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ABSTRACT

Uncertainty about the mechanisms driving biomass

change at broad spatial scales limits our ability to

predict the response of forest biomass storage to

global change. Here we use a spatially representa-

tive network of 874 forest plots in New Zealand to

examine whether commonly hypothesised drivers

of forest biomass and biomass change (diversity,

disturbance, nutrients and climate) differ between

old-growth and secondary forests at a national

scale. We calculate biomass stocks and net biomass

change for live above-ground biomass, below-

ground biomass, deadwood and litter pools. We

combine these data with plot-level information on

forest type, tree diversity, plant functional traits,

climate and disturbance history, and use structural

equation models to identify the major drivers of

biomass change. Over the period 2002–2014, sec-

ondary forest biomass increased by 2.78 (1.68–

3.89) Mg ha-1 y-1, whereas no significant change

was detected in old-growth forests (+0.28; -0.72 to

1.29 Mg ha-1 y-1). The drivers of biomass and

biomass change differed between secondary and

old-growth forests. Plot-level biomass change of

old-growth forest was driven by recent disturbance

(large tree mortality within the last decade),

whereas biomass change of secondary forest was

determined by current biomass and past anthro-

pogenic disturbance. Climate indirectly affected

biomass change through its relationship with past

anthropogenic disturbance. Our results highlight

the importance of disturbance and disturbance

history in determining broad-scale patterns of for-

est biomass change and suggest that explicitly

modelling processes driving biomass change within

secondary and old-growth forests is essential for

predicting future changes in global forest biomass.
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INTRODUCTION

Globally, forests provide a significant reservoir of

non-atmospheric carbon, equivalent to 861 ± 66

Pg, and this reservoir is thought to be growing at a

rate of 2.4 ± 0.4 Pg per year (Pan and others 2011).

However, the ongoing capacity of forests to act as a

net carbon sink depends on complex and often

interacting forces of global change, including nat-

ural and anthropogenic disturbance (Kurz and

others 2008; Reichstein and others 2013; Beren-

guer and others 2014), climate change (Phillips and

others 2009; Reichstein and others 2013) and

changes in community composition (Coomes and

others 2014). Shifts in biomass stock (here defined

as live above-ground biomass, below-ground bio-

mass, deadwood and litter pools) over time reflect

an imbalance between biomass gains through

growth and recruitment, and losses due to mor-

tality, harvesting, decomposition, respiration and

combustion. Disturbance, environmental condi-

tions and forest species composition and diversity

affect all these processes, but the relative impor-

tance and magnitude of these effects is unresolved

(for example, Fisher and others 2008; Coomes and

others 2012, 2014; Fernández-Martı́nez and others

2014; Durán and others 2015; Poorter and others

2015).

The multiple drivers of forest biomass change can

interact in complex ways across multiple spatial

scales. This introduces additional sources of uncer-

tainty in future forecasting of biomass storage and

can obscure the importance of these drivers at na-

tional or global scales (Fisher and others 2008;

Chambers and others 2009; Erb and others 2013).

Drivers that are important at local scales may be-

come obscured or unimportant at larger spatial

scales relevant to country-level UNFCCC reporting

and international climate liabilities, or for assessing

the relative impacts of drivers of forest change at a

global scale. For example, climate or nutrient

availability may drive biomass change at local scales

(for example, within undisturbed old-growth for-

est); however, at larger spatial scales the relation-

ship between nutrient availability and growth may

become overshadowed by changing forest compo-

sition and structure due to past disturbance (Erb

and others 2013; Canham 2014). Efforts to disen-

tangle the drivers of biomass change consider only a

limited number of drivers in isolation (for example,

Fisher and others 2008; Chisholm and others 2013;

Coomes and others 2014; Fernández-Martı́nez and

others 2014) or are strongly reliant on extrapola-

tions from few well-characterised systems (for

example, Chambers and others 2009; Erb and oth-

ers 2013). In addition, most of this literature has

focussed on understanding biomass, rather than net

biomass change, often assuming that biomass and

net biomass change are positively correlated (for

example, Stegen and others 2011; Chisholm and

others 2013; Poorter and others 2015).

These efforts are hindered by uncertainty around

the relative importance and landscape-level con-

tribution of potential drivers (Erb and others 2013;

Fernandez-Martinez and others 2014; Michaletz

and others 2014). Furthermore, interactions among

drivers may lead to indirect effects that are difficult

to detect at local or regional scales or when the

potential drivers of NEP are considered in isolation

(Fisher and others 2008; Chambers and others

2009; Erb and others 2013). Although the impor-

tance of old-growth forests for biomass storage has

received considerable attention (Luyssaert and

others 2008; Pan and others 2011), secondary for-

ests have been relatively overlooked because they

contain lower biomass stocks. This is surprising

because these forests are typically accumulating

biomass through the process of stand development

and are a critical component of landscape-scale

biomass change. Biomass storage in old-growth and

secondary forests is likely to respond differently to

environmental drivers, because of their contrasting

age class structures, diversity profiles and species

composition, and age-specific responses of trees to

climate and resource availability. Data from sec-

ondary forests are scarce compared to old-growth

forests, and seldom have both old-growth and

secondary forests been analysed coincidentally

(Berenguer and others 2014). Such comparisons

are needed to determine how old and secondary

forests differ in their responses to multiple drivers

of forest biomass change.

