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ABSTRACT

Foliar nitrogen (N) plays a key role in ecosystem

function and dynamics, including processes such as

photosynthesis, productivity, and decomposition.

Aboveground carbon density (ACD Mg C ha-1)

represents a cumulative functional outcome of

these and other ecosystem processes and is an

important metric for monitoring current carbon

stocks. Despite their importance, multiple inter-

acting controls over landscape-level variation in

foliar N and ACD are poorly understood. We as-

sessed the relative importance of individual eco-

logically important state factors (climate, substrate,

age, vegetation, and topography) associated with

canopy foliar N and ACD throughout a humid

forest landscape. We combined high-resolution

remotely sensed data, machine learning, and field

data to map and assess canopy foliar N and ACD

patterns across a 5016-ha forest reserve in Hawai‘i.

Distance to non-native forests had the largest rel-

ative influence on canopy foliar N concentration,

followed by mean annual temperature (MAT),

vegetation type, precipitation, soil, canopy height,

and substrate age. In contrast, soil type was the

strongest determinant of spatial variability in ACD,

followed by precipitation, MAT, and vegetation

type. Similar to foliar N, climate and vegetation

variables were associated with ACD. However, soil

type was found to be much more important in the

ACD model (30%) than in the foliar N model (4%).

Landscape-scale patterns in canopy foliar N and

ACD are the result of shifts in vegetation type and

composition, most likely due to species’ responses

to past disturbances, current climate conditions,

and available nutrients. Degradation of native for-

ests and future climate changes could result in

highly altered biogeochemical cycles.

Key words: carbon storage; Carnegie Airborne

Observatory; foliar nitrogen; gradient boosting;

LiDAR.

INTRODUCTION

Forests cover roughly 30% of the global land sur-

face and provide numerous ecological, biogeo-

chemical, economic, and cultural services (Bonan

2008). Multiple factors, such as climate, geologic

substrate, and human activities, strongly influence

forest structure and function, and thus the services

provided by forests (for example, Jenny 1941;

Amundson and Jenny 1991; Vitousek 2004; Morris

2010), but our knowledge of these controls has

been mostly gleaned from univariate environ-

mental gradients that isolate individual factors

affecting forests (Pickett 1989; Vitousek 2004) or

climate-centric work done at coarse spatial scales,

that is, map units greater than 30 m (for example,

Woodward and others 1995; Liu and others 2014).
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In comparison, little is known about the relative

influence of abiotic and biotic factors combined,

and their interactions, on forest structure and

functioning at finer spatial scales (or grain sizes)

across large heterogeneous landscapes (Ollinger

and others 2002; Asner and others 2009; McNeil

and others 2012).

Two common metrics utilized in past studies to

assess forest function are foliar nitrogen (N) con-

centration (for example, McNeil and others 2008;

Chen and others 2013) and aboveground carbon

density (ACD Mg C ha-1; Zolkos and others 2013).

Foliar N concentration plays a central role in

ecosystem function and dynamics and is linked to

important processes, including maximum photo-

synthetic capacity, productivity, and litter decom-

position (Field 1983; Field and Mooney 1983).

Canopy foliar N concentration generally reflects

soil N availability and is considered an indicator of

forest ecosystem N cycling (Vitousek 2004; McNeil

and others 2008). Aboveground carbon density, on

the other hand, represents the cumulative func-

tional outcome of these and other processes and is

an important metric for monitoring current carbon

stocks and understanding the global carbon cycle.

Despite their importance and recent work (see be-

low), controls over landscape-level variation in

foliar N and ACD are still not fully understood

(Asner and others 2009).

Recent advances that combine remote sensing

technology with field data have made high-reso-

lution mapping (map unit £ 30 m) of ACD and

canopy nutrients a possibility, allowing researchers

the ability to quantitatively assess continuous ACD

and canopy nutrient data over large heterogeneous

landscapes. At the forefront of this work is the use

of light detection and ranging (LiDAR) for ACD,

and imaging spectroscopy for canopy nutrients.

LiDAR has been used to create accurate high-res-

olution ACD maps of forests across the globe

(Zolkos and others 2013), including our study re-

gion (Asner and others 2016). Similarly, imaging

spectroscopy has recently been used to create high-

resolution maps of canopy foliar N in temperate

(for example, Ollinger and others 2002; Lepine and

others 2016) and tropical forests (for example, As-

ner and others 2015b; Chadwick and Asner 2016).

Relating spatial patterns of canopy foliar N and

ACD to underlying environmental gradients can be

used to reveal key factors regulating ecosystem

processes (McNeil and others 2012). Factors shown

to correlate with canopy foliar N and ACD in forest

ecosystems across multiple spatial scales and forest

types include climate (for example, Craine and

others 2009; Liu and others 2014), vegetation type

(for example, Fyllas and others 2009; McNeil and

others 2012), topography (for example, de Castilho

and others 2006; Detto and others 2013), human

disturbance (for example, Ollinger and others

2002; McNeil and others 2012), soils (Quesada and

others 2012), and time, that is, substrate age (Vi-

tousek and Farrington 1997; Vitousek 2004).

