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ABSTRACT

Understanding drivers of ecosystem structure and

function is a pervasive goal in academic and applied

research. We used 24 synthetic ecosystem-level

indices derived from trophic models, and inde-

pendently derived data for Net Primary Productiv-

ity, to investigate drivers of ecosystem structure

and function for 43 marine ecosystems distributed

in all oceans of the world and including coastal,

estuaries, mid-ocean islands, open-ocean, coral

reef, continental shelf, and upwelling ecosystems.

Of these indices, ecosystem Biomass, Primary Pro-

duction, Respiration, the ratio of Biomass to Total

System Throughput (sum of total energy flow into

and out of an ecosystem as well as between

ecosystem components), the ratio of Production to

Biomass, Residence Time (mean time that a unit of

energy remains in the ecosystem), Average Trophic

Level, and Relative Ascendency (index of organi-

zation and complexity of a food web) displayed

relationships with measures of Net Primary Pro-

ductivity (NPP). Across all ecosystems, relation-

ships were stronger with seasonal and interannual

variability of NPP as compared to mean NPP. Both

measures of temporal variability were combined

into multivariate predictive relationships for each

ecosystem index, with r2 values ranging from 0.14

to 0.49 and Akaike’s information criteria values

from - 8.44 to 3.26. Our results indicate that de-

spite large geographic and environmental differ-

ences, temporal variability of NPP is strongly linked

to the structure and function of marine ecosystems.

Key words: ecosystem modeling; network analy-

sis; Ecopath with Ecosim (EwE); net primary pro-

duction; energetics; ecology; ecosystems.

INTRODUCTION

Ever since the inception of ecology as a field of

science, a major challenge has been to understand

the drivers of ecosystem structure and function

(Levin 1995). Yet due to the sheer magnitude and

complexity of ecosystems, the difficulties associated

with quantifying all the vital processes of an

ecosystem, or with conducting experiments at an

ecosystem scale, this goal has remained elusive.

The majority of past ecological studies attempt to

focus on individual processes or to scale dynamics
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down to manageable scopes (Elton 1930), leading

to a wide variety of discoveries that apply to specific

circumstances, but lack a consistent mechanistic

framework applicable across ecosystems. However,

modern advancements in analytical tools and data

collection are slowly beginning to overcome the

obstacles of complexity and scale (Colléter and

others 2015). Ecology has also expanded into a

multidisciplinary field over the past few decades,

whereby a diverse set of approaches to ecological

questions have led to a multitude of new insights

and breakthroughs (Irschick and others 2013).

These recent developments and additions to eco-

logical thinking have opened the door for scientists

to overcome the challenges of scale as well as to

create a broadly applicable and consistent frame-

work with which to explore the universal drivers of

ecosystem structure and function (Heymans and

others 2014; Link and others 2015).

Our understanding of ecosystems has come a

long way from the simplified descriptions of food

chains or Lotka–Volterra interactions. There is now

a deeper appreciation of their vast complexity,

which is characterized by a high degree of inter-

linked elements that interact on multiple scales.

This holistic perspective incorporates the nonlinear

processes, indirect effects, and emergent properties

that play a major role in ecosystem behavior (Levin

1998). Ecosystems are hierarchal (Wu and David

2002), self-organizing networks (Jørgensen and

others 1998), driven by the flow of energy and

material (Reichle and others 1975). A central focus

of this viewpoint emphasizes the philosophy that

the whole is more than the sum of its parts and this

depiction of ecosystems has shed light on the

existence of a general set of driving principles

among a seemingly endless sea of variables and

unknowns (Odum 1969; Fath and others 2001).

Eugene P. Odum was one of the first scientists to

look at ecosystems from a holistic point of view. By

observing large-scale changes across ecosystems

during successional events, he was able to identify

general trends in productivity, biomass, and energy

recycling over time (Odum 1969). He saw that

ecosystems become bigger, more efficient, and

more complex as they develop. The true signifi-

cance of this study lies in Odum’s introduction of

the idea that one may not need to fully understand

all of the intricate details and countless interactions

of an ecosystem to predict how it will behave. In-

stead there may be a general set of rules or prin-

ciples that drive ecosystem structure and function.

Robert May and several other scientists took this a

step further by identifying a number of mathe-

matical guidelines (May 1973) governing the

behavior of model food webs that relate their

structure to functional aspects of stability and re-

silience across multiple systems (Margalef 1963).

This work has led to a lot of research focusing upon

the role of biodiversity in ecosystem functioning

(Loreau and others 2001; Soliveres and others

2016). Scientists have developed several goal

functions, or ecosystem orientors, that describe

consistent multi-scale patterns of ecosystem

development in terms of the flow of energy and

material (Christensen 1995; Müller and others

1998; Fath and others 2004). These goal functions

are mainly derived from Odum’s initial observa-

tions of ecosystem development and make use of

energy accounting and the basic laws of thermo-

dynamics.