New Zealand’s forests provide an excellent case

study for simultaneously assessing the relative dri-

vers of biomass change in both old-growth and

secondary forests. This is because New Zealand’s

relatively recent settlement history (c. 1280 AD;

Wilmshurst and others 2008) has generated a clear

initiation of anthropogenic disturbances (Perry and

others 2012), which, coupled with a range of nat-

ural disturbances from storms and tectonic activity,

has created a mosaic of both old-growth and sec-

ondary forests (McGlone 1989). This contrasts with

many Northern Hemisphere forests that have had

millennia of human influence (for example, eastern

North America, Canham 2014; western Europe,

Kalis and others 2003), making the identification of
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old-growth forest difficult or intractable. In addi-

tion, New Zealand forest communities have been

quantitatively classified (Wiser and others 2011),

and a range of climate and trait data (for example,

rainfall, leaf nitrogen content) are available at a

national scale, enabling simultaneous assessment of

multiple ecosystem drivers.

Here we present new biomass stock and net bio-

mass change data from a nationally representative

network of 874 temperate forest plots. Representa-

tive plot networks provide ideal datasets to resolve

the landscape-scale drivers of forest change because

the sampling design reduces the risk of introducing

sampling bias (Fisher and others 2008; Salk and

others 2013). However, such data are scarce, espe-

cially from southern temperate forests. Often, forest

biomass estimates rely on localised plot networks

(for example, Lewis and others 2009), or networks

that omit key pools, such as deadwood (for example,

Coomes and others 2014). Our plot network was

designed specifically for monitoring and reporting

changes in New Zealand’s biomass pools for

UNFCCC reporting (Coomes and others 2002; Min-

istry for the Environment 2014), includes measured

deadwood pools (Richardson and others 2009) and

encompasses a range of old-growth and secondary

forests. We combine these data with extensive plot-

level information on forest type, tree diversity, plant

traits, climate and disturbance history, and apply

integrated multivariate analyses to identify the ma-

jor drivers of forest biomass and biomass change at a

national scale. We aim to resolve two questions:

First, what were the relative contributions of sec-

ondary and old-growth forests to national-scale

biomass and biomass change over the period 2002–

2014? Second, and more generally, do the com-

monly hypothesised drivers of forest biomass and

biomass change differ between old-growth and sec-

ondary forests at a national scale? By resolving these

questions, we provide general insights into the

broad-scale determinants of forest biomass change.

METHODS

Study Area

Our study area encompasses 7.8 million ha of

natural forest located on the central islands of New

Zealand (that is, excluding Chatham, Kermadec

and sub-Antarctic Islands, Figure 1). Natural forests

span a broad latitudinal gradient ranging from

subtropical (34�S) to cool temperate (47�S) and

cover a range of landforms from sea level to tree

line at approximately 1250 m a.s.l. As a global

biodiversity hotspot, New Zealand is rich in

endemic species (Myers and others 2000), but its

forests also possess phylogenetic and ecological

similarities to other less studied southern temperate

rainforests in South America and Australia, as well

as tropical mountain forests of the South Pacific,

Australasia and South America (Wardle 1973).

Representative Plot Network

Plot data were collected as part of New Zealand’s

Land Use and Carbon Analysis System (LUCAS).

LUCAS combines wall-to-wall, satellite-based

mapping with field inventories to underpin New

Zealand’s ability to meet international reporting

requirements under the UNFCCC and the Kyoto

Protocol (Ministry for the Environment 2014). A

major component of LUCAS is a national grid of

permanent plots that systematically sample existing

(pre-1990) natural forest. This plot network was

specifically designed to monitor national biomass

stocks and biomass stock change (Coomes and

others 2002) and is based on 0.04-ha plots

(20 9 20 m land surface area) located on an 8-km

grid across New Zealand. The initial point (that is,

the origin) was selected at random, and then the

rest of the grid was derived in relation to that point,

resulting in a set of evenly spaced randomly located

plots. The 0.04 ha plot size was chosen to integrate

with existing field protocols and vegetation survey

data across New Zealand (Wiser and others 2001).

An additional 20-m-radius plot was piloted as per

the recommendations of Coomes and others (2002)

in an attempt to reduce the variance associated

with large trees, but this method was found to be

unreliable for New Zealand’s dense natural forest

and steep, highly dissected terrain. Spatially rep-

resentative permanent plots with repeated mea-

surements offer unbiased information at national

scales, with comparatively small plot size being

more than compensated for by the increase in

geographic coverage (Salk and others 2013). We

defined our sample universe as the pre-1990 ‘Nat-

ural Forest’ class of the current 2008 LUCAS Land

Use Map (LUM, sourced from the New Zealand

Ministry for the Environment, August 2014). This

sampling universe has 1215 potential plot locations

based on the LUCAS 8-km grid and represents

approximately 7.84 million ha of forest. A total of

1040 (86%) of these grid locations had permanent

sampling plots established during 2002–2007. Plots

were not established where access permission was

denied or where safety issues prevented plot

establishment. Of the 1040 plots established, 874

(84%) randomly selected plots were re-measured

during 2009–2014. Mean measurement interval
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was 7.7 years (minimum 6, maximum 9.3). To al-

low direct comparison of biomass and net biomass

change measurements, we restricted our analysis to

the 874 re-measured plots. These plots have

nationwide coverage and provide a representative

random sample of New Zealand’s pre-1990 natural

forest (Figure 1). This sampling design assumes that

each plot represents 1/874 of the total forest area

(c. 9000 ha per plot), allowing us to estimate total

national carbon stock and stock change simply by

multiplying the sample mean by the total forest

area.