Forest canopy foliar N typically increases with

increasing mean annual temperature (MAT) and

decreasing mean annual precipitation (MAP;

Schuur and Matson 2001; Craine and others 2009).

Similar to canopy foliar N, global mature forest

ACD increases with increasing MAT, but has an

opposite response to MAP (Liu and others 2014).

However, tropical forest ACD shows a similar trend

to canopy foliar N, with ACD increasing with

increasing MAT and decreasing MAP (Schuur and

Matson 2001; Liu and others 2014). In addition to

climate, forest composition can strongly influence

canopy foliar N and ACD patterns through the

collective investment strategies and physiological

adaptations of the individual trees in response to

their environment (Rien and Chapin 2000; McNeil

and others 2008; Asner and others 2014). Likewise,

topographic variability and slope position have

been shown to strongly influence spatial patterns of

ACD and foliar nutrients by creating heterogeneity

in the hydrological network, intensity of natural

and anthropogenic disturbances, solar radiation

exposure, and nutrient availability (Luizão and

others 2004; Detto and others 2013; Houlton and

Morford 2015). Yet in other cases, topographic

variables seem to play a lesser role in predicting

ACD or canopy foliar N (McNeil and others 2012).

Human disturbances, such as past forest clearing,

can result in loss of available N that can translate to

forests with lower canopy foliar N even decades

after the disturbance (Vitousek and Jerry 1979;

Ollinger and others 2002). However, if non-native

species with adaptations (such as nitrogen fixing

capabilities) invade the disturbance space, the

resulting forest canopy can be higher in foliar N

than the previous native forest (for example,

Hughes and Denslow 2005). Soil composition also

influences many aspects of nutrient cycling and

plant growth such as water-holding capacity, soil

temperature, and nutrient availability (Brady and

Weil 2000). Furthermore, over geologic time scales,

rock-derived nutrients important for ACD, such as

phosphorous (P), decrease due to leaching, and N

increases due to accumulation (Vitousek 2004;

Porder 2015). This pattern can lead to higher ca-

nopy foliar N and greater ACD at mid-aged sites

(Vitousek and others 1995). Identifying relation-

ships between the factors that control nutrient cy-
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cling and biomass accumulation in current tropical

forests is critical for understanding how they will

respond to future natural and human-driven

environmental change (Cleveland and others 2011;

McNeil and others 2012).

For decades, the Hawaiian islands have been

used as a model system for understanding how

ecosystems function (Townsend and others 1995;

Vitousek 2004; Asner and others 2005; Kellner and

Asner 2009). Hawai‘i’s native forests are also home

to hundreds of endemic and endangered species

that are deeply tied to Hawaiian cultural identity

and sense of place (Sakai and others 2002; Ticktin

and others 2006). Following European contact,

native Hawaiian forests have rapidly changed from

ecosystems comprised of an endemic flora to forests

composed of recently introduced and expanding

invasive species. Such changes in canopy compo-

sition can have profound effects on forest structure

and functioning (Asner and others 2008; Vilà and

others 2011).

The rapidly changing forests of Hawai‘i provide

an opportunity to evaluate the relative influence of

biotic and abiotic factors that determine humid

forest structure and function. Our objective was to

assess the relative importance of individual state

factors (climate, substrate, age, vegetation type and

species, and topography) affecting forest canopy

foliar N (% concentration, hereafter referred to as

foliar N) and ACD. This was accomplished using a

top-down approach that incorporates high-resolu-

tion remotely sensed data, computational machine

learning, and field data, to map and assess foliar N

and ACD patterns across a 5016-ha forest reserve.

We know, from prior single-species studies in Ha-

wai‘i, that the dominant keystone forest canopy

species ‘�ohi‘a (Metrosideros polymorpha Gaudich)

shows a decrease in foliar N with decreasing tem-

perature or increasing rainfall (Vitousek and others

1990, 1992; Schuur and Matson 2001). We also

know from other tropical forests that foliar N is

strongly mediated by phylogeny (Fyllas and others

2009; Asner and others 2014; Balzotti and others

2016). What is poorly known in humid forests of

Hawai‘i and elsewhere is the combined influence of

all canopy species, in conjunction with other state

factors, in spatially determining canopy foliar N

concentrations and ACD.

MATERIALS AND METHODS

Study Region

The study region is located on the eastern slope of

Mauna Kea volcano (Figure 1; 19�54¢56.85¢¢N,

155�17¢23.02¢¢) and is part of the largest remaining

native-dominated humid forest in Hawai‘i (DLNR

and USDA 2016). We evaluated foliar N and ACD

in the Laup�ahoehoe and Hilo Forest Reserves

(hereafter referred to as Laup�ahoehoe). These

adjoining reserves cover about 5016 ha of tropical

forest and are designated as part of the Hawai‘i

Experimental Tropical Forest (Asner and others

2009). Laup�ahoehoe is an important watershed

that provides habitat for numerous endemic and

endangered flora and fauna, including 16 endan-

gered plant taxa and Hawai‘i’s only native land

mammal, the ‘�ope‘ape‘a (Hawaiian hoary bat; La-

siurus semotus; DLNR and USDA 2016). Laup�ahoe-
hoe was selected specifically for its cultural and

environmental importance, extensive field data,

geographic size, and variability among important

ecological state factors. Laup�ahoehoe ranges in

elevation from 600 m to nearly 1900 m, resulting

in a mean annual temperature (MAT) gradient

from 18 to 13�C and a mean annual precipitation

gradient (MAP) from about 1500 to 5000 mm. Al-

though the common native canopy species, ‘�ohi‘a
and koa (Acacia koa A. Gray), are found throughout