As support for the existence of general rules

governing ecosystem structure and function con-

tinue to increase, the role of energy has emerged as

a central component. Energy is one of the primary

unifying characteristics of all life, from cells to

ecosystems. Energy availability, extraction, and

efficient use serve as major evolutionary driving

forces (Lotka 1922). Due to this ubiquitous role,

energy dynamics also provide a consistent frame-

work for ecological comparisons (Ruiter and others

1995). This idea is certainly not new, and there are

entire fields dedicated to the study of energy flow

and storage within individuals and even ecosys-

tems (Lindeman 1942; Townsend 1987). Using

thermodynamic principles along with biogeo-

chemical and bioenergetic data, it is now possible to

analyze how much energy enters an ecosystem in

the form of primary production, flows through it,

and is stored as biomass into living organisms

(Tomlinson and others 2014). In particular, satellite

data (Smyth and others 2005) and trophic food web

models (Fulton 2010; Colléter and others 2015)

allow for the comparison of energetic inputs, out-

puts, and storages of entire ecosystems. A major

advantage of this approach is that complexity and

detail can be synthesized into summary indices that

allow for the quantification of structure and func-

tion for any given ecosystem, and these charac-

teristics can be compared across ecosystems at a

global scale.

This study set out to identify global patterns in

holistic properties of ecosystems: their size, effi-

ciency, and complexity, to explore the existence of

universal drivers of ecosystem structure and func-

tion. We used two approaches to measure energy

flow and storage: (1) Satellite-derived values of net

primary production (NPP) are compared with (2) a

variety of energetic attributes extracted from

ecosystem models representing 43 different marine

332 A. J. Schlenger and others



ecosystems to identify general patterns. Satellite

measures of NPP and indices derived from ecosys-

tem models serve as completely independent data

sources. From these comparisons, it is possible to

identify consistent ecosystem-scale characteristics

across a diverse set of systems, which not only shed

light on the fundamental evolutionary processes of

ecosystem development, but also may provide

quantitative evidence for the existence of universal

principles related to ecosystem-scale energy flow.

METHODS

Satellite Data

NPP is defined in this study as the production de-

rived from phytoplankton. Global estimates of NPP

were obtained from the Centre for Environmental

Data Analysis (CEDA) (Met Office 2017). The

CEDA derived these data from monthly estimates

of carbon primary production from the Centre for

the Observation of Air–sea Interaction and fluXes

(CASIX) using Sea-viewing Wide Field-of-view

Sensor (SeaWiFS) Primary Data (Oreilly and others

1998). The data set used in this study is comprised

of monthly means of NPP in mgC*m-2*day-1 for

10 km 9 10 km grid cells from 1998 to 2005. The

applied NPP model incorporates a radiative transfer

code, which allows for the inclusion of dissolved

organic matter and suspended particulate matter,

along with measures of surface chlorophyll, pho-

tosynthetically available radiation, and sea surface

temperature to calculate production (Smyth and

others 2005). The incorporation of a radiative

transfer into the NPP model improves global NPP

estimates by increasing the accuracy of NPP esti-

mates in waters with high concentrations of dis-

solved matter and reducing the RMS between

observed and predicted values to 0.23. However,

moderate-resolution imaging spectroradiometer

(MODIS) chlorophyll algorithms tend to overesti-

mate dissolved organic matter in coastal waters,

which can lead to an underestimation of primary

production (Moore and others 2009).

Ecosystem Models

The ecosystem models selected for this study were

developed using Ecopath with Ecosim (EwE)

(Christensen and Pauly 1992; Pauly 2000). EwE is a

software package that comprises several modules

(Ecopath, Ecosim, and Ecospace) for building mass

balance as well as time and space dynamic models

of ecosystems and includes a large set of diagnostics

for analyzing food webs. These features plus its

flexibility and user-friendly interface make EwE

one of the most widely applied modeling ap-

proaches for food web representation and scientific

analysis (Walters and others 2005; Plagányi 2007).

We used only the Ecopath component, a platform

for building static ecological networks (that is, food

webs) where network components are defined as

functional groups (representing species or groups of

species) and the interactions between components

are trophic interactions quantified using bioener-

getics (Christensen and Walters 2004). The major

inputs for each component of the network include

biomass, production and consumption rate, food

preferences, unassimilated fraction, and fishing

catches. Additional inputs include immigration,

emigration, and biomass accumulation, while

mortality and respiration are estimated by the

model. Values for these parameters typically rep-

resent yearly averages over a small subset of years.

Ecopath calculates a static mass-balanced snapshot

of the biomass and energy fluxes between func-

tional groups in a food web. The mass balance is set

in a way that consumption of any given component

is subtracted by all losses including bioenergetics

ones (respiration, excretion), predation, eventual

net migration, and mortality due to anthropogenic

factors (that is, fishing). Remaining biomass can

accumulate or result in an estimate of other mor-

talities unexplained by the model (summarized

into the parameter Ecotrophic efficiency (Chris-

tensen and Walters 2004). A database of available

EwE models is available through EcoBase (Colléter

and others 2015).

Models were selected for use in this study based

upon two general objectives. First, we constrained

the influence of eutrophication and fishing effects.