Plot Measurements

Within each plot, all live stems at least 2.5 cm

diameter at 1.35 m above ground (diameter at

breast height, D) were tagged, identified to species

and measured. Diameters of standing dead

stems (‡10 cm D) were measured and scored for

degree of decay using an ordinal decay class

(Coomes and others 2002). Height was measured

on a subset of live stems and all standing dead

stems. For plots consisting primarily of shrubs (that

is, plants <2.5 cm D), measurements of crown

Figure 1. Locations of

874 plots forming a

representative sample of

New Zealand’s pre-1990

natural forest.
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volume were made inside the plot and represen-

tative samples were harvested outside the plot.

Dimensions of fallen dead material (‡10 cm D) and

standing dead stems were measured and each piece

scored using the same ordinal decay classes applied

to standing dead stems. Litter was measured during

the 2002–2007 campaign only. Field methods are

described fully by Payton and others (2004) and the

Ministry for the Environment (2012). Since 2009,

an independent audit of 10% of the plots was

conducted each year to ensure high data quality

standards.

Data Preparation and Error Checking

Data errors may create bias (compromising accu-

racy) or lower precision of the resulting biomass

estimates (Muller-Landau and others 2014). We

therefore implemented a comprehensive range of

data-checking procedures to ensure that our data

met minimum data quality standards (Wiser and

others 2001). Error checking included standard

checks that can be performed on batched data, such

as plot attributes, species name codes, ranges of

values and consistency of individual stem tag

numbers across measurements, through to manual

checking of raw data files (handwritten data sheets

filled in by the fieldworker while on a plot). For

repeatability and transparency, the original data

(that is, the LUCAS database, held by the New

Zealand Ministry for the Environment) were left

intact, and all data checks and corrections were

coded using the R platform (R Development Core

Team 2013). Excessive pruning, cleaning or cor-

rection of raw data can introduce bias that may

have a greater effect on the accuracy of the results

than the original measurement errors (Muller-

Landau and others 2014). We therefore took a

precautionary approach, correcting only extreme

data outliers that could be clearly traced to obvious

field or data-entry mistakes. The effects of

remaining measurement error in the data were

quantitatively incorporated into the biomass cal-

culations using Monte Carlo simulations, drawing

from measurement error distributions based on

blind repeat measurements of forest plots (Hold-

away and others 2014).

Biomass Calculations

Total biomass stocks for both time periods were

calculated as the sum of four biomass pools: live

above-ground biomass (AGB), live below-ground

biomass (BGB), aboveground deadwood (DW) and

litter (LITTER). Two separate sets of calculations

were performed for the above-ground biomass

pool: one for trees and tree ferns at least 2.5 cm D

(AGBtree) and one for shrubs (AGBshrub). This re-

flects the differences in methodology between tree-

dominated versus shrub-dominated plots (Payton

and others 2004). Biomass content of individual

live trees (AGBtree) was calculated using an allo-

metric function for New Zealand trees that incor-

porates stem volume derived from diameter (D)

and height (H), and species-specific wood density

(Beets and others 2012). Two independent tree

height measurements (one at each measurement

period) were not available for 83.8% of the live

stems. For these stems, species-specific allometric

equations based on a database containing over

64,000 records for 234 species were used to calcu-

late height (Holdaway and others 2014). Wood

density values were taken from a database con-

taining records for a total of 113 species (data

available online at the Landcare Research Datas-

tore; http://dx.doi.org/10.7931/J2X34VDD). For

species without species-specific wood density or

tree height models, the corresponding genus-level

average was used and where that was unavailable,

the growth-form average was used (Flores and

Coomes 2011; Coomes and others 2014). For the

48% of tree ferns that did not have measured

heights, we used the average height for that spe-

cies, either within the plot or across all plots, be-

cause tree ferns do not exhibit a reliable

relationship between D and H. Aboveground shrub

biomass (AGBshrub) was calculated from the mea-

surements of orthogonal widths and height of

individual shrub crowns or from the measurements

of shrub cover and height within each subplot

following Coomes and others (2002). Shrub vol-

ume was converted into biomass using crown

density allometries (that is, amount of biomass per

unit of shrub volume) that were fitted using data

from harvests of discrete or continuous shrubs near

each plot (T.A.E. unpublished data). Total live

above-ground biomass (AGB) was obtained for

each plot by summing the biomass of all individual

stems and shrubs within the plot and dividing by

the slope-corrected (horizontal) plot area.

