
Chronic Nitrogen Enrichment at the
Watershed Scale Does Not Enhance
Microbial Phosphorus Limitation

Corianne Tatariw,1 Jean D. MacRae,2* Ivan J. Fernandez,3 Marie-Cécile
Gruselle,3 Cayce J. Salvino,4 and Kevin S. Simon5

1School of Biology and Ecology, University of Maine, 5751 Murray Hall, Orono, Maine 04469, USA; 2Civil and Environmental
Engineering, University of Maine, 5711 Boardman Hall, Orono, Maine 04469, USA; 3School of Forest Resources, University of Maine,

5755 Nutting Hall, Orono, Maine 04469, USA; 4Orange County Environmental Protection Division, 3165 McCrory Place, Orlando,

Florida 32803, USA; 5School of Environment, University of Auckland, Private Bag 92019, Auckland, New Zealand

ABSTRACT

Increased N inputs through chronic atmospheric

deposition has enriched temperate forest ecosys-

tems, altering critical ecosystem functions such as

decomposition and potentially resulting in a shift to

P limitation. We used a combination of microbial

biomass stoichiometry and enzymatic activity

analyses to evaluate the potential for microbial

nutrient limitation over the course of a growing

season in response to multi-decadal, whole-water-

shed N enrichments and a one time, plot-scale P

addition that occurred in the 22nd year of whole-

watershed treatments. The one-time P addition

increased microbial biomass threefold and reduced

N-acetyl-glucosaminidase (NAG) and acid phos-

phatase (AP) activity 1 week after application, but

there was no interaction with long-term experi-

mental N enrichment to indicate a shift to P limi-

tation. However, both N and P treatments increased

C limitation independently of each other over the

duration of the study based on measured increases

in b-1,4-glucosidase (BG) activity relative to NAG

and AP. Microbial biomass stoichiometry and en-

zyme activity indicated that BBWM is P limited

regardless of N status. Our findings highlight the

complex interactions between C, N, and P use and

limitation in a forested ecosystem subjected to

long-term N enrichment.

Key words: atmospheric N deposition; ecological

stoichiometry; microbial biomass; carbon limita-

tion; enzymes; temperate forest; Bear Brook

Watershed in Maine.

INTRODUCTION

Heterotrophic microbes regulate the availability of

nutrients for primary producers through soil bio-

geochemical processes such as organic matter

decomposition, nutrient transformations, and

mineral weathering (Banfield and others 1999;

Falkowski and others 2008; Sinsabaugh and others

2009). One important driver of microbial organic

material mineralization rates is the relative avail-

ability of nutrients, particularly nitrogen (N) and

phosphorus (P), as they affect the production of
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organic matter-degrading exoenzymes, potentially

determining whether carbon (C) is sequestered or

respired (Manzoni and others 2012; Marklein and

Houlton 2012). Given the important role of mi-

crobes in soil nutrient cycling and C storage, it is

critical to understand how they respond to human-

driven changes in nutrient loads.

Atmospheric transport and deposition of N is the

dominant pathway of anthropogenic N distribution

at the global scale (Galloway and others 2008).

Long-term elevated N deposition has impacted

temperate forest ecosystems by enriching the N

content of tree foliage and soil organic matter (Aber

and others 1989; Driscoll and others 2001; Lovett

and others 2013; Frey and others 2014) and

increasing soil C sequestration by suppressing

decomposition (Pregitzer and others 2008; Frey and

others 2014). Increased N availability due to

deposition also reduces tree root exudate produc-

tion, which can in turn contribute to decreased

microbial respiration (Janssens and others 2010). N

deposition may further disrupt microbial processes

by reducing microbial biomass and shifting func-

tional community composition (Frey and others

2004; Treseder 2008; Leff and others 2015).

Primary production in temperate forest ecosys-

tems is often N limited, but N deposition can shift

primary producers to P limitation (Naples and Fisk

2010; Vitousek and others 2010; Crowley and

others 2012). Unlike N, which can be biologically

fixed from the atmosphere, P availability in soil is

ultimately limited by mineral weathering (Sch-

lesinger and Bernhardt 2013). In the absence of N

deposition, P limitation in forest soils usually occurs

in old, weathered soils such as in the lowland

tropics (Porder and others 2007). However, atmo-

spheric N deposition can increase the likelihood of

P limitation of primary producers and microbes in

North American forest soils by relaxing N limitation

(Elser and others 2000; Crowley and others 2012).