Information regarding the degree of eutrophication

in ecosystem locations was provided by the World

Resources Institute (WRI) (Selman and others

2008). The ratio of production to respiration (P/R)

derived from Ecopath models represents the ratio of

energy input to energy output in an ecosystem and

might reflect the trophic status of a system. This

was compared with WRI information to assure that

local empirical and model-aggregated information

was in agreement in spite of differences in resolu-

tion and spatial mean. Values of this ratio for sys-

tems with EwE models identified by the WRI as

noneutrophic, all fell within a range of 1–3.5,

whereas 88.9% of all systems identified by the WRI

as eutrophic had values above this range. There-

fore, any systems that were identified as eutrophic

by the WRI or with a ratio of production to respi-

ration above 3.5, were not selected for this study.

The impact of fishing was limited by selecting

model versions where fishing mortality was at its
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lowest for ecosystems with multiple model ver-

sions. (Complete removal was not possible.) For

example, many ecosystems had two or more model

versions representing different time periods with

subsequently different commercial fishing pres-

sures. When multiple model versions were avail-

able for different time periods, the period with the

lowest fishing mortality across components was

selected. Second, because model structure alters

the simulated direct and indirect trophic impacts as

well as subsequent energetic and organizational

indices (Abarca-Arenas and Ulanowicz 2002),

models with less than 20 components (or func-

tional groups) were considered over-aggregated

and not included in this study.

Once a suite of models was selected based upon

the above criteria, a principle components analysis

using synthetic ecosystem indices was conducted to

identify any obvious outliers. Five models were

identified and removed using the principle com-

ponents analysis (PCA). A total of 43 Ecopath

models met the requirements for inclusion (Ap-

pendix 2, ESM, and Figure 1), representing

ecosystems spanning 130� of latitude, and includ-

ing all major ocean basins and a wide variety of

ecosystem types, including 13 coastal ecosystems,

three estuaries, two mid-ocean islands, five open-

ocean ecosystems, one coral reef, 12 continental

shelf ecosystems, and seven upwelling ecosystems.

Ecosystem Indices and Definitions

A total of 24 synthetic ecosystem indices were ex-

tracted from Ecopath models and explored (Ap-

pendix 1, ESM). Synthetic indices describing

ecosystem-level properties related to macro-scale

measures of ecosystem energy flow and storage as

well as ecosystem structure and complexity char-

acterize ecosystem-scale properties (combined

measures of all ecosystem components), as opposed

to specific properties (individual components or

attributes at smaller scales within an ecosystem)

(Christensen 1995; Müller and others 1998; Fath

and others 2004). Each ecosystem index was

compared with measures of mean NPP as well as

seasonal and interannual variability in NPP. Al-

though geographic location (high versus low lati-

tude) and ecosystem type were also explored as

potential drivers of observed patterns within these

indices, preliminary results showed that neither

played a significant role and there was no identi-

fiable clustering of ecosystems by these variables in

comparison with measures of NPP.

Statistical Analyses

For each ecosystem, monthly estimates of NPP

(mgC*m-2*day-1) per 1� latitude by 1� longitude

grid cell were spatially averaged over a 10 9 10

grid cell area. Although the geographic extent of

Figure 1. Global map of ecosystem locations differentiated by ecosystem type, selected for this study; coastal (circle),

estuary (+), island (X), ocean (star), reef (*), shelf (square), and upwelling (diamond).
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each ecosystem varied widely, we selected a

10 9 10 grid cell area within each ecosystem to

control for those differences. The location of each

sample area was chosen by using the latitude and

longitude information provided by each ecosystem

model to identify the ecosystem boundaries. For

ecosystems that had much larger areas than

10 9 10 grid cells, latitude and longitude infor-

mation was used to identify a central point, which

was also designated as the center of the sample

area. When explicit information regarding spatial

dimensions of an ecosystem was missing, locations

were determined by using respective maps found in

model publications. Only marine cells were used

for ecosystems adjacent to a coastline.

Monthly values of NPP were calculated over the

period of available NPP estimates (1998–2005) to

create time series for each ecosystem. Ecosystem

indices were then compared with mean NPP

(1998–2005 means) and interannual and seasonal

variance in NPP. Interannual variance was calcu-

lated as the mean square (MS) of deviations be-

tween years, and seasonal variance was calculated

as the mean square (MS) of deviations between

months within a year. Regression models relating

mean, and seasonal and interannual variability of

NPP to each index were derived. In addition, due to

a high degree of covariance in the MS of interan-

nual and seasonal variability, both measures of

temporal variability were simultaneously compared

to each synthetic index; these are depicted in 3-

dimensional plots as multivariate regression sur-

faces. Moreover, because the use of mean squares

of deviation to measure seasonal and interannual

variability has the potential to introduce bias into

the analysis because it generally correlates with the

maximum productivity of an ecosystem, the entire

analysis was also done using coefficients of varia-

tion (CV) for both seasonal and interannual vari-

ability. Model selection for both pairwise and 3-

dimensional comparisons between measures of

NPP and ecosystem indices was conducted using

Akaike’s information criteria (AIC) and compara-

tive F tests. AIC values were chosen individually for

mean NPP, seasonal, and interannual variability

when doing pairwise comparisons for each index as

well as for the combined seasonal and interannual

variability 3D models. Within each category, sev-

eral linear and polynomial models were created,

and the lowest AIC value was used for selecting the

model for each respective index. AIC values

used for predictive model selection ranged between

- 5.83 and 3.26. Random permutation tests were

also conducted in order to estimate distributions of

r2 values extracted from randomly generated data

sets, keeping the same polynomial models with

newly fitted parameters.