For standing deadwood (>1.3 m tall, ‡10 cm D),

biomass was estimated using volume and taper

equations developed for New Zealand trees (Beets

and others 2012). The total biomass remaining for

standing dead stems was adjusted for decay class

using either a species-specific decay sequence

where available (N = 4 species) or an average decay

sequence of 100, 82, 66 and 47% for decay classes

0, 1, 2 and 3, respectively (Coomes and others

2002). For fallen CWD, the volume (m3) of each

individual piece was estimated using the formula

948 R. J. Holdaway and others
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for a truncated cone. The biomass of each piece of

fallen CWD was calculated as the product of wood

volume, wood density and decay class modifier (as

described above for standing dead stems). Total

biomass in standing and fallen deadwood for each

plot (i) was obtained by summing the individual

pieces within each plot and dividing by slope-cor-

rected plot area.

Belowground biomass was estimated as 25% of

the above-ground biomass contained in live trees,

shrubs and standing deadwood (Phillips and Wat-

son 1994; Coomes and others 2002). Although the

ratio of AGB to BGB will vary among sites and

species, the value of 25% represents our best esti-

mate of the national average given current infor-

mation. We chose to include BGB in our

calculations as it represents an important, albeit

poorly estimated biomass pool. Including BGB as a

constant fraction of AGB affects our total biomass

and biomass change estimates but not our analysis

of the drivers of net biomass change. Biomass

contained in the LITTER pool included fine woody

debris (FWD), litter and the fermenting and humus

layer (FHO). Data for the litter pool were collected

for only 26% of the plots from the 2002–2007

measurement. We modelled LITTER biomass for

the remaining plots as a log–log function of plot-

level DW and AGB. As litter pools for 2009–2014

were not measured, our analysis of net change does

not include this biomass pool. Biomass change was

calculated for paired plots as the biomass of each

pool (except litter) during 2009–2014 minus the

biomass for that pool during 2002–2007. These

values were converted into annual rates by divid-

ing by the plot-specific measurement interval.

Uncertainty Propagation

Uncertainty in the biomass and biomass change

estimates can arise from process uncertainty (that

is, the natural variability among plots), measure-

ment error and uncertainty in the allometric

models used in the calculations (Holdaway and

others 2014). We quantitatively incorporated all

these sources of uncertainty in the calculation of

confidence intervals for the estimates of mean

biomass stock and biomass change using a Monte

Carlo simulation approach following Holdaway and

others (2014). Simulations were run using data

from all 874 plots for both 2002–2007 and 2009–

2014. We ran a total of 1000 simulations that were

randomly sampled from known distributions of the

various sources of uncertainty and calculated the

mean and standard deviation of biomass and bio-

mass change for each simulation, giving a distri-

bution of values for each plot. We then used

bootstrapping to calculate the median values

among plots of both the mean and the standard

deviation, and the 95% bias-corrected accelerated

percentiles of these distributions. This provided

simulated estimates of uncertainty that incorpo-

rated measurement error, model uncertainty and

sampling uncertainty.

Ecosystem Drivers

Data for potential drivers of biomass and net bio-

mass change were obtained for each plot. Mean

annual temperature (MAT) and rainfall (MAR)

were sourced from the Land Environments of New

Zealand climate layers, which have a resolution of

25 m (Leathwick and others 2003). MAT ranged

from 5.3 to 15.8�C (mean 10.0�C), and MAR ran-

ged from 624 to 9250 mm (mean 2446 mm) (Fig-

ure S1 in Electronic Supplementary Material). Plots

were stratified into old-growth and secondary (that

is, successional) forest based on their species com-

position, using a quantitative classification derived

from the same dataset (Wiser and others 2011;

Table S1 and Figure S2 in Electronic Supplemen-

tary Material). Because this stratification is based

on species composition rather than forest structural

attributes, small-scale gap dynamics of old-growth

forest (for example, stand replacement by canopy

tree species following localised disturbance or nat-

ural tree mortality) are assumed to occur within

our ‘‘old-growth’’ forest type (N = 738 plots). Sec-

ondary forests, however, comprise seral species

only and are therefore defined as transitional

communities that will, in the absence of large dis-

turbances, develop into old-growth forests

(N = 136 plots). We chose to use this community-

based classification of old-growth and secondary

forest rather than relying on structural or age-based

definitions because it provides a means of objective

classification of uneven aged forests that is inde-

pendent of biomass or measurements used to cal-

culate biomass. Secondary forests have arisen from

a stand-replacing disturbance event prior to plot

establishment that was either natural (for example,

landslide, earthquake) or anthropogenic (for

example, fire). Tree diversity (species richness)

ranged from 0 to 24 species per 0.04-ha plot (mean

ten species).

Community-weighted leaf nitrogen concentra-

tions were used as a proxy for site fertility. These

were calculated for each plot using database of

species trait values (S.J.R. and D.A.P., unpublished

data) in combination with height tier (0–30 cm;

>30 cm–2 m; >2–5 m; >5–12 m; >12–25 m; >

Broad-Scale Drivers of Biomass Change 949



25 m; epiphyte) and cover class data (based on a

modified Braun-Blanquet cover-abundance scale;

1 = <1%, 2 = 1–5%, 3 = 6–25%, 4 = >26–50%,

5 = >51–75%, 6 = >76–100%) for all vascular

plant species. Cover scores within each height tier

were converted to the midpoint of the percentage

cover range, for that cover-abundance class, and

summed across tiers (Wiser and others 2011).