Furthermore, acidification associated with atmo-

spheric N deposition can further enhance P limi-

tation by increasing P sorption to aluminum (Al)

and iron (Fe) oxides (Gallardo and Schlesinger

1994; Norton and others 2006).

The interactive nature of N and P dynamics un-

der atmospheric deposition has the potential to al-

ter C cycling. In trees, N deposition results in

reallocation of fixed C from labile root exudates

and root biomass to woody biomass (Pregitzer and

others 2008). As P limitation increases, trees allo-

cate energy into phosphatase and organic acid for P

acquisition rather than the C-rich exudates that

encourage microbial symbioses (Hinsinger 2001;

Lynch and Ho 2005). N deposition alters microbial

community structure and function by suppressing

fungal biomass (Frey and others 2004; Treseder

2008) and richness (Eisenlord and others 2013). N

deposition also suppresses ligninolytic enzymes and

promotes cellulase activity (Carreiro and others

2000; Talbot and Treseder 2012), potentially con-

tributing to a more recalcitrant soil C pool by pro-

moting lignin accumulation (Waldrop and others

2004). As a result, this more recalcitrant C may be

stored in soil rather than respired to the atmo-

sphere as CO2 (Nave and others 2009; Lovett and

others 2013).

We used a multi-decadal whole-watershed

manipulation, the Bear Brook Watershed in Maine

(BBWM), to test the idea that chronic, experi-

mentally elevated N and acid deposition may have

shifted the stoichiometric balance in soils toward

microbial P limitation. Chronic experimental N

enrichment and acidification have driven a whole

watershed at BBWM to stage two of N saturation

(Aber and others 1998), resulting in seasonally

high exports of stream nitrate (Fernandez and

others 2010; Simon and others 2010), elevated fo-

liar N (Elvir and others 2005; Fernandez and others

2010), increased total N and nitrate in soil solution

(Fatemi and others 2012), and higher soil total N

(Fernandez and others 2010). At the time of our

study, there was no significant difference in

extractable phosphate in the organic horizon, but

experimental P additions resulted in enhanced

immobilization of inorganic N (Salvino 2014). Both

Fatemi and others (2016) and Mineau and others

(2014) found no evidence of P limitation on

enzymatic activities in BBWM soils, but Mineau

and others (2014) reported that N enrichments had

enhanced P limitation of stream biofilm commu-

nities. These studies demonstrated clear differences

in whole ecosystem N cycling between watersheds,

and mixed evidence for N and P limitations in soil

microbial processes.

Therefore, we used microbial biomass stoi-

chiometry and enzymatic activity to evaluate

microbial nutrient limitation in response to long-

term, whole-watershed N enrichment and a short-

term, plot-scale P addition within the treated and

reference watersheds. We aimed to either validate

the lack of enzymatic response to P reported earlier

in soils for this site or find evidence for coupled

enzymatic response to nutrient deficiencies. The

prevailing hypothesis was that long-term N

enrichment-enhanced microbial P limitation in the

organic soil horizon, and that short-term P addition

would elicit a microbial biomass and enzyme re-

sponse, and that response would be more pro-

nounced in the N-treated watershed as a result of
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enhanced P limitation. We also hypothesized that

long-term N enrichment and short-term P addition

would induce C limitation.

METHODS

Site Description

The BBWM is composed of contiguous reference

(11.0 ha, East Bear Brook, REF) and treatment

(10.3 ha, West Bear Brook, +N) watersheds located

on the southeastern slope of Lead Mountain in

Maine, USA (44�51¢33.9¢¢N, 68�06¢19.5¢¢W). The

treated watershed had been enriched with ammo-

nium sulfate ((NH4)2SO4) via bimonthly additions

by helicopter since November 1989 with an annual

loading rate of 25.2 kg N ha-1 y-1 and 28.8 kg

S ha-1 y-1. Soils are mostly Typic Haplorthods and

Haplohumods with an average depth to bedrock of

1.0 m. The lower elevations are dominated by

hardwood stands (HW; American beech, Fagus

grandifolia and sugar maple, Acer saccharum), and

the higher elevations are dominated by softwood

stands (SW; red spruce, Picea rubens, with sparse

balsam fir, Abies balsamea).