The above analysis was also conducted using

areas of 5x5 grid cells (5o latitude by 5� longitude)
and 1 9 1 grid cell (1� latitude by 1� longitude) to
identify the influence of spatial scale. Paired t tests

were used to compare mean NPP, MS of interan-

nual variability, and MS of seasonal variability ex-

tracted using 1 9 1, 5 9 5, and 10 9 10 grid cell

areas. All comparisons showed that spatial resolu-

tion did not significantly influence values of NPP

extracted from each ecosystem location (minimum

p value of 0.053). Two-dimensional Kolmogorov–

Smirnov tests were also used to compare the rela-

tionships between ecosystem indices with NPP data

extracted at different scales. All comparisons re-

sulted in no statistical differences between rela-

tionships observed at each scale. Therefore, we

present only results based on 10 9 10 grid cell

areas.

RESULTS

Results were generally consistent between both

absolute (MS) and relative (CV) measures of vari-

ability, suggesting that there was no significant

difference and results with MS and CV were con-

sistent for all ecosystem indices. For the sake of

simplicity and synthesis, as well as to facilitate a

more direct interpretation, the MS results are re-

ported here. Of the 24 synthetic ecosystem indices

explored, 8, listed below, displayed significant

relationships (P value £ 0.05) with satellite mea-

sures of mean NPP or its variability. (1) ‘Biomass’

represents the total wet weight of living organisms

in the system (tons/km2). Biomass serves as a

measure of energy storage in an ecosystem. (2)

‘Primary Production’ (PP) refers to the amount of

energy entering an ecosystem to be incorporated

into biomass by autotrophs in tons/km2/year. PP

serves as the major input of energy into an

ecosystem. (3) ‘Respiration’ refers to the amount of

energy leaving the system through metabolic pro-

cesses in tons/km2/year and constitutes the major

energetic output of ecosystems. (4) ‘The ratio of

Production to Biomass’ (P/B) is a measure of how

much production is needed to support each unit of

biomass within an ecosystem. Production is ex-

pected to exceed respiration in immature ecosys-

tems as biomass begins to accumulate, resulting in

higher values (Winberg and others 1972). Lower

values are expected in mature systems where the

amount of biomass supported by available energy

reaches a maximum and the majority of energy is

used in maintenance. (5) ‘The ratio of Biomass to
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Total System Throughput’ (B/TST) is used as a

measure of the amount of biomass maintained per

unit of energy flowing through an ecosystem. Total

system throughput represents the total flows of the

ecosystem, including flows between ecosystem

components and flows between the ecosystem and

the exterior. The value of this ratio increases as

ecosystems mature (Fath and others 2001). (6)

‘Residence Time’ is the mean time that a unit of

energy remains in the system and is calculated as

the total system biomass over the sum of all

outputs (respiratory and export flows) from the

system. Residence time is assumed to increase in

mature systems as energy is efficiently retained in

the system (Fath and others 2001). (7) ‘Average

Trophic Level’ of the community is used to syn-

thesize the structure of the food web and gives a

general idea of system complexity. (8) ‘Relative

Ascendency’ is an index of organization and

complexity of a food web and is a useful ratio for

observing where an ecosystem is along its

developmental pathway. It represents the trade-

off between efficiency of energy flow (high

ascendency) and redundancy in energy flow

(system overhead) moving from primary produc-

ers to top predators in an ecosystem context

(Monaco and Ulanowicz 1997). For example, a

river delta would be considered a system with a

low relative ascendency (high redundancy in

pathways), whereas a single river channel would

have a high relative ascendency (high efficiency

of flow). Christensen (1995) found that relative

ascendency had a very strong correlation with

system maturity.

Mean NPP displayed weak relationships with

most indices, with r2 values below 0.1 for all but 2

of the 8 (Biomass and Average Trophic Level; Ta-

ble 1). The very low r2 associated with the rela-

tionship between mean NPP from satellite data and

Primary Production from Ecopath models is likely

due to the difference in source, timing of sampling,

coverage, and temporal resolution of measures,

although the analysis done using CV’s resulted in a

higher r2. Unexpectedly, temporal variability of

NPP (both seasonal and interannual) had stronger

relationships than mean NPP for 7 of the 8

ecosystem indices (Table 1). With one exception

(Average Trophic Level), r2 values from regression

models of seasonal and interannual variability with

each index were larger (1.4–27 times larger) than

model fits with mean NPP. Furthermore, relation-

ships between each index and seasonal and inter-

annual variability of NPP were independent of

ecosystem type or latitude (Figure 2). R2 values

derived from multivariate relationships between

both measures of variability and each ecosystem

index were consistently higher than individual

comparisons with either seasonal or interannual

variability. R2 values for these multivariate rela-

tionships ranged from 0.15 to 0.49, and AIC values

fell between - 8.44 and 3.26 (Table 2).