Species trait values were then weighted by their

total cover across all height tiers to obtain the

community-weighted mean trait value for each

plot. Although only a single mean trait value

was used for each species, species turnover at a

national scale was high and our metric effectively

captures the nutrient status of the plant commu-

nity by including understorey and herbaceous

species that have high species turnover and are

indicative of site fertility (Richardson and others

2004). Species-level trait data were available for

15.2% of the species in our dataset, corresponding

to 82.4% of the total cover. For species without

trait data, genus- or family-level trait values were

used.

Data on past anthropogenic disturbances (‘‘past

disturbance’’) were collected at the time of plot

establishment (2002–2007) from the observed

evidence of historical activities such as logging, fire,

land clearance, mining or grazing. These data were

combined into a binary response variable to indi-

cate whether the plot had been affected by human

activities. A total of 273 plots (31.2%) were iden-

tified as being subject to past disturbance, including

20% of old-growth forest plots. ‘‘Recent distur-

bance’’ (both anthropogenic and natural) that oc-

curred during the measurement interval was

quantified using plot data for live trees. Plots that

exhibited a decline in basal area and a decrease in

mean tree size were considered to have been dis-

turbed during the measurement interval (Coomes

and Allen 2007). This definition focuses on stand-

level effects of disturbance (death of large trees),

rather than the presence of individual disturbance

agents (for example, insects, windstorms, fire,

earthquakes), as the latter were not recorded dur-

ing the field inventory. Our definition of recent

disturbance does not distinguish between distur-

bance-induced mortality from age-related mortality

of large trees (for example, Vanderwel and others

2013) or mortality driven by natural and anthro-

pogenic disturbance. Disturbances that occurred

during the survey measurement interval are very

likely to have different impacts on observed carbon

dynamics when compared with the legacy effects of

past disturbances (that is, those prior to the initial

measurement). The effects of recent disturbance on

stand biomass depend on the scale of disturbance

and relative rates of both deadwood decay and live

tree regrowth, and can thus result in either a net

gain or a net loss of biomass over the measurement

interval (Mason and others 2013). On the basis of

these criteria, a total of 143 plots (16.4%) were

disturbed during the 7-year measurement interval,

with an annual disturbance probability of 2.3%.

Statistical Analyses

We used structural equation modelling (Grace

2006) to simultaneously evaluate the direct and

indirect effects of the potential explanatory vari-

ables on biomass and net biomass change. Struc-

tural equation models were chosen because of their

ability to quantify complex direct and indirect ef-

fects in multivariate systems (for example, Durán

and others 2015; Poorter and others 2015). Our

initial model included all paths supported by eco-

logical theory or published empirical data (Fig-

ure 2; Table S2 in Electronic Supplementary

Material). This model was fitted separately to data

from old-growth and secondary forest using a

confirmatory modelling approach whereby data

were compared to a single model to evaluate the

strengths of the potential pathways (Grace 2006).

We estimated the reliability (that is, measurement

error) associated with biomass and net biomass

change separately for both old-growth and sec-

ondary forests using the average correlation among

Figure 2. Path diagram showing all hypothesised

regression paths tested by the structural equation model.

Arrows to/from the edges of coloured areas represent both

parameters inside the shaded area (for example, past dis-

turbance potentially affects both tree diversity and com-

munity leaf nitrogen). Biomass T1 = biomass at first

measurement (2002–2007). MAT mean annual temper-

ature.
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values from the Monte Carlo uncertainty simula-

tion trials, and incorporated these into our model as

latent variables (Grace 2006). The comparatively

low reliability of our net biomass change estimates

reflects the sensitivity of biomass change to mea-

surement error (Holdaway and others 2014).

Bivariate plots and generalised linear models were

used to examine for evidence of non-linear (poly-

nomial) relationships (Figure S3 and Figure S4 in

Electronic Supplementary Material), and, where

appropriate, these were incorporated into our

model using composite variables (Grace 2006).

Data were scaled to standardise variances prior to

fitting the model using the lavaan package (Rosseel

2012) in R v 3.0.2 (R Development Core Team

2013). A single secondary forest data point was

identified as a biologically unrealistic outlier (Fig-

ure S3 in Electronic Supplementary Material). Be-

cause this outlier was most likely caused by

unresolvable measurement error, it was excluded

from our structural equation models to avoid

biasing the results. Results with and without this

data point were qualitatively similar (that is, there

was no change in the identity and direction of the

significant paths and only minor changes in their

relative strength), indicating that the model was

robust. Weighted least squares estimation was used

to allow for ordinal predictor variables and robust

methods were used to calculate standard errors and

fit indices to allow for deviations from multivariate

normality (using the WLSM estimator; Rosseel

2012). Model fit was evaluated using v2 tests and

the root mean square error of approximation

(RMSEA). v2 P values greater than 0.05 and

RMSEA confidence intervals that overlap zero

indicate that the model is acceptable and that no

additional significant paths can be added (Grace

2006). Total direct and indirect effects of each

ecosystem predictor on biomass and net biomass

change were calculated using the standardised path

coefficients. Plot-level data used in these analyses

are provided online at the Landcare Research

Datastore (http://dx.doi.org/10.7931/J21V5BWC).