Experimental Design and Sample
Collection

The two watersheds (REF, +N) and vegetation

types (HW, SW) formed four experimental com-

partments. We used five, 15 9 10 m long-term

research plots in each compartment. Each plot was

subdivided into six 5 9 5 m subplots, and we used

2 subplots arranged 5 m apart laterally along the

slope. One subplot was enriched with P (+P), and

the other served as a control (No-P). Air and soil

temperature were measured at the plot level using

HOBO HS Outdoor/Industrial four channel data

loggers (Onset Computer Corporation, Bourne,

MA) as described in Fernandez and others (2007).

Sodium phosphate monobasic monohydrate

(NaH2PO4ÆH2O) dissolved in stream water from the

REF watershed was applied to the +P subplots at a

rate equivalent to 100 kg P ha-1 on 1 June 2012.

This loading rate was in the range of enrichments

used by others in decomposition experiments (67–

150 kg P ha-1 y-1; Hobbie and Vitousek 2000;

McGroddy and others 2004; Cleveland and others

2006). The solution was sprayed uniformly across

the surface of the subplots by multiple passes at

right angles with a backpack sprayer. Control sub-

plots were sprayed with an equivalent volume of

REF stream water. The sodium (Na) salt form of P

was chosen to avoid the addition of essential min-

eral nutrients such as potassium (K) and calcium

(Ca).

Soil samples were collected from both types of

subplots at 6, 68, and 136 days after P addition;

these will be referred to as June, August, and

October, respectively, to be consistent with other

works related to this study (Table 1). For each

sampling event, three samples of the organic (O)

horizon were collected at the start, middle, and end

of a 2 m transect within each subplot. Prior to

sampling, loose litter not mechanically attached to

the upper surface of the O horizon was removed. O

horizon materials within a 10 9 10 cm template

were excavated down to the mineral soil using

clippers and a hand saw to separate the soil block

from the surrounding soil. The boundary between

the O horizon and mineral soil was typically abrupt

and distinct. The soil blocks were placed in Ziploc�

bags and held in coolers with icepacks for transport

and storage before processing for soil chemistry,

microbial biomass stoichiometry, and microbial

enzyme activity.

Soil Processing

All analyses were carried out on sieved, homoge-

nized O horizon materials in field moist conditions.

Soils were sieved though a 6-mm mesh sieve to

separate fine from coarse fragments and roots. The

triplicate subsamples taken within each subplot

were combined and homogenized to produce one

sample per subplot. Roughly 25 g from each bulked

sample was transferred by an ethanol-cleaned

spatula into 50 ml polypropylene tubes and stored

at -65�C until enzymatic analysis. Gravimetric

moisture content was determined by weighing

subsamples before and after drying at 65�C for 24 h

Table 1. Collection Day Conditions in 2012

Month Collection date (s) Days post P Air temp. (�C) O horizon temp. (�C) Soil moisture (%)

June 06 Jun. 7 nd 9.1 244 (38)

August 06 Aug. 69 nd 18.0 210 (67)

October 05 Oct. 129 nd 12.2 300 (89) (n = 6)

12 Oct. 136 4.5 10.2 256 (54) (n = 16)

19 Oct. 143 10.2 9.9 272 (55) (n = 18)

180 C. Tatariw and others



in pre-weighed crucibles. The dried samples were

then placed in a muffle furnace at 450�C for 12 h,

cooled and weighed to determine loss-on-ignition

(LOI).

Soil Chemistry

Extractable phosphate-P (PO4
--P), total C (TC),

and total N (TN) were measured on O horizon

materials from three plots in each compartment.

For PO4
--P, 15 g of soil was mixed with 100 ml of

1 N ammonium chloride (NH4Cl) and placed on a

mechanical shaker for 1 h. Samples were vacuum

filtered through Whatman #42 filter papers into

60 ml, 10% hydrochloric acid (HCl) washed bot-

tles. Three milliliters of HCl was added to acidify the

extracts. Extracts were stored at -20�C until anal-

ysis on an O.I. Alpkem A/E auto-analyzer (O.I.

