimated from the water tracing experiment data:

approximately 17% (Legout and others 2009a).

This difference is likely explained by the simplistic

manner in which preferential flow paths and

preferential flow generation is represented in the

WatFor model. Water balance models need to

better represent these processes, most especially

when preferential flow represents an important

proportion of the water transfer in the soil profile.

The soil moisture optimization strategy failed to

reproduce the elution of the chloride tracer in the

soil profile probably because of the high uncer-

tainties associated with preferential flow genera-

tion parameters (Table 3). When preferential flow

is either not or poorly represented in hydrological

models, the modeled vertical transfer of the water

tracer is likely to be too fast because, when pref-

erential flow occurs, part of the percolation flux

does not participate in the piston effect on tracer

displacement (van der Heijden and others 2013).
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Model Uncertainty in Relation to Soil
Profile Depth

The water uptake distribution in the soil profile is a

key model parameter to estimate when the objec-

tive of the modeling approach is to predict soil

moisture and/or water drainage in the upper part of

a soil profile. The [Cl]Tracer calibration strategy is a

good illustration of this: small differences in water

uptake distribution (Table 3) caused important

differences in the water drainage flux (Table 5).

However, at the bottom of the soil profile, differ-

ences of annual water drainage flux between the

three calibration strategies were small. In addition,

for all three calibration strategies, the uncertainties

associated with the predicted water drainage flux

decreased from the topsoil to the bottom of the soil

profile. This result may appear counterintuitive

because the water drainage flux at the bottom of

the profile is the result of the sum of the water mass

balance in each soil layer and thus the sum of

uncertainties in each soil layer. However, in the

model, 100% of the water uptake is assigned to the

soil profile. From a water mass balance perspective,

differences in water uptake distribution may gen-

erate differences in water drainage in the upper

part of the soil profile but these differences are

evened out over the whole profile. Consequently,

in this study case, the uncertainty in the modeled

water drainage flux at the rooting zone boundary is

much less sensitive to the water uptake distribution

parameter. It must, however, be noted that the

climate at the Fougères site is oceanic and wet.

Under dryer climates, it is most likely that the

modeled water drainage flux at the rooting zone

boundary would be more sensitive to the water

uptake distribution parameter.

Nutrient Fluxes in the Soil Profile

The results of this study showed that the opti-

mization/calibration dataset selection did not have

a significant effect on the estimated nutrient

leaching fluxes in the soil profile (Table 6). To our

knowledge only a few studies have estimated

nutrient leaching flux uncertainty values and these

studies focused on watershed stream flow. At the

Hubbard Brook experimental forest, Campbell and

others (2016) reported uncertainty estimates for

the Ca flux in the streams of two paired watersheds

(5.1% and 6.9%) and Yanai and others (2015) re-

ported uncertainty estimates for NO3: from 5 to

30%. Uncertainty in nutrient export in stream flow

is likely to be smaller than at the rooting zone

boundary because, in the former, ‘‘discharge is

used as a multiplier to obtain the flux and can be

precisely observed’’ (Appling and others 2015). The

uncertainty associated with nutrient leaching was

smaller than expected. This is most likely due to the

fact that most of the estimated annual nutrient

leaching flux occurred during winter periods dur-

ing which uncertainties associated with both water

drainage flux and the spatial variability of mea-

sured concentrations were low (data not shown).

Although we cannot generalize the results of this

case study, they suggest that, depending on (1) the

nutrient considered and (2) the relative importance

of the leaching flux in the input–output budget, the

leaching flux may represent an important source of

uncertainty in input–output budgets calculated for

the soil profile.

Uncertainties in the calculation methodology (for

example, coupling of drainage water with measured

soil solution concentrations) may cause higher le-

vels of uncertainty for the leaching flux estimates.

The importance of the water sampling system

(tension cup and zero tension lysimeters) with re-

gard to the objectives of ecosystem studies has been

discussed by numerous previous studies (Hender-

shot and Courchesne 1991; Marques and others

1996; Weihermuller and others 2007; Legout and

others 2009a; Watmough and others 2013). Zero

tension lysimeters are commonly considered to be

best adapted to compute nutrient leaching fluxes in

the soil profile and thus input–output budgets.