Laup�ahoehoe, forest canopy composition varies

across the reserve (Asner and others 2009;

Table 1). Ecosystems within Laup�ahoehoe range

from low-elevation wet tropical to mesic montane

forests (Figure 2; Gon and others 2006). Invasive

species are present throughout the reserve; how-

ever, prior studies (Asner and others 2009; Broad-

bent and others 2014; DLNR and USDA 2016) have

identified and mapped very high concentrations of

non-natives below about 1000 m (for example,

Psidium cattleianum Sabineand and Ficus rubiginosa

Desf. Ex Vent.) and above about 1300 m (for

example, Fraxinus uhdei (Wenzig) Lingelsh.; Asner

and others 2009; Broadbent and others 2014;

DLNR and USDA 2016). The mid-elevation forest,

found between 1000 and 1300 m, is primarily

closed ‘�ohi‘a and koa forest, with little impact from

past human use or invasive species. The landscape

above the reserve has been impacted by past graz-

ing and is dominated by non-native grasses. The

landscape below the reserve is made up of agri-

cultural lands and plantation forests.

Statistical Analysis

We used a gradient boosting machine model

(Friedman 2001) to determine the relative influ-

ence of environmental and biotic factors on foliar N

and ACD distribution patterns across Laup�ahoehoe.
Gradient boosting was chosen here for its ability to

accommodate nonlinear interactions, resilience to
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outlier influence, tolerance of collinear predictor

variables, and ability to handle categorical and

missing data (Moisen and others 2006; Elith and

others 2008). A detailed description of GBMs can

be found in Hastie and others (2009) and Elith and

others (2008). In short, GBMs are a decision tree-

based regression technique that sequentially de-

creases model bias. Unlike other tree-based models,

such as Random Forest, GBMs are computationally

more intensive and require proper selection of

metaparameters to prevent overfitting (Hastie and

others 2009). We followed guidelines, provided by

Elith and others (2008) and the R package dismo

(Hijmans and others 2016), to choose model tuning

parameters during the implementation of the GBM

models. The final tuning parameters for the foliar N

and ACD models included the number of decision

trees, tree complexity (number of nodes), contri-

bution of each tree to the growing model (learning

rate), and the loss function (Table 2). Model per-

formance was evaluated by using a tenfold cross-

validation calculation. Overall influence of each

independent variable was evaluated by its relative

influence on the model output. Relative influence

was determined by how well each variable im-

proves the model, averaged across all trees (Fried-

man and Meulman 2003). Additionally, the effect

of each independent variable on the dependent

variable was evaluated with partial dependency

analysis, which plots the effect of each independent

variable on the dependent variable, after account-

ing for the average effect of the other independent

variables in the model (Hastie and others 2009).

We also evaluated changes in foliar N and ACD

with changes in elevation alone, to determine

whether there were distinct shifts in variance with

elevation, between the previously identified closed

canopy native forests and the highly invaded for-

Figure 1. The study region located on the eastern slope Mauna Kea volcano, Hawai‘i. Past lava flows are outlined in white

(5000–11,000 years), pink (11,000–64,000 years) and red (64,000–300,000 years). The Carnegie Airborne Observatory-

derived canopy foliar nitrogen (%) is shown with the highest values in red and the lowest in dark purple. The dashed lines

with values are mean annual rainfall isohyets in mm (Color figure online).
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ests, found at below 1000 m and above 1300 m

(see above). Because variance in foliar N and ACD

was heterogeneous between elevations, compar-

isons were made using Kruskal–Wallis nonpara-

metric analysis of variance. When the Kruskal–

Wallis analysis was significant (p < 0.05), a

Dunn’s post hoc test was performed to identify

which elevations differed statistically from each

other. All statistical analyses were performed in R

3.2.4 (R Development Core Team 2016).

Carnegie Airborne Observatory Data

In January 2016, the Carnegie Airborne Observa-

tory (CAO) deployed its most advanced remote

sensing platform to date in Hawai‘i, the third-gen-

eration Airborne Taxonomic Mapping System

(AToMS; https://cao.carnegiescience.edu/; Asner

and others 2012). CAO-AToMS was equipped with

three remote sensing technologies integrated to

produce high-dimensional orthorectified data.