Analytical, College Station, TX, USA). TC and TN

were determined via combustion of O horizon ali-

quots on a LECO CN-2000 Analyzer (Leco Corpo-

ration, St. Joseph, MI, USA).

Microbial Biomass Stoichiometry

Microbial biomass C, N, and P were determined

using a sequential extraction procedure modified

from Holmes and others (2003). A slurry of

approximately 4 g of field moist, homogenized soil

with 75 ml of 2 M potassium chloride (KCl) were

shaken in a glass Erlenmeyer flask for 1 h. The

slurry was filtered through a 0.45 lm Millipore

MCE filter, and the filtrate was retained for

chemical analysis. The filter and soil were fumi-

gated with ethanol-free chloroform (CHCl3) for

24 h. The soils were extracted again with 2 M KCl,

and the filtrates were stored at -20�C in high-

density polyethylene bottles.

Microbial biomass C (MBC), N (MBN), and P

(MBP) were determined as the total non-purgeable

organic carbon (NPOC), total nitrogen (TN), and

total P concentrations from the post-chloroform

fumigation extractions. NPOC and TN were mea-

sured on a Shimadzu TOC-V outfitted with a TNM-

1 total nitrogen unit (Shimadzu Corporation,

Kyoto, Japan). Microbial biomass C and N were

calculated per gram organic matter using correction

factors of 0.45 (Joergensen and others 2011) and

0.54 (Brookes and others 1985), respectively. Total

P was measured on a Thermo-Electron model iCAP

6300 ICP (Thermo Fisher Scientific, Waltham, MA,

USA) at the University of Maine Analytical Labo-

ratory and Maine State Soil Testing Service (Orono,

ME, USA). Microbial biomass P was calculated per

gram organic matter using a correction coefficient

of 0.40 (Brookes and others 1985). Soil labile P is

highly operationally defined, and consistent

methods are key to allow comparison of relative

values within an experiment. Here, we used KCl to

determine microbial biomass P as it was simulta-

neously used in measures of labile microbial bio-

mass N. It should be noted that KCl is less efficient

at extracting P than sodium bicarbonate or anion

exchange membranes (Brookes and others 1982;

Kouno and others 1995), which can be advanta-

geous as an indicator of available soil P because

increasingly aggressive extractants use yields from

increasingly unavailable soil P phases. Here, we

have studied the relative patterns in biomass P

across treatments with a consistent methodology,

without the intent of direct comparisons with val-

ues from other studies using alternative methods.

Enzyme Activity

We measured the activities of three enzymes in-

volved in the hydrolysis of organic compounds to

infer C, N, and P limitation of the microbial com-

munity including b-1,4-glucosadase (BG), b-1,4-N-
acetylglucosaminidase (NAG), and acid phos-

phatase (AP) (Sinsabaugh and others 2009), with

fluorescence substrates 4-MUB-b-glucoside, 4-

MUB-N-acetyl-b-D-glucosaminide, and 4-MUB-

phosphate, respectively. We did not measure leu-

cine-amino-peptidase (LAP) as test assays resulted

in no activity within a 24-h period. LAP activity

decreases with soil pH (Sinsabaugh and others

2008), so the lack of activity was likely due to the

low pH (range 3.71–4.75) of O horizon soils at

BBWM. Frozen soils were thawed at room tem-

perature (�20�C) and moist soil equivalent to

approximately 1 g dry mass was sieved and

weighed into a clean 50 ml Falcon tube. Slurries

were created by adding 30 ml of 50 mM acetate

buffer adjusted to pH 5. The slurries were homog-

enized by vortexing for 1 min and approximately

7 ml of slurry was diluted in an additional 50 ml of

buffer and stirred continuously as 200 ll aliquots
were removed and added to 96-well plates (7

replicates per sample). Fifty microliters of 1000 lM
substrate solution was added to each well, and

fluorescence was measured at 25�C on a microplate

fluorometer (Fluoroskan Ascent FL, Thermo Fisher

Scientific, Waltham, MA, USA). A series of test

assays confirmed this substrate concentration sat-

urated enzyme activity (data not shown). Fluores-

cence was read at 30 min intervals, and activities

were calculated from the last linear time point.