RESULTS

Observed Biomass Trends

National forest biomass density was 458 Mg ha-1

(95% confidence interval 435–479) during 2002–

2007 and 463 (442–484) Mg ha-1 during 2009–

2014 (Table 1). Multiplying these values by the

total area of New Zealand’s pre-1990 natural forests

(ca. 7.84 million ha) gives a total biomass stock of

3.6 (3.4–3.8) Pg contained in the live biomass,T
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deadwood and litter pools. Secondary forests

occupied 1.25 million ha (16% of the landscape)

and contained 6% (0.2; 0.16–0.23 Pg) of the total

forest biomass stock. Old-growth forests occupied

6.59 million ha (84% of the landscape) and con-

tained 94% (3.4; 3.2–3.5 Pg) of the total forest

biomass stock. Secondary forests were a net bio-

mass sink (+2.78; 1.68–3.89 Mg ha-1 y-1) over the

period 2002–2014, whereas net biomass change in

old-growth forests was statistically indistinguish-

able from zero (+0.28; -0.72 to 1.29 Mg ha-1 y-1).

National-scale net biomass change was therefore

dominated by secondary forests, characterised by a

large number of rapidly growing smaller trees, ra-

ther than old-growth forests (Figure 3). Nationally,

across both secondary and old-growth forests, small

trees (<10 cm diameter) accounted for 71.8% of

all stems, representing just 5.1% (4.8–5.4) of the

total live above-ground biomass, but were a net

sink of +0.34 Mg ha-1 y-1 (0.28–0.40). In contrast,

large trees (‡60 cm diameter) comprised just

0.77% of all stems and contained 41.0% (36.6–

45.4) of the total live above-ground biomass stocks,

but were a (marginally significant) biomass source

of -0.40 Mg ha-1 y-1 (-0.88–0.08).

Ecosystem Drivers of Forest Change

Structural equation models incorporating both direct

and indirect drivers of biomass and biomass change

were well supported for both old-growth and sec-

ondary forests [Figure 4; old-growth forest v2 = 9.8,

df = 6, P = 0.13, RMSEA = 0.03 (0–0.06); secondary

forest v2 = 5.6, df = 6, P = 0.47, RMSEA = 0.00 (0–

0.12)]. Old-growth forest biomass was driven by a

mixture of past disturbance, climate and composi-

Figure 3. Distribution of live above-ground biomass during 2002–2007 and live above-ground biomass change

(growth + recruitment - mortality) by tree size class between 2002–2007 and 2009–2014 measurement periods for both

old-growth and secondary forests. Numbers represent total live stems in each size class at first measurement (2002–2007).
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tional effects, whereas secondary forest biomass was

more strongly and directly related to past disturbance

(Figs. 4, 5). There was a direct, negative, hump-

shaped relationship between tree diversity and bio-

mass, and this pattern was strongest in secondary

forest (Figs. 4, 5; Figure S4 in Electronic Supple-

mentary Material). Temperature and leaf nitrogen

were directly related to biomass in old-growth forests

but not in secondary forests.

Biomass was the only direct predictor of biomass

change in secondary forests with biomass change

being positively related to plot biomass (that is,

higher biomass secondary forests gained more bio-

mass per year). Temperature, rainfall, leaf nitrogen

and past disturbance indirectly affected biomass

change through their relationships with biomass

(Figs. 4, 5). In contrast, recent disturbance was the

only direct predictor of biomass change in old-

growth forests, effectively decoupling biomass

change from biomass, climate and compositional

effects. Old-growth forests showed more signs of

recent disturbance than secondary forests, with 18%

of old-growth forest exhibiting declines in basal area

and a decrease in mean tree size during the 7-year

measurement period, compared with just 6% of

secondary forest. This pattern corresponds with our

finding that large (>60 cm D) diameter classes,

which are more abundant in old-growth forest, lost

more biomass due to mortality than they gained due

to ingrowth (Figure 3). Overall net biomass change

in old-growth forests affected by recent disturbance

was -4.54 Mg ha-1 y-1 (95% CI -2.56 to -6.52),

compared with 1.36 Mg ha-1 y-1 (95% CI 0.68–

2.04) for old-growth forests not exhibiting signs of

recent disturbance.

DISCUSSION

This study provides the first direct quantification of

net changes in natural forest biomass in southern

Figure 4. Structural equation models for old-growth and secondary forests. Standardised path coefficients for latent

variables and significant (P < 0.05) regression paths are shown. Arrows represent the causal flow and the width of arrows

(for regression paths) is scaled according to relationship strength. Boxes indicate measured predictor variables and ovals

indicate latent variables. Biomass and biomass change were modelled as latent variables specifically to include the effects

of quantified measurement error. Arrows between MAT and biomass, and tree diversity and biomass represent significant

second-order polynomial relationships, which were fitted using composite variables. Both models had adequate model fit

[(A) v2 = 9.8, df = 6, P = 0.13, RMSEA = 0.03 (0–0.06); (B) v2 = 5.6, df = 6, P = 0.47, RMSEA = 0.00 (0–0.12)]. MAT

mean annual temperature. R2 coefficient of determination. *P £ 0.05, **P £ 0.01, ***P £ 0.001.
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temperate forests based on representative sampling

of both live stem and deadwood pools across a broad

geographic region. We show that the drivers of bio-

mass and biomass change differ between secondary

and old-growth forests. Secondary forests were net

biomass sinks, whereas old-growth forests were

biomass neutral over the last decade. In old-growth

forests, changes in biomass over time were directly

related to our measure of recent disturbance and

were unrelated to forest biomass. In contrast, sec-

ondary forest biomass change was determined by

more complex interactions involving biomass, cli-

mate, community composition and past disturbance.