CAO-AToMS contained a high-fidelity visible-

shortwave infrared imaging spectrometer (HiFIS),

dual-laser waveform light detection and ranging

(LiDAR) scanner, and a visible-to-near infrared

(VNIR) imaging spectrometer. The data were col-

lected using the CAO Dornier 228 aircraft, from an

altitude of 2000 m above ground level (a.g.l.), at an

average ground speed of 241 km h-1, resulting in a

mapping swath of roughly 1200 m. For this study,

we used data from the LiDAR and the HiFIS sensors

to generate high-resolution digital terrain models

(DTM), top-of-canopy height models (TCH), and

canopy reflectance models. The DTM, TCH, and

reflectance models were then used to create addi-

tional geomorphometric, ACD, and foliar N maps

(see below; Figure 3).

The settings used for the LiDAR were 34� field of

view, a pulse frequency of 100 kHz per laser, and a

beam divergence of 0.56 mrad (1/e) per laser,

allowing for a minimum of four laser shots per m2.

The LiDAR data were combined with embedded

global positioning system–inertial measurement

unit (GPS-IMU) data, and a smoothed best estimate

of trajectory (SBET) was computed to determine

the 3-D locations of each laser return, producing a

LiDAR data ‘‘point cloud.’’ The resulting points

were then interpolated into a raster DTM at a

mapping resolution of 1.0 m. Ground returns were

classified using the lasground program, which is

part of the LAStools suite (Rapidlasso, GmbH;

Gilching, Germany). We used the options ‘‘extra

fine’’ and ‘‘offset 1.’’ The DTM model was inter-

polated from a triangular irregular network (TIN)

model, created from the ground points, and the

TCH was interpolated from a TIN model, fit to first

Table 1. Percent Cover of Each Vegetation Type by Elevation in Laup�ahoehoe and Hilo Forest Reserves

Vegetation type Elevation (m a.s.l.)

700 800 900 1000 1100 1200 1300 1400 1500 1600 1700

Closed ohia wet forest – – – 1.4 33.4 55.6 27.0 6.2 3.6 – –

Closed koa ohia wet forest 14.0 61.4 99.8 95.3 52.1 34.8 68.5 79.4 56.8 16.0 –

Open ohia wet forest – – – 3.3 14.4 9.4 0.9 1.5 0.5 – –

Open koa ohia wet forest 0.4 0.1 – – – – – – 2.6 0.2 –

Closed ohia mesic forest – – – – – – – – 0.1 – –

Closed koa ohia mesic forest – – – – – – – – 1.8 53.4 42.5

Open ohia mesic forest – – – – – – – – 0.1 0.7 –

Open koa ohia mesic forest – – – – – – – – – 24.0 49.2

Open koa mamane dry forest – – – – – – – – – – 0.2

Alien wet forest – – – – 0.1 -- 0.1 2.5 5.7 0.5 –

Alien mesic forest – – – – – – – – 0.5 -- 0.7

Plantation forest – – – – – – – 4.1 26.0 2.4 2.2

Uluhe ferns and native shrubs – – – – – – – 0.1 0.6 2.6 5.1

Alien wet grassland – – – – – 0.1 – – 1.3 – –

Alien mesic grassland – – – – – – – – – 0.3 –

Cultivated agriculture – – – – – – – – – – –

Very sparse vegetation – – – – – – – 0.1 0.2 – –

Closed koa wet forest – – – – – – 3.5 6.0 – – –

Strawberry guava ficus invaded 85.6 38.5 0.2 – – – – – – – –

Vegetation types in bold are dominated by invasive or plantation tree species.
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returns, adjusted for height above the ground TIN

model. Validation studies of the CAO-derived TCH,

across a wide range of studies, including Hawai‘i,

have shown this approach to be highly accurate

(Asner and others 2016). ACD was determined at a

mapping resolution of 30 m, using the TCH and the

CAO Hawai‘i allometric ACD calibration equation:

ACD = 3.744 9 TCH1.391 (Asner and others 2016).

The final digital terrain data were coarsened to a

spatial resolution of 30 m and were used to gen-

erate eleven common geomorphometric models

representing topography throughout the study re-

gion (Table 3).

The HiFIS imaging spectrometer measures spec-

tral radiance in 427 channels (bands), spanning the

380–2510 nm wavelength range in 5 nm incre-

ments with nominal 6 nm spectral response func-

tion (full width at half maximum). The HiFIS data

went through extensive preprocessing in prepara-

tion for mapping foliar N (Figure 3; Asner and

Figure 2. Vegetation cover type determined using the Hawai‘i Gap Analysis Program (GAP) map (Gon and others 2006),

updated with an additional invasive species class determined by Asner and others (2009) (Color figure online)

Table 2. Metaparameters Used for the Gradient Boosting Models (GBM) for Canopy Foliar N (% Concen-
tration) and Aboveground Carbon Density (ACD Mg C ha-1)

Metaparameters Canopy foliar N (%) Aboveground carbon density (ACD)