Activity was normalized to microbial biomass C

(lmol g biomass-1 h-1).
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To assess changes in microbial nutrient and C lim-

itation, enzyme activities (lmol g biomass-1 h-1)

were converted to vectors based on ratios of enzyme

activity indicative ofC/N (BG/NAG) andC/P (BG/AP)

acquisition (sensu Moorhead and others 2013)

(Eqs. 1, 2). Vector length, a unit less index of C

limitationwith longer vectors indicative of increasing

C limitation, was calculated as:

Vector length unitlessð Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lnBG : lnNAG2 þ lnBG : lnAP2
p ð1Þ

Vector angle, in degrees, an index of magnitude of

N versus P limitation, was calculated as:

Vector angle �ð Þ ¼ tan�1 lnBG : lnAP

lnBG : lnNAG
ð2Þ

where tan is tangent. Larger vector angles corre-

spond to greater P limitation, whereas smaller an-

gles correspond to greater N limitation.

Statistical Analysis

All analyses were completed in R Version 3.2.2

using RStudio Version 0.99.485 (R Core Team

2015; RStudio Team 2015). Linear mixed effects

models were used to detect changes in TC, TN, P-

PO4
-, microbial biomass (that is, MBC), biomass

stoichiometry (C/N, C/P, and N/P), enzyme activ-

ity, vector angle, and vector length in response to

short-term P treatment over the course of the

experiment using the nlme package Version 3.1-

122 (Pinheiro and others 2015). Long-term N

treatment (that is, watershed), short-term P treat-

ment, and month were treated as fixed factors. To

remove the influence of stand type on covariation

among N, P, and seasonal effects, stand type was

designated a control variable. Plot was used as a

random factor. When there were significant inter-

actions among factors that were not individually

significant, we devolved the analysis into one-way

ANOVAs to define main effects. Treatments were

significantly different at a = 0.05. We were partic-

ularly interested in watershed 9+P interactions

that would signify that the effect of P enrichment

depended on N enrichment. Significant factors

were tested using Tukey’s Highly Significant Dif-

ferences (HSD) test. The effect of main factors on

response variable means and p values is presented

in the text, whereas a table of mean (±standard

deviation) soil chemistry for each combination of

main factors is provided in the supplemental

material (Table SI 1) along with the outputs of the

mixed effects models and ANOVAs (Tables SI 2-8).

RESULTS

Soil Chemistry

Neither N (p = 0.502) nor P treatments (p = 0.571)

affected TC. TC did not vary by month (p = 0.312)

and was 10% higher in softwood stands than

hardwood stands (p = 0.008). Long-term N treat-

ments increased TN in the treated watershed by 7%

(p = 0.046). Short-term P addition had no effect on

total TN (p = 0.284) and did not interact with N

treatment (p = 0.075). TN did not vary over time

(p = 0.498). TN was 8% higher in hardwood stands

than softwood stands (p = 0.015).

Long-term N treatments did not affect soil PO4
--

P (p = 0.654). P treatment caused a fourfold in-

crease in PO4
--P (p < 0.001), but this changed

over time as indicated by an interaction between P

treatment and month (p = 0.008). In June, P

addition increased PO4
--P sevenfold (one-way

ANOVA, p < 0.001), and the effect persisted

through August, when PO4
--P was twice as high in

P-treated subplots (one-way ANOVA, p = 0.001).

By October, there was no difference between No-P

and +P subplots (one-way ANOVA, p = 0.409).

Stand type did not affect PO4
--P (p = 0.815).

Microbial Biomass and Enzyme Activity

Microbial biomass, stoichiometry, and N- and P-

acquiring enzymes showed a rapid and transient

response to short-term P addition independent of

experimental N enrichment. MBC increased

threefold 1 week after treatment (that is, in June)

in both watersheds (Tukey’s HSD, p < 0.001, Fig-

ure 1B), but by August average biomass in the P-

enriched subplots declined more than threefold

(1.11 lg g soil-1) to levels comparable to control

subplots (Figure 1B). Short-term P addition did not

increase C/N in June (Tukey’s HSD, p = 0.232) or

August (Tukey’s HSD, p = 0.999), but in October,

C/N in the +P subplots was about twice as high as

in the No-P subplots (Tukey’s HSD, p = 0.002,

Figure 2). In contrast, C/P followed the same pat-

tern of response to short-term P addition as MBC,

with a threefold increase in C/P in June (one-way

ANOVA, p = 0.003), but no persistent effect

through August (one-way ANOVA, p = 0.461) and

October (p = 0.625, Figure 2). Similarly, P addition

doubled N/P in June (one-way ANOVA,

p = 0.007), but the effect did not persist through

August (one-way ANOVA, p = 0.500). Unlike MBC

and C/P, in October N/P was four times higher in

the No-P subplots compared to the +P subplots

(one-way ANOVA, p = 0.014).
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Figure 1. Microbial biomass (A, B) and enzyme (C–H) response to long-term N (left panel) and short-term P (right panel)