Our results challenge the commonly held assump-

tion that productivity is strongly positively related to

biomass in old-growth forests (for example, Chish-

olm and others 2013; Poorter and others 2015) and

reinforce the prominent influence of composition,

recent disturbance and the legacy effects of past

anthropogenic disturbance on broad-scale patterns

of forest biomass change (Caspersen and others

2000; Coomes and others 2014).

Secondary Forests are the Dominant
Biomass Sink at a National Scale

Our finding that secondary forests were net bio-

mass sinks at the national scale indicates that these

forests are systematically recovering from a legacy

of previous biomass loss, in agreement with recent

evidence from the Neotropics (Poorter and others

2016). However, our observed lack of carbon sink

in old-growth forests differs from some previous

studies that found old-growth forests to be a carbon

sink (for example, Luyssaert and others 2008; Le-

wis and others 2009; Pan and others 2011). We

note, however, that while our analyses are based

on a systematic sample of the forest population and

include changes in the deadwood pool, we do not

assess the potential contribution of the soil carbon

pool (which was accounted for in Luyssaert and

others 2008). The most likely explanation for our

observed differences in net biomass change be-

tween old-growth and secondary forests is stand

development processes (Coomes and others 2012).

Figure 5. Standardised effect size for the individual predictors of biomass and net biomass change from the structural

equation models for old-growth and secondary forests. The shaded part of the bar represents direct effects and the clear

portion represents indirect effects. Standardised effect size is calculated from significant paths only. Direction of the effects

is indicated as negative (-), positive (+) or multidirectional (±) for effects with polynomial components. Error bars (±SE)

are presented for the total (direct + indirect) effect size. Photo credits: R.J.H. and Susan Wiser.
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Secondary forests comprised smaller trees that are

less prone to some disturbances (for example, wind

damage, which is common in New Zealand) than

larger trees. Secondary forests are also more likely

to exhibit a strong growth signal (for example, an

increase in mean tree size and total basal area),

with mortality being dominated by competitive

thinning processes that result in the death of

smaller (low-biomass) individuals. These factors

would enhance the resistance and resilience of

secondary forests to some forms of disturbance,

increasing their biomass resilience (Poorter and

others 2016). In contrast, old-growth forests tend

to be dominated by fewer, larger individuals and

are more likely to be at dynamic equilibrium, with

the high biomass production rates of individual

large trees (Stephenson and others 2014) being

balanced by biomass loss due to mortality and de-

cay. Across New Zealand, large trees (that is,

>60 cm D) comprised only 0.77% of the total

stems in old-growth forest, but contained 40% of

the total biomass stocks. This highlights the

potential vulnerability of live tree forest biomass in

old-growth forests to large-scale disturbances that

reduce the density of large trees in the landscape

(Hicke and others 2012).

Disturbance is a Direct Driver of Large-
Scale Biomass Change

Disturbance is being increasingly recognised as a

major driver of forest ecosystem processes and

forest carbon budgets (Caspersen and others 2000;

Coomes and others 2012; Erb and others 2013;

Seidl and others 2014; Nowacki and Abrams 2015).

Consistent with this view, our models suggest that

past anthropogenic disturbance and recent distur-

bance (mortality of large trees) are the most

important drivers of forest biomass and biomass

change at a national scale (Figure 4). Anthro-

pogenic forest disturbance is a global issue, mainly

through deforestation, but also through selective

logging, understory fires and fragmentation which

have been shown to cause a decline in forest bio-

mass density of up to 40% in the Amazon Basin

(Berenguer and others 2014). Natural disturbances

may be even more severe because they can affect

large tracts of high-biomass, old-growth forest that

are otherwise largely unaffected by direct human

activity, and interactions between climate change

and natural disturbance may exacerbate such ef-

fects (for example, Kurz and others 2008; Phillips

and others 2009; Allen and others 2010).

Climate is widely reported and predicted to affect

forest biomass storage both directly through plant

physiology processes and indirectly through chan-

ges in forest composition or structure (Coomes and

others 2014; Brienen and others 2015; Nowacki

and Abrams 2015; Pederson and others 2015). Over

the gradients investigated here, we found no evi-

dence for consistent direct effects of climate on

forest biomass or biomass change. Rather, our

analyses revealed that past disturbance acts as an

intermediate factor that links climate to forest

biomass and net biomass change (Figs. 4, 5). For

example, past (anthropogenic) disturbance typi-

cally occurred in relatively warmer, drier climates

that are more suitable for human habitation and

thus widespread forest loss (Perry and others 2012);

similar biogeographic relationships between cli-

mate and past anthropogenic disturbance occur

globally (Caspersen and others 2000; Nowacki and

Abrams 2015). Disentangling past anthropogenic

disturbance from the direct effects of climate on net

biomass change is therefore essential to accurately

forecast the future effects of climate change in

forest systems (for example, Ghimire and others

2015; Nowacki and Abrams 2015; Pederson and

others 2015).