Number of decision trees 2550 4000

Tree complexity 8 3

Learning rate 0.005 0.005

Loss function Laplace Laplace
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others 2015a). Prior to analysis, the 2.0-m spatial

resolution HiFIS data were atmospherically cor-

rected to surface reflectance using the ACORN-5

model (Imspec LLC, Glendale, CA, USA), in an

iterative mode with corrections for cross-track

brightness variation (Colgan and others 2012). The

ACORN model settings applied to the HiFIS data

consisted of a model that provides a water vapor fit

using wavelengths at 940 and 1130 nm, and

aerosol settings by flight line determined in an

iterative manner to ensure consistent scaling for

vegetated pixels. No noise suppression was used, or

ground targets for spectral smoothing. After atmo-

spheric correction, bands in the range of atmo-

spheric water absorption (1350–1480, 1780–

2032 nm) and noisy bands in the far ends of the

spectra (<410, >2450 nm) were removed. To re-

duce the influence of canopy leaf tissue orientation

and depth, the reflectance data were brightness-

normalized, following Feilhauer and others (2010).

The brightness-normalized data were further fil-

tered to remove bare ground, non-photosynthetic

vegetation, clouds, and canopy shadow using a

LiDAR\HiFIS fusion mask (Asner and others 2007).

In short, the LiDAR data were used to remove

pixels with vegetation below 2 m and to create a

ray-tracing model that incorporates solar viewing

geometry to mask out canopy pixels that were in

shade at the time of the flight. The HiFIS data were

analyzed to mask out clouds and non-photosyn-

thetic vegetation.

The prepared and filtered reflectance data were

used to create a foliar N metric for the study region.

Foliar N was determined using partial least squares

regression (PLSR; Haaland and Thomas 1988).

PLSR was chosen due to its extensive use in foliar N

mapping across forest types and sensors (Ollinger

and others 2002; Townsend and others 2003; Singh

and others 2015). Similar to principal components

analysis, PLSR converts the highly correlated

spectral bands to uncorrelated variables (latent

vectors). These latent vectors are created via an

optimization process that involves dimensionality

reduction and cross-validated linear regression

(Feilhauer and others 2010). A tropical foliar N

model was first built and validated using a network

Figure 3. General workflow for producing aboveground carbon (ACD Mg C ha-1) density and canopy foliar nitrogen (%)

maps from the Carnegie Airborne Observatory light detection and ranging (LiDAR) and high-fidelity visible-shortwave

infrared imaging spectrometer (HiFIS) data (Color figure online).
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of 79 field plots, located in 22 tropical forest types

across a 3500-m elevation gradient in Peru (Asner

and others 2014). The tropical foliar N model was

successfully tested in Costa Rica with similar results

as Peru (R2 = 0.28–0.59, RMSE = 0.07–0.11) (Bal-

zotti and others 2016), before it was applied to

Laup�ahoehoe.

Additional Input Data

Six additional independent variables were used in

the modeling of foliar N and ACD distributions

(Table 4): MAT, MAP, substrate age, soil type,

vegetation type, and distance to non-native forests.

MAT data were obtained from the Climate of Ha-

wai‘i Web site, University of Hawai‘i at M�anoa
(http://climate.geography.hawaii.edu/; Giambel-

luca and others 2014). MAP data were obtained

from the Rainfall Atlas of Hawai‘i (http://rainfall.

geography.hawaii.edu/; Giambelluca and others

2013). Substrate age was determined using the

geologic map of Hawai‘i, produced by Sherrod and

others (2007), and obtained from http://pubs.usgs.

gov/of/2007/1089/. Soil classification maps were

obtained from the Soil Survey Geographic (SSUR-

GO 2015) database http://websoilsurvey.nrcs.usda.

gov. Vegetation cover type was determined using

the Hawai‘i Gap Analysis Program (GAP) map (Gon

and others 2006), updated by Jacobi and others

(Selmants and others 2017) with an additional

invasive species class determined by Asner and

others (2009; Figure 2). Disturbances in the Lau-

pahoehoe reserve are decades old with the plan-

tations and invaded forests in a mature state (Asner

and others 2009). To capture the potential influ-

ence of these past disturbances, the updated GAP

vegetation map was used, and the Euclidian dis-

tance to non-native and plantation forests was

determined with ArcGIS� software (Release 10.2

Redlands, CA: Environmental Systems Research

Institute).