additions. Bars are mean ± standard error. Asterisks indicate significant response to nutrient addition at a = 0.05.
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P addition decreased the activity of the N-ac-

quiring enzyme, NAG, more than 3.5-fold in June

(Tukey’s HSD, p < 0.001, Figure 1D), but there

was no effect in the following months. P addition

reduced the P-acquiring enzyme, AP, in June

(threefold decrease, Tukey’s HSD, p < 0.001) and

October (1.5-fold decrease, Tukey’s HSD,

p = 0.029, Figure 1F) but not August (Tukey’s

HSD, p = 0.531).

The only microbial variable consistently respon-

sive to long-term N additions was the C-acquiring

enzyme, BG. Mean BG activity was nearly 25%

higher in the N-treated watershed compared to the

reference watershed across all months (p = 0.038,

Figure 1G). BG did not respond to P treatment

(p = 0.373, Figure 1H). The long-term N treatment

had no effect on MBC (p = 0.245, Figure 1A), C/N

(p = 0.747), C/P (p = 0.769), N/P (p = 0.907), NAG

(p = 0.942, Figure 1C), or AP (p = 0.111, Fig-

ure 1E).

Figure 2. Mean ± standard error for C/N vs. C/P. Dashed

lines indicate mean C/N and C/P for forest soil microbial

biomass (Cleveland and Liptzin 2007): C/N = 8.2 and

C/P = 74.0. Solid lines connect points from the same

sampling day. Shapes differentiate between N treatments

(circle = REF, triangle = + N watershed) and colors differ-

entiate between P treatments (gray = No-P, black = + P).

Figure 3. Enzyme vector angle (A, B) and length (C,D) response to long-term N (open bars) and short-term P (striped bars)

additions. Larger vector angle indicates greater P limitation relative to N, and larger vector length indicates greater C

limitation. Bars are mean ± standard error. Asterisks indicate significant differences at a = 0.05.
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MBC was 1.4 times higher in hardwood stands

than softwood stands over all treatments and

sampling days (p < 0.001), but there was no effect

of stand type on microbial C/N (p = 0.762), C/P

(p = 0.760), or N/P (p = 0.812). AP activity was

about 1.6 times greater in softwoods stands com-

pared to hardwoods (p < 0.001). There was no

difference in BG (p = 0630) or NAG (p = 0.726)

between stand types.

Enzyme Vectors

Enzyme vector angles were larger than 45� over all
sampling days and treatments, indicating greater P

limitation rather than N limitation. Vector angle

was not influenced by N (p = 0.357, Figure 3A) or

P additions (p = 0.882, Figure 3B). Mean vector

angle varied among sampling days (p < 0.001)

with the largest vector angle in June (54.6� ± 3.4)

and smallest in August (50.6� ± 3.0). Although

there was an interaction between day and P addi-

tion (p = 0.040), there was no effect of short-term P

treatment on vector angle on any day. Vector angle

was 3.8% larger in softwoods stands (53.8� ± 3.1)

compared to the hardwood stands (51.8� ± 3.6)

(p < 0.001).

Long-term N treatments increased enzyme vec-

tor length, an index of C limitation, by 4.2%

(p = 0.031, Figure 3C) over all months. Short-term

P addition increased mean enzyme vector length by

a similar magnitude (5.6%) over all months

(p = 0.006, Figure 3D). Mean vector length varied

by month and was >9% greater in October com-

pared to June and August (Tukey’s HSD,

p < 0.001, p = 0.002, respectively). There was no

difference in vector length between stand types

(p = 0.074).