Comparisons of the log of Biomass with mean

NPP showed a weak, yet statistically significant (P

value = 0.0036), unimodal relationship (r2 = 0.18,

p = 0.001). Stronger relationships were identified

when compared to the MS of interannual and

seasonal variability (r2 = 0.27 and r2 = 0.4,

respectively). The 3-dimensional multivariate

model comparing Biomass with both modes of

variability (Figure 2) has an R2 value of 0.46. When

plotting each ecosystem data point in 3-dimen-

sional space along the predictive surface, there was

no identifiable clustering of systems based upon

ecosystem type or latitude.

Three-dimensional relationships between Pri-

mary Production (r2 = 0.16) and Respiration

(r2 = .2) to interannual and seasonal variability

displayed similar patterns to each other (Figure 3).

Both showed strong positive increases with

increasing seasonal variability and only a negligible

response to interannual variability. Primary Pro-

duction showed a weak relationship with mean

NPP (q = 0.33, p = 0.03); the relationship between

Respiration and mean NPP was not significant.

P/B (r2 = 0.15), B/TST (r2 = 0.19), and Residence

Time (r2 = 0.14) all displayed similar unimodal

patterns when compared to interannual and sea-

sonal variability (Figure 4), but with P/B having an

opposite trend. P/B was lowest at intermediate

values of seasonal variation and higher at either

extreme, whereas increasing interannual variabil-

ity leads to minor increases in this ratio along the

entire surface. The highest values for B/TST and

Residence Time were observed at intermediate le-

vels of seasonal variability. Increasing interannual

variability had a minor positive influence at low

values of seasonal variability and a minor negative

influence at high values of seasonal variability.

These indices did not display any significant rela-

tionships with mean NPP.

The 3-dimensional relationship between Relative

Ascendency (r2 = 0.49) and variability (Figure 5)

displayed a unimodal, valley-shaped pattern with

the lowest values extending along the line of both

increasing interannual and seasonal variability. The

higher values extended along this valley at either

extreme of interannual variability except when

seasonal variability was also at its highest. The 3-
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dimensional surface comparing the Average

Trophic Level (r2 = 0.22) of each ecosystem with

variability (Figure 5) displayed a strong positive

relationship with increasing seasonal variability,

while interannual variability had a negative influ-

ence. Both Relative Ascendency and Average

Trophic Level did not show significant relationships

with mean NPP.

DISCUSSION

Limitation of the Approach
and Uncertainty in Ecopath Modeling

The relationships identified here, although sig-

nificant, have low r2 values. This is not surprising

when comparing things as complex as ecosys-

tems, which involve a myriad of interacting

Table 1. Relationships Between 8 Ecosystem Indices Derived from Ecopath with Ecosim and Net Primary
Productivity (NPP) for 43 Marine Ecosystems

Index Proxy for Mean NPP MS of seasonal

variability

MS of interannual

variability

AIC r2 AIC r2 AIC r2

Biomass Energy storage - 1.9122 0.1896 - 2.2098 0.3982 - 2.0121 0.2666

Primary Production Energy input - 1.5957 0.0991 - 1.6635 0.1581 - 1.5655 0.0715

Respiration Energy output - 1.696 0.088 - 1.8231 0.1968 - 1.7279 0.1568

Production/biomass (P/B) Energy use efficiency - 2.3179 0.0137 - 2.4115 0.1427 - 2.331 0.0708

Biomass/total system

throughput (B/TST)

Energy use efficiency - 8.3934 0.0278 - 8.5053 0.1702 - 8.4265 0.1022

Residence time Energy recycling - 5.8241 0.009 - 5.9111 0.133 - 5.8521 0.0802

Relative Ascendency Structural complexity 3.6726 0.0081 3.4713 0.189 3.4315 0.2206

Average Trophic Level Structural complexity - 2.6699 0.2633 - 2.4172 0.0064 - 2.4759 0.063

Mean, seasonal, and interannual (see text for details).
MS = mean squares and AIC = Akaike’s information criteria.

Figure 2. Relationships between ecosystem biomass and interannual and seasonal variability in net primary production

(r2 = 0.46) (AIC = -2.2). Ecosystems (n = 43) located in higher latitudes ( £ -30� and ‡ 30�) (black) and ecosystems

located in lower latitudes (‡ -30� and £ 30�) (gray) are separated by ecosystem type: coastal (circle), estuary (+), island

(X), ocean (star), reef (*), shelf (square), and upwelling (diamond). Histogram (top right) depicts r2 distributions from a

random permutation of model fits using randomized coefficients with the red line representing the model fit of the original

data.
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components and indirect effects. It is common,

however, to observe low r2 values for relation-

ships comparing multiple ecosystems (Low-Déc-

arie and others 2014) because of high ecological

variability observed in natural systems. The

ecosystem models allow for the synthesis of

ecosystem complexity, including its variability

across time, permitting simple comparisons of

ecosystem properties. An important drawback of

this approach is that observed relationships are

strongly dependent on uncertainty of models

used.