RESULTS

The GBM model performed well in determining

both foliar N and ACD. The foliar N model tenfold

cross-validation reported a mean R2 of 0.76 ±

0.002 (SE) and a RMSE of 0.40%. The ACD model

performed slightly better, with a mean cross-vali-

dation R2 of 0.77 ± 0.003 and a RMSE of

37.8 Mg C ha-1. For the foliar N model, distance to

non-native forests had the largest relative influence

(60%) of all the factors included, followed by MAT

(12%), vegetation type (8%), MAP (5%), soil type

(4%), TCH (3%), and substrate age (1%). None of

the topographic variables had a relative influence

greater than 1% (Figure 4). These results suggest

that disturbance, climate, and vegetation type (in-

Table 4. Independent Variables Used in the Gra-
dient Boosting Model

Variables Name in model

Climate –

Mean annual precipitation MAP

Mean annual temperature MAT

Topography –

Aspect Aspect

Compound Topographic Index CTI

Dissection Dissection

Heat Load Index HLI

Planar curvature Planar curve

Profile curvature Profile curve

Site Exposure Index SEI

Slope Slope

Surface relief ratio SRR

Total curvature Total curve

Vector ruggedness model VRM

Vegetation –

Closed ohia wet forest 1

Closed koa ohia wet forest 2

Open ohia wet forest 4

Open koa ohia wet forest 5

Closed ohia mesic forest 6

Closed koa ohia mesic forest 8

Open koa ohia mesic forest 10

Alien wet forest 19

Alien mesic forest 20

Plantation forest 23

Uluhe ferns and native shrubs 30

Closed koa wet forest 101

Strawberry guava ficus invaded forest 102

CAO-derived top-of-canopy height TCH

Substrate age –

5000–11,000 years 6

13,000–30,000 years 7

64,000–300,000 years 9

Soils name (SSURGO) –

Akaka–Onomea complex, 0–10%

slopes

72

Maile-Waiakea-Rock outcrop com-

plex, 6–35% slopes

140

Honokaa highly organic hydrous silty

clay loam, 10–20% slopes

143

Kau very cobbly highly organic

medial loam, 6–20% slopes

320

Kaiwiki highly organic hydrous silty

clay loam, 6–20% slopes

385

Waiakea very cobbly hydrous loam,

10–20% slopes

478

Controls Over Canopy Function and Structure 339

http://climate.geography.hawaii.edu/
http://rainfall.geography.hawaii.edu/
http://rainfall.geography.hawaii.edu/
http://pubs.usgs.gov/of/2007/1089/
http://pubs.usgs.gov/of/2007/1089/
http://websoilsurvey.nrcs.usda.gov
http://websoilsurvey.nrcs.usda.gov


cluding invasive species) are the most strongly

interrelated factors influencing foliar N in humid

Hawaiian forests.

For ACD, soil type was the most important factor

(30%), followed by MAP (22%), vegetation type

(18%), MAT (16%), and distance to non-native

forests (6%). Substrate age, foliar N content, and

the topographic variables had relative influence

values no greater than 1% (Figure 5). Similar to

foliar N, climate and vegetation type were associ-

ated with ACD. However, soil type was much more

important in the ACD model (31%) than the foliar

N model (4%).

Partial dependency analyses (Figure 6) indicated

that, in Laup�ahoehoe, higher foliar N was found in

areas closest to past disturbance with higher MAT

and MAP between roughly 2000 and 2500 mm, in

forests dominated by invasive species, shrublands,

or open koa-‘�ohi‘a mesic landscapes (Figure 2;

Table 1). Additionally, partial dependency analyses

revealed a sharp drop in foliar N at roughly 1000 m

from non-native vegetation and a rapid increase in

Figure 4. Relative

influence plot generated

from the gradient

boosting machine (GBM)

model for canopy foliar

nitrogen (%) (Color

figure online).

Figure 5. Relative

influence plot generated

from the gradient

boosting machine (GBM)

model for aboveground

carbon density

(ACD Mg C ha-1) (Color

figure online).
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foliar N at temperatures above 16�C, suggesting

potential distance to non-native vegetation and

climatic thresholds for higher foliar N.

Partial dependency analyses for ACD indicated

higher carbon stocks in forests on highly organic,

hydrous silty clay loam and very cobbly hydrous

loam soils, MAP between roughly 2000–4000 mm

and higher MAT, in plantation or closed koa wet

forests (Figure 7). The ACD partial dependency plot

for MAT also showed an increase in ACD above

temperatures of approximately 15�C.
There were distinct spatial patterns of foliar N

and ACD along the elevation gradient in

Laup�ahoehoe (Figures 8 and 9) associated with the

above-listed factors. Within the previously identi-

fied, mid-elevation, native-dominated portion of

the landscape (1000–1300 m), foliar N decreased

with elevation, following a similar pattern as earlier

field studies (Vitousek and others 1990, 1992). At

lower elevations dominated by invasive species,

foliar N was significantly higher, with mean values

nearly twice that of mid-elevation forests (Fig-

ure 8). For example, mean foliar N values were

2.2% at 700 m, compared to 1.3% at 1000 m.

Additionally, ACD at lower elevations was signifi-

cantly reduced (Figure 9), due to the shorter sta-

ture of the dominant invasive species (for example,

strawberry guava).

Above 1400 m, mean foliar N showed a linear

increase with increasing elevation. This increase in

foliar N with higher elevation was an opposite

trend from what was previously observed, when

only ‘�ohi‘a was measured in native-dominated

forests (Vitousek and others 1990, 1992) and in-

stead coincided with an increase in invasive species

and plantation forest cover, non-native vegetation

(Table 1), canopy openness, and recent ‘�ohi‘a co-

hort dieback (Asner and others 2009). Further-

more, between 1500- and 1600-m elevation, a

plantation forest of tropical ash [F. uhdei (Wenzig)

Lingelsh.], planted in 1936, contained higher foliar

N and ACD than the surrounding native koa- and

‘�ohi‘a-dominated forest. Finally, the highest ele-

vation mesic forests had a similar mean foliar N

(2.0%) and lower mean ACD than that of the lower

elevation tropical wet forests.