DISCUSSION

Long-Term N Enrichment-Enhanced C
Limitation

We expected that long-term experimental N

deposition would reduce or alleviate N limitation

and enhance P limitation. However, microbial

biomass and enzyme activity indicate that soil mi-

crobes at BBWM are in a P and C limitation state

independently of N status. Furthermore, we found

very few interactions between long-term N

enrichment and short-term P addition that would

have signaled enhanced P limitation under exper-

imental N additions. Long-term N additions at

BBWM have increased the soil N pool relative to C,

yet there was no effect of N enrichment on

microbial biomass, stoichiometry, or N- and P-ac-

quiring enzymes. One of the impacts of atmo-

spheric N deposition is suppression of soil microbial

biomass, particularly fungal biomass, in response to

reduced fine root and exudate production by plants

(Aber and others 1989; Wallenstein and others

2006; Treseder 2008). Phospholipid fatty analysis of

soils collected in August 2012 indicated that N

additions decreased fungal biomarkers but not total

biomarker mass (Tatariw 2016), so it is possible that

our fumigation-based biomass carbon measure-

ments, which measure total microbial biomass, do

not a reflect a change in fungal biomass.

Mean O horizon microbial C/N was 9.2:1.0

(±5.4), which is slightly higher than the predicted

soil microbial C/N of 8.6 (Cleveland and Liptzin

2007). We expected that N deposition would re-

duce microbial N limitation, resulting in larger

vector angles, but although microbes maintained a

constant C/N under an increased N regimen, there

was no concomitant decrease in NAG activity or

increase in AP activity in the treated watershed to

indicate a reduction in N acquisition or enhanced P

limitation. Although the lack of NAG response is

consistent with Mineau and others (2014) and

Fatemi and others (2016), who found that long-

term N enrichment did not alter microbial nutrient

acquisition strategies at BBWM, our findings differ

as both BG activity and vector length indicate that

long-term N enrichment has enhanced microbial C

limitation. BG is associated with cellulose decom-

position (Sinsabaugh and Liptak 1997), the break-

down of which, unlike lignin, is N limited (Fog

1988; Berg and Matzner 1997). Enhanced C limi-

tation may also explain the lack of NAG response

observed in this and previous (Mineau and others

2014; Fatemi and others 2016) studies at BBWM.

Although NAG activity is used as an index of N

limitation (for example, Sinsabaugh and others

2009), microbes also use NAG to acquire C from

chitin degradation (Geisseler and others 2010).

One of the consequences of an N-driven shift to a

more recalcitrant soil pool is an increase in soil C

storage which serves as a potential sink for atmo-

spheric CO2 (Janssens and others 2010; Frey and

others 2014). The changes in C acquisition strate-

gies that we observed can alter soil C composition

in ways that influence soil C storage. For example,

increases in BG activity associated with N deposi-

tion have been shown to increase lignin relative to

cellulose in organic soils (Carreiro and others 2000;

Sinsabaugh and others 2005; Talbot and Treseder

2012). Plant response to increased available soil N

may also alter the soil carbon pool by reducing la-

bile exudates from rhizosphere priming (Dijkstra

and others 2013), further contributing to microbial

N Enrichment Does Not Enhance Microbial P Limitation 185



C limitation. We observed increased C limitation as

a result of long-term N enrichments that suggests a

more recalcitrant C pool, though direct measure-

ments of organic C availability and rhizosphere C

are necessary to confirm the mechanisms of C

utilization and limitation at BBWM.

N Enrichment Did Not Enhance P
Limitation

The threefold increase in microbial biomass cou-

pled with a threefold decrease in AP activity fol-

lowing P enrichment in both watersheds indicates

that microbial communities were P limited inde-

pendently of long-term N status, possibly due to a

combination of biotic and abiotic constraints on P

availability such as plant uptake (Yanai 1992) or

sorption by secondary soil aluminum and iron

hydroxides (Norton and others 2006). It is worth

nothing that our enzyme and biomass responses to

P addition did not persist throughout the growing

season, even though extractable soil PO4
--P re-

mained elevated for 2 months after treatment.

Similarly, plot-scale P fertilization at the Hubbard

Brook Experimental Forest (HBEF) increased resin-

available P levels, there was no increase in micro-

bial biomass, respiration, or C mineralization two

months after treatment (Groffman and Fisk 2011;

Minick and others 2011). These findings support

the idea that plant uptake and/or abiotic sorption

are significant drivers of long-term P availability in

northern temperate forest soils.