Table 2. Multivariate Relationships Between Synthetic Ecosystem Indices and the MS of Interannual and
Seasonal Variability Along with Their Respective Model AIC Values, the Number of Coefficients Used in Each
Model, and r2 Values

Index 3D model AIC # Model coefficients Degrees of freedom r2

Biomass - 2.2 5 38 0.46

Primary Production - 1.67 3 40 0.16

Respiration - 1.78 3 40 0.20

Production/biomass (P/B) - 2.32 5 38 0.15

Biomass/total system throughput (B/TST) - 8.44 5 38 0.19

Residence time - 5.83 5 38 0.14

Relative Ascendency 3.26 9 34 0.49

Average Trophic Level - 2.61 3 40 0.22

Figure 3. Relationships between interannual and seasonal variability in Net Primary Productivity (NPP) and Primary

Production (r2 = 0.16) (AIC = -1.67) (top) and respiration (r2 = 0.2) (AIC = -1.78) (bottom) estimates to measures of the

log MS of interannual and seasonal variability in net primary production. Histograms as in Figure 2. Black dots denote

ecosystem (n = 43) locations in variable space.
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Ecopath models are subject to the challenges of

uncertainty faced by all ecosystem-scale modeling

approaches that integrate extensive information

and incorporate interactions between a wide

variety of taxa. The abundance of model param-

eters, the aggregation chosen, and the scale of the

model application can lead to the potential

introduction and amplification of uncertainty.

This challenge was partially addressed by

removing Ecopath models vulnerable to signifi-

cant sources of uncertainty, that is, only models

with well-documented input parameter data

sources, detailed in academic publications and

reports, were selected. To reduce possible sources

of bias, the selected models cover broad areas

around the world and were each built indepen-

dently by distinct teams of scientists and re-

searchers. Furthermore, models with parameter

distributions identified as outliers through prin-

ciple component analyses were not selected.

Anthropogenic influences on natural processes

were also constrained by removing heavily fish-

Figure 4. Relationships between interannual and seasonal variability in Net Primary Productivity (NPP) and P/B

(r2 = 0.15) (AIC = -2.32) (top), B/TST (r2 = 0.19) (AIC = -8.44) (middle), residence time (r2 = 0.14) (AIC = -5.83)

(bottom) estimates to measures of the log MS of interannual and seasonal variability in net primary production.

Histograms as in Figure 2. Black dots denote ecosystem (n = 43) locations in variable space.
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eries-oriented ecosystems where possible or those

exposed to significant levels of eutrophication.

Nevertheless, comprehensive ecosystem model-

ing would require field measurements and valida-

tion of all ecosystem rates and abundances in the

same area over the same period of time, which

involves extensive effort and resources to carry out.

Because of these challenges, it is common to use

empirical relationships, defined on the basis of

species-specific relationships, to provide reliable

estimates of yearly average rates (Pauly and Mor-

gan 1987; Brey 1990; Middelburg and others 1997;

Froese and Binohlan 2000), which might represent

an inherent and unavoidable limitation of any

ecosystem model (Plagányi 2007). Assuming that

an ecosystem is the result of a series of adaptations

to local seasonal and interannual variability, the

steady state of the average year is a good repre-

sentation of such adaptations. Analyzing ecosystem

dynamics at finer timescales would require much

more detailed data, which is not always available.

The complexity of Ecopath models, and the fact

that some input parameters are estimated with low

reliability, results in large uncertainty for some

estimated values by functional groups. Ecotrophic

efficiency is one such parameter that has been

shown to be sensitive to uncertainty in Ecopath

inputs (Essington 2007). However, the impact of

uncertainty in input parameters on Ecopath model

outputs has been addressed through the incorpo-

ration of Monte Carlo and other input parameter

probability distribution methods into Ecopath and

Ecosim (Kavanagh and others 2004) through

which studies have found that parameter input

combinations from Monte Carlo-derived models

with the best fit to time series generally showed

only slight changes from original base Ecopath

model parameter inputs (averaging ± 20%)

Figure 5. Relationships between interannual and seasonal variability in Net Primary Productivity (NPP) and Average

Trophic Level (top) (r2 = 0.22) (AIC = -2.61) and Relative Ascendency (r2 = 0.49) (AIC = 3.26) (bottom) estimates to

measures of the log MS of interannual and seasonal variability in net primary production. Histograms as in Figure 2. Black

dots denote ecosystem (n = 43) locations in variable space.
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(Shannon and others 2004; De Mutsert 2010; Li

and others 2014). Nevertheless, this study does not

directly use outputs for individual species and

functional groups, but ecosystem-wide indicators.