Figure 6. Partial dependency plots for the top 12 influential variables of the canopy foliar nitrogen (%) model. The Y-axis

values represent the outcome of the model in relation to each independent variable, after accounting for the average effect

of the other independent variables in the model. Rungs on the X-axis represent the spread of the data. Percentages given

next to variable names are the relative influence values in the model. Full names for each of the variables are given in

Table 4.
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DISCUSSION

By combining high-resolution remote sensing and

a machine learning algorithm, we evaluated con-

tinuous patterns of forest foliar N and ACD across

multiple ecological state factors and calculated the

relative influence of each factor associated with

foliar N and ACD. We found that, throughout the

humid forests of Laup�ahoehoe, distance from non-

native forests, climate, and vegetation were the

principal drivers of spatial variation in foliar N,

whereas for ACD, soil, climate, and vegetation

were the most influential predictors, highlighting

stronger abiotic controls over ACD. What was sur-

prising was how little the other factors influenced

foliar N or ACD (Figures 3 and 4). Additionally,

minimally invaded mid-elevation forests (1000–

1300 m) differed substantially in structure and fo-

liar N concentration from that of the surrounding

forest, indicating a potential forest-wide shift in N

cycling and structure with increasing invasion. This

potential shift may be linked to physiological traits

associated with invasive species, such as rapid

growth rates, elevated leaf nutrient concentrations,

and high specific leaf area (Van Kleunen and others

2010), which improve litter quality and decompo-

sition rates and which contribute to a positive

feedback between invasive species and nitrogen

cycling rates (Allison and Vitousek 2004; Hughes

and Denslow 2005; Liao and others 2008). A meta-

analysis of 94 experimental studies by Liao and

others (2008) found that invaded ecosystems

showed significant increases (50–150%) in flux

variables, such as aboveground net primary pro-

duction and litter decomposition, as well as a 40%

increase in plant N concentration. A similar study

to ours on foliar N in a temperate forest using

multiple regression analysis found that species

composition and disturbance were the strongest

predictors of canopy foliar N compared to abiotic

gradients of resource availability (McNeil and oth-

ers 2012), suggesting a general pattern of influence.

Foliar N concentrations in Laup�ahoehoe, and

elsewhere, have been shown to reflect soil N

availability (Vitousek 2004). The lower importance

of soil type in the foliar N model, when compared

to climate and vegetation, suggests that differences

Figure 7. Partial dependency plots for the top 12 influential variables of the aboveground carbon density model. The Y-

axis values represent the outcome of the model in relation to each independent variable, after accounting for the average

effect of the other independent variables in the model. Rungs on the X-axis represent the spread of the data. Percentages

given next to variable names are the relative influence values in the model. Full names for each of the variables are given

in Table 4.
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in N availability between the soil types were

diminished by forest composition and climate

interactions. In contrast, for ACD, some soils may

reduce the simple effects of climate (for example,

low temperatures, water saturation) on accumu-

lated biomass. This has been observed in humid

forests of the Amazon basin, where Levine and

others (2016) found that water stress and spatial

variation in soil texture explained aboveground

biomass patterns. Additionally, Selmants and oth-

ers (2014) found that, in the tallest native forests of

Laup�ahoehoe, MAT had almost no effect on

aboveground carbon stocks. They suggested that

variation in other factors, such as soil physical and

chemical properties, was more closely tied to vari-

ability in tropical forest biomass. Furthermore, soils

in Laup�ahoehoe may be spatially organized by

species composition, and therefore structure, at a

finer grain than what was captured by the vegeta-

tion map used in our model. Further investigation

is needed into the capacity of soils to minimize the

effects of climate on the biomass of these and other

forests.

We know from prior studies in Hawai‘i and

elsewhere that substrate age and topography can be

strong predictors of foliar nutrients and ACD (Vi-

tousek 2004; Taylor and others 2015; Balzotti and

others 2016). However, in our model, substrate age

and topography had little influence on foliar N or

ACD. The relatively weak influence of substrate

age, at Laup�ahoehoe, may be due to the age classes

present throughout the reserve (�5–300 ky). All of

these classes would be considered ‘‘mid-aged’’

when compared to the well-studied long substrate

age gradient (0.3–4100 ky) across the Hawaiian

archipelago (Vitousek 2004). Mid-aged substrates

in Hawai‘i are relatively rich in available soil N and

phosphorous, potentially minimizing the local-

scale influence of substrate age, after accounting for

the average effects of the other variables in the

Figure 8. Canopy foliar nitrogen (%) by elevation. Elevations with different lowercase letters above the X-axis differ sta-

tistically (p < 0.05). The boxplots are color-coded by the two most dominant forest types at each elevation; see Table 1 for

percent cover for all forest types present at each elevation. The elevations between 1000 and 1300 m shown in gray are the

least impacted by invasive species (Color figure online).
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models. For example, soil type had a greater

influence on both foliar N and ACD models and

may be mitigating variation that would otherwise

be present due to substrate age alone. Additionally,

Asner and others (2009) found that, in the high-

fertility soils of Laup�ahoehoe, aboveground bio-

mass was more closely tied to climate than to

substrate age.