We did not see a change in vector angle imme-

diately following short-term P addition (that is,

June). The C/N ratio of exoenzymes is much lower

than that of the microbial biomass (Schimel and

Weintraub 2003), so it is possible that at the time of

P addition, microbes at BBWM were investing en-

ergy into N acquisition to produce AP. This is sup-

ported by the fact that NAG activity decreased

concomitantly with AP activity and biomass N in-

creased slightly following short-term P addition, as

decreased allocation of N toward AP production

would lower utilization of cellular N (Olander and

Vitousek 2000; Marklein and Houlton 2012; Fisk

and others 2014).

In both watersheds, P addition altered microbial

biomass stoichiometry by increasing biomass C

relative to N and P. It is possible that the reduction

in AP and NAG production following P addition

decreased microbial use of cellular C (Schimel and

Weintraub 2003; Dijkstra and others 2013) and

triggered microbial storage of plant exudate C as

lipids in biomass (for example, Mooshammer and

others 2014). We saw a similar, though smaller,

response in biomass stoichiometry and AP activity

in the +P subplots in October, possibly due to

recycling of added P through litter following

senescence (See and others 2015). Although we did

not have measurements of litterfall chemistry, the

microbial response to P immediately following P

addition indicates that P availability is a control on

C storage in microbial biomass.

We observed longer vector lengths in +P sub-

plots, suggesting increased microbial demand for C.

Phosphorus limits dissolved organic matter miner-

alization by limiting protein synthesis (Cleveland

and others 2003; Hartman and Richardson 2013).

For example, Bradford and others (2008) found

that P additions increased organic matter decom-

position in experimental mesocosms because mi-

crobes could produce more decomposing enzymes

and ATP, subsequently increasing utilization of

recalcitrant C. Increased allocation of cellular P to

protein and enzyme synthesis could explain why

microbial biomass P did not increase relative to C

and N in response to P addition.

Deposition-associated acidification can increase

available P in the organic soil horizon by solubilizing

aluminum inmineral soil, releasingPwhich is cycled

into organic soil horizons via tree uptake and

senescence (SanClements and others 2010). Al-

though experimental acidification had not increased

O horizon P at the time of this study, our P addition

indicated that an increase in P availability can

potentially accelerate microbial nutrient cycling.

Estimates of microbial biomass turnover (that is,

biomass loss divided by average biomass, McGill and

others 1986) show that in addition to increasing total

biomass, P addition tripled turnover rates between

June and August (0.2 month-1 in No-P vs.

0.6 month-1 in +P). Microbial community turnover

is an important source of nutrients for soil organisms

and plants (Coleman 1994; Schmidt and others

2007), so P availability at BBWM is potentially an

important driver on the timing and availability of

microbially derived pools of labile nutrients.

CONCLUSIONS

Ecological stoichiometric theory dictates that plas-

ticity in microbial biomass is driven by substrate C/

N/P composition and that exogenous enzyme pro-

duction reflects microbial demand for those nutri-

ents. While there is a clear relationship between

substrate stoichiometry, microbial nutrient con-

tent, and nutrient acquisition globally (for exam-

ple, Cleveland and Liptzin 2007; Sinsabaugh and

others 2009; Xu and others 2013), regional varia-

tion in soil microbial stoichiometry and activity
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may be more dependent on the quality and timing

of C delivery than quantity (Stevenson and others

2016). Measurements of microbial biomass stoi-

chiometry and enzyme activity suggest that long-

term N additions have enhanced microbial C limi-

tation, possibly by shifting the soil C pool to a more

recalcitrant form. In contrast, P limitation was dri-

ven by factors other than N enrichment in the

acidic O horizon soils at BBWM. N deposition in-

creases soil C sequestration in northern temperate

forests (Nave and others 2009), but long-term

storage may be affected due to interacting effects

such as P availability (Peñuelas and others 2013),

climate change (de Vries and others 2014), and

microbial community response to changes in C

quality (Bardgett and others 2008; Lehmann and

Kleber 2015). Given the complexity of these

interactions, it is critical to understand the role of

microbial response to changing nutrient availability

and the subsequent impact on soil processes in

catchments subjected to chronic chemical and

physical change.
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