The influence of parameter uncertainty on syn-

thetic ecosystem indices was tested in Guesnet and

others (2015) for the Bay of Biscay, an Ecopath

model used in this study. Through the introduction

of uncertainty to Ecopath input parameters, this

study assessed how estimates of ecosystem indices

derived from the original Ecopath model inputs

compared to output index distributions derived

from varying levels of uncertainty. All ecosystem

index values derived from the original base Eco-

path model fell within subsequent index distribu-

tions following the incorporation of uncertainty.

The results obtained by Guesnet and others (2015)

suggest that ecosystem indices produced by Eco-

path are not significantly affected by uncertainty in

original ecosystem model input parameters below

differences of 40% from true values.

Another consistent problem facing EwE ecosys-

tem modeling is the lack of resolution and detail

among lower trophic levels. This is likely repre-

sentative of sampling bias and the ease of quanti-

fying larger organisms versus microscopic

communities, but also potentially due to bias

introduced by model developers, which generally

come from fisheries or high trophic level back-

grounds. While Ecopath models tend to be fisheries

oriented and many lack higher resolution among

the lower trophic level groups, the major energy

flows and storages of the whole ecosystem are, al-

though aggregated, implicitly represented. As such,

more resolution of high trophic levels compared to

lower trophic levels does not directly influence the

synthetic ecosystem indices presented (see, for

example, Abarca-Arenas and Ulanowicz 2002;

Angelini and Agostinho 2005). However, although

the use of yearly averages for Ecopath input

parameters is suitable for capturing high trophic

level dynamics, it does not fully capture the smaller

timescale variability of low trophic level popula-

tions. Although this, in turn, can influence esti-

mates of model primary production, and therefore

indirectly affects synthetic ecosystem indices, pre-

liminary analyses showed a significant correlation

between mean NPP from satellite data and Ecopath

model estimates. Despite the potential indirect ef-

fects of overaggregation in lower trophic levels,

preliminary analyses also showed that the total

amount of functional groups across Ecopath mod-

els, which serves as a proxy for aggregation, were

not significantly correlated with synthetic ecosys-

tem indices and this is supported by previous

studies (Heymans and others 2014).

In many instances, low trophic level flows are

obtained from model estimates assuming average

rates and biomasses (D’Alelio and others 2016) or

imposing important measured flows and estimating

the others on the basis of ecological maxima (or

minima) for some ecosystem property (Middleburg

and others 1997). Yet, the synthetic ecosystem

indicators used in this study, and the relationships

with variability, are not strongly driven by the

overaggregation of low trophic level groups. To test

this further, the analysis was redone with the re-

moval of low trophic level groups. Ecosystem in-

dices were recalculated across ecosystems,

excluding the flows and biomasses of all plankton

groups or any group with a trophic level of two or

less. Results showed that the general shape of

relationships between ecosystem indices calculated

excluding lower trophic levels and measures of

variability, although generally weaker, was main-

tained. The underlying patterns across ocean basins

and different ecosystem types remained, and

therefore, do not appear to be dependent on low

trophic level groups. Results are thus supporting

the fact that ecosystem-level organization is driving

observed patterns.

Interannual variability might be less accurately

represented in this study due to some of the larger-

scale temporal drivers of ecosystem change, such as

multi-decadal oscillations, not being captured by

the 8-year time series of NPP used here. This may

explain why the influence of interannual variabil-

ity was negligible for many of the observed rela-

tionships. As such, it is very possible that the

relationships will only be strengthened by

accounting for those larger temporal scales.

Despite uncertainty in Ecopath parameters and

the temporal limitations of available NPP data, a

major strength of our approach is the use of two

independent data sets for our investigations of

pattern: satellite-derived data and Ecopath model

outputs. The measures of NPP that we used in our

study are not used as input parameters in the

construction of Ecopath models. Many of these

models use in situ measurements of primary pro-

duction, and while some may derive estimates of

primary production from satellite data, variability

in NPP is not used as an input in any way. Due to

the number of ecosystem models used in this study

and the consistency of global patterns identified

across 8 different ecosystem indices when com-

pared to a completely external data source, it is

unlikely that the patterns found in this study are
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the result of a systematic error introduced through

Ecopath.

Role of Temporal Variability in NPP
on Ecosystem-Scale Properties

Our results provide insight into the general drivers

of marine ecosystem structure and function. Total

primary production is known to influence a wide

variety of ecosystem-level properties including total

production and biomass (Field 1998; Imhoff and

others 2004), and biodiversity and food chain

length (Costanza and others 2007). Few have

compared the influence of temporal variation in

primary production (Conti and Scardi 2010), but it

is clearly significant. Our results show that

ecosystem storage (Biomass) reaches maximum

values at intermediate to high seasonal variability.