Topographic relief at Laup�ahoehoe exists as small

ridges and valleys (<100 m relief) found

throughout the reserve (Figure 3). This differs from

a similar study of foliar N in a highly dissected

lowland tropical forest, located on the Osa Penin-

sula, Costa Rica, which found that topography (also

<100 m relief) played a stronger role in organizing

foliar N (Balzotti and others 2016) and ACD (Taylor

and others 2015). Changes in topography at

Laup�ahoehoe are more subtle, and, when com-

pared to the enormous influence of disturbance,

climate, vegetation type, and soil, did not play as

strong a role in influencing spatial patterns of foliar

N or ACD. Although topographic variation at the

watershed scale contributed little to the overall

foliar N and ACD models, coarser topographic

scales could have a greater contribution to foliar N

and ACD models. For example, Detto and others

(2013) showed that, in a Panamanian tropical for-

est, spatial variation in canopy height was strongly

related to topographic curvature measured at scales

between 20 and 300 m with a peak correlation at

250 m.

Changes in climate along elevation gradients

can result in species turnover and intraspecific

leaf morphological and canopy structural chan-

ges (Körner and others 1986; Lieberman and

others 1996; Cordell and others 1999; Salinas

and others 2011). We found that elevation-de-

pendent changes in temperature and precipita-

tion in the study region were associated with

foliar N and ACD and thus likely influenced

Figure 9. Aboveground carbon density by elevation. Elevations with different lowercase letters above the X-axis differ

statistically (p < 0.05). The boxplots are color-coded by the two most dominant forest types at each elevation; see Table 1

for percent cover for all forest types at present at each elevation. The elevations between 1000 and 1300 m shown in gray

are the least impacted by invasive species (Color figure online).
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nutrient cycling rates and soil water content. For

example, mass loss and N release during leaf

litter decay increase with decreasing elevation

and increasing MAT (Bothwell and others 2014).

Similarly, on Maui, Schuur and Matson (2001)

found that foliar N, soil N availability, and forest

growth all decreased with increased precipita-

tion. This pattern of foliar N decrease, coinciding

with increased precipitation, was observed de-

spite the overarching humid conditions, where

rainfall exceeds plant demand for water

(MAP 2000–5000 mm; Schuur and Matson).

These conditions were comparable to those

found at Laup�ahoehoe (MAP 1500–5000 mm).

The sharp decrease in ACD with MAP between

3000 and 4000 mm is also similar to Schuur and

Matson’s (2001) reported declines in annual net

primary productivity. The decrease in foliar N

and ACD with lower MAT and higher MAP is

most likely due to crossing of climate thresholds

that can result in a slowing of biological pro-

cesses, such as decomposition rates.

Much of the observed pattern in canopy N and

ACD is the result of individual species responses to

available nutrients and climate. Changes to foliar

N and ACD, due to non-native vegetation in

Laup�ahoehoe, are a result of recent anthropogenic

land-use changes that began less than 220 years

ago, post-European contact. Further invasion into

native forests, and or future changes in MAT or

MAP, will result in further alteration of biogeo-

chemical cycles and possible changes in ecosystem

functioning. With the exception of a few species

(for example, tropical ash), shifts away from na-

tive forests, in Laup�ahoehoe, will likely lead to

forests with elevated levels of N and lower ACD

(Asner and others 2009, 2016). Although we were

unable to validate the remotely sensed foliar N at

this time, we know from past studies and ongoing

work with a similar sensor configuration and PLSR

methodology that the method has consistent pre-

cision across tropical forests, with variation in

accuracy of only roughly 10%. (Asner and others

2015b; Balzotti and others 2016; Chadwick and

Asner 2016; Unpublished data). Future work

should focus on whether mid-elevation forests are

more resistant to invasive species and their influ-

ences, due to existing state factors, such as soil and

climate, or whether the phenomenon is merely a

result of distance to disturbance. Multi-temporal

high-resolution remote sensing will be key to fu-

ture work in the region, to better understand rates

of change and potential resilience and resistance

of humid forests.
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Colgan MS, Baldeck CA, Féret JB, Asner GP. 2012. Mapping

savanna tree species at ecosystem scales using support vector

machine classification and BRDF correction on airborne

hyperspectral and LiDAR data. Remote Sens 4:3462–80.

Cordell S, Goldstein G, Meinzer FC, Handley LL. 1999. Alloca-

tion of nitrogen and carbon in leaves of Metrosideros polymor-

pha regulates carboxylation capacity and d13C along an

altitudinal gradient. Funct Ecol 13:811–18.

Craine JM, Elmore AJ, Aidar MPM, Bustamante M, Dawson TE,

Hobbie EA, Kahmen A, MacK MC, McLauchlan KK, Michel-

sen A, Nardoto GB, Pardo LH, Peñuelas J, Reich PB, Schuur
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