However, zero tension lysimeters solutions are not

representative of all mobile soil water (Weiher-

muller and others 2007): weakly bound soil water,

which is mobile in the soil through matric flow

(Legout and others 2009a; van der Heijden and

others 2013), is not collected by these lysimeters.

On the other hand, tension-cup lysimeters mainly

collect weakly bound water but have also been

shown to collect preferential flow water (Legout

and others 2009b). Therefore, it may not be con-

cluded which water type chemistry is the most

adequate to estimate nutrient leaching fluxes but at

sites where preferential flow plays an important

role in the soil water fluxes, this additional uncer-

tainty should be taken into account.

This uncertainty associated with water type used

to calculate the nutrient leaching flux was assessed

for the [Cl]Nat strategy (Table 6). The results show a

potentially important solute-dependent effect of

the calculation methodology on nutrient leaching

estimates. We cannot conclude from this data

which calculation methodology is best adapted to

compute input–output budgets but our results

highlight the importance of the water type selec-

tion on the nutrient leaching flux estimate and the
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importance of better understanding how the dif-

ferent water types interact and transfer in the soil

profile.

Using Natural Chloride Concentration
Datasets to Calibrate Water Balance
Models

The results of this study showed that the [Cl]Nat
strategy was the most versatile of the three opti-

mization strategies tested and enabled to satisfac-

torily reproduce both soil moisture, natural

variations of chloride concentrations and the elu-

tion of a chloride tracer in the soil profile. This re-

sult was not expected given the rather low

variability over time and/or seasonality of mea-

sured chloride concentrations in soil solution (Fig-

ure 4). This was particularly true in the deeper soil

layers where the measured variability over time

and/or seasonality was often within spatial vari-

ability. Model parameter optimization therefore

mainly relied on reproducing the mean concen-

tration level and the trends in the dataset.

At this site, it appears that natural variations of

chloride concentrations in this European beech plot

are mainly controlled by water pools and fluxes in

the soil with little influence of the biological cycle

of chloride. This is supported by the chloride input–

output budget calculated for this plot which was

close to zero (on average 2 ± 9 kg ha-1 year-1

over the 1999–2004 period). However, in some

reported cases, the biological cycling of chloride in

forest ecosystems (Svensson and others 2012;

Montelius and others 2015) has been shown to

greatly influence chloride fluxes in the soil profile

thus questioning its’ use as an ideal tracer of water.

In such cases, natural variations of chloride con-

centrations may still be used to calibrate water

balance models but precautions must be taken

when no other calibration dataset is available.

Hydrological models may also be used as an indi-

cator of the influence of the biological cycle on the

geochemical cycle of chloride.

CONCLUSION

The choice of the dataset used to calibrate water

balance model parameters is not trivial and influ-

ences model parameter estimates and model out-

puts. The selection of the calibration dataset should

be adapted to the objectives of modeling approach.

The modeling data of this study support all three

hypotheses that this study aimed to test. The soil

moisture dataset was the most adequate to model

water availability and water uptake distribution in

the soil profile (H1). The water tracing experi-

mental dataset was the most adequate to model

preferential water flow paths (H2). Natural varia-

tions of chloride concentrations in the soil solution

was also a very relevant dataset to calibrate the

water balance model (H3) and provided the most

versatile calibration of the WatFor model satisfac-

torily reproducing all three datasets (daily soil

moisture measurements, monthly measurements

of chloride concentrations in soil solution, and the

elution of a concentrated chloride tracer).

This modeling approach suggests that model

parameter uncertainties cause only little uncer-

tainty in the modeled water drainage flux at the

rooting zone boundary. Uncertainty in nutrient

leaching is, however, more important due to the

high spatial variability of soil solution concentra-

tions. Finally, our results also show potentially high

uncertainties may be associated with our incom-

plete knowledge of the chemical composition

(water types) and the different (preferential and

matric) components of the water drainage flux.
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