Ecosystem output (Respiration) increases with

seasonal variability of NPP. Ecosystem efficiency (a

measure of internal recycling of energy or the

amount of biomass supported by one or more en-

ergy flows, measured in this study by Residence

Time, P/B, and B/TST), is also maximized at inter-

mediate to high seasonal variability in NPP. The

organizational complexity of ecosystems is strongly

related to the temporal variability of NPP as well,

with more efficient transfer of biomass through

food chains (Average Trophic Level), and increased

redundancy in pathways of biomass to top preda-

tors (Relative Ascendency) resulting from increased

seasonal variability in NPP. It is important to note

that although Relative Ascendency had the highest

r2 value of all synthetic indices, it also had the

highest AIC values, suggesting potential overfitting

of the data. Yet, given that temporal variation in

NPP defines optimal storage and use of energy over

time by component organisms in a given ecosys-

tem, its influence on ecosystem structure and

function is perhaps not so surprising (Landres and

others 1999). Although the r2 values for some of

these relationships may seem low, when compar-

ing multiple ecosystems, which are highly complex

and involve a myriad of interacting components

and indirect effects, it is common to observe low r2

values (Low-Décarie and others 2014).

Although support for the influence of temporal

variability in NPP on single properties of ecosystems

(as opposed to indices that synthesize the state of

an entire ecosystem) can be found throughout the

literature, there is very little evidence for its influ-

ence on holistic ecosystem structure and function.

For example, temporal variability in NPP drives the

switch from small- to large-bodied planktonic

communities (Dunne and others 2005), strongly

impacts fisheries yield (Friedland and others 2012),

and is positively correlated with the trophic level of

fisheries at a global scale (Conti and Scardi 2010).

However, this study quantifies the underlying

holistic dynamics of energy flow related to a variety

of ecosystem properties at a macro-scale, with the

hope of combining previously qualitative observa-

tions with modern ecological theory. More impor-

tantly, we identified consistent global patterns

across a variety of holistic ecosystem traits from

extremely different ecosystems all related to a sin-

gle variable, which has not been reported in the

literature previously. Contrary to expectations,

patterns of these synthetic indices with temporal

variability of NPP were not clustered by geographic

location or ecosystem type, suggesting that the

influence of variability in NPP on ecosystem

structure and function is potentially independent of

major environmental factors or the magnitude of

productivity regimes. The latter is supported by the

weak relationships between synthetic indices and

mean NPP. This work shows that variability in NPP

simultaneously influences a variety of ecosystem-

level characteristics of energy flow that can be re-

lated to ecosystem efficiency, complexity, and

scope. Very few individual variables have such far-

reaching consequences for holistic ecosystem

structure and function. Furthermore, variability in

NPP can be easily measured from satellites. As such,

the identification of this relationship allows for a

broad understanding and potential prediction of

global ecosystem dynamics using minimal re-

sources.

One potential mechanism explaining the influ-

ence of temporal variability of NPP on ecosystem

structure and function may be related to functional

diversity (the number of functionally disparate

species within an ecosystem), which tends to be

maximized under regimes of intermediate distur-

bance (Shea and others 2004). Although

stable conditions can favor species-specific com-

petitive advantages, disturbance can allow for the

coexistence of competing species (that is, an in-

crease in functional diversity) (Ward and Stanford

1983). Temporal variability in NPP can be thought

of as change from a climatological mean and, in this

way, analogous to a disturbance (Landres and

others 1999). These subsequent changes allow for

the coexistence of several energy pathways that are

an expression of high functional diversity (D’Alelio

and others 2016), which in turn influences

ecosystem biomass (Török and others 2016). The

strong positive relationship we found between

Relative Ascendency, a measure of the number of

diverse paths leading from primary producers to
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apex predators in a food web, and temporal vari-

ability in NPP provides support for this concept. The

results of this study build upon previous literature

linking biodiversity to ecosystem functioning (So-

liveres and others 2016) by exploring the under-

lying energetic processes and identifying a potential

mechanistic framework.

CONCLUSION

The field of systems ecology is progressing toward a

consistent approach to understand and predict

ecosystem structure and function (Jørgensen and

others 2016) and the use of overarching synthetic

indices, and emergent properties of ecosystem-scale

energy flow have played a primary role in that

advancement (Christensen 1995; Fath and others

2004; Heymans and others 2014; Link and others

2015). By using completely independent data

sources (satellite measures of NPP and synthetic

indices of structure and function from trophic food

web models) this study builds upon past theoretical

and empirical work by quantifying the role of

ecosystem-scale energy input in explaining pat-

terns of ecosystem structure and function. Our re-

sults highlight the utility of applying macro-scale

dynamics of energy flow to understand and predict

complex ecosystem behavior. These patterns are

consistent across a wide range of temperatures,

latitudes, and marine ecosystem types, linking di-

verse ecosystems together in a way that has not

been previously identified. Although increasing the

geographic range of sites by including more

ecosystem models from underrepresented areas

would increase the robustness of results, the find-

ings of this study imply that despite complex evo-

lutionary histories, species compositions, or

environmental conditions, the temporal dynamics

of NPP influence ecosystem properties in a way that

is common to all marine ecosystems. Although

more research needs to be conducted to truly

identify the causal relationships behind these

emergent ecosystem properties, energy flow and

accounting provides a framework with which to

potentially begin quantifying those mechanisms

and this approach takes a step forward in that

direction.
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