Scalability of Plot Networks over Broad
Geographical Regions

Vegetation plot networks have been widely used to

generate empirical data for evaluating forest

dynamics and the drivers of biomass change (for

example, Caspersen and others 2000; Lewis and

others 2009; Brienen and others 2015; Poorter and

others 2015). However, an underlying assumption

of this approach is that plots capture variation in

forest processes at the appropriate spatial and

temporal scales. We used a national plot network to

provide spatially representative data across broad

environmental gradients, but, by necessity, this

entailed using small plots (400 m2). Small plots

may exaggerate the effects of relatively small-scale

processes such as recent canopy disturbance. The

national biomass and biomass change estimates are

robust to these effects because of the relatively

large number of plots and the inclusion of mea-

surement error in the confidence intervals (Hold-

away and others 2014), but, as with any plot-based

analysis, our assessment of how multiple drivers

interact to determine forest biomass change is scale

dependent (for example, Chisholm and others

2013). On the other hand, the use of larger plots

comes at a significant trade-off in terms of spatial

representativeness, and for practical reasons larger

plots are fewer in number and tend to be located on

relatively accessible—and hence biased—locations.
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A larger amount of smaller plots is generally more

cost effective for reducing uncertainty than

increasing plot size but reducing the total number

of plots (Keller and others 2001). Larger plots also

often have a higher stem diameter cut-off than the

value of 2.5 cm employed here and thus cannot be

used to assess the response of smaller tree size

classes. Our results demonstrate that these smaller

(<10 cm D) size classes contribute meaningfully to

the overall biomass change in both old-growth and

secondary forests (Figure 3). Moreover, the iden-

tity and dynamics of these smaller stems may

determine future forest structure, composition and

function (Chase 2010; Coomes and others 2014).

This suggests that the role of smaller stem size

classes in biomass change needs to be considered

alongside the trade-off in plot area.

A prediction that can be derived from our anal-

ysis is that the expected increase in frequency or

intensity of future disturbance regimes (Reichstein

and others 2013; Ghimire and others 2015) is likely

to result in net biomass loss in old-growth forests,

but will have little or no effect on the secondary

forest biomass sink (Figure 5). The prediction for

old-growth forests is consistent with a recent study

by Brienen and others (2015) which suggests that

the carbon sink in Amazon old-growth forest is

already declining due to an increase in mortality

processes. However, that study did not quantify

changes to the deadwood pool. As large trees die, a

significant portion of the total biomass pool is

transferred to the deadwood pool and lost over

time to the atmosphere through decay. Net biomass

change depends on the relative rates of deadwood

decay and forest regrowth, and evidence from

temperate forests suggests that for disturbed stands

regrowth rates are insufficient to prevent signifi-

cant, long-term (multi-decadal) reductions in car-

bon in old-growth forests (Mason and others 2013).

Secondary forests are predicted to be more resistant

to increases in disturbance regimes (Figure 5) and

now occupy a significant part of the global forest

landscape (for example, Berenguer and others

2014), but have tended to be overlooked in many

forest plot networks, particularly in the tropics (for

example, Brienen and others 2015; Poorter and

others 2015). The lack of a whole-landscape sam-

pling design limits the ability to scale the results of

such studies to broad geographical regions such as

the Amazon Basin.

Future Methodological Improvements

There are three areas where our analyses could be

improved through additional data collection. First,

the below-ground biomass (BGB) fraction is poorly

quantified compared to other biomass pools. This

limitation occurs in similar large-scale studies (for

example, Powell and others 2014; Brienen and

others 2015) and reflects a global lack of data on

below-ground woody biomass in forests (Phillips

and Watson 1994; Cairns and others 1997). We

assume that BGB is a constant fraction of live AGB,

and this approach does not explicitly include be-

low-ground dead coarse woody biomass. Our re-

sults therefore underestimate BGB, especially in

disturbed stands. Second, collection of disturbance

data during field measurement stage, or through

remote sensing, would provide a more independent

assessment of recent disturbance and facilitate the

attribution of disturbance agents (for example, Al-

len and others 1999; Hermosilla and others 2015),

improving our ability to model disturbance pro-

cesses and quantify carbon change following both

natural and anthropogenic disturbance. Third, our

old-growth and secondary forest definition is based

on community composition, targeted at separating

highly successional forest communities dominated

by seral species that occur following stand-replac-

ing disturbances (for example, landslide, historical

land clearance and fire), from forests that are

compositionally mature with periodic canopy-re-

placing gap dynamics (Wiser and others 2011). The

development and use of alternative classifications

of old-growth and secondary forest based on

structural attributes and stand age would improve

comparability with other studies and unify com-

positional and structural classification approaches

(Burrascano and others 2013; Reilly and Spies

2015). Our results provide the best estimates to

date on carbon stock and carbon change in south-

ern temperate natural forests and provide new in-

sights into the broad-scale drivers of biomass

change. Analyses of other similar datasets (for

example, FIA data) using similar SEM models

would provide a valuable test of the generalities of

our findings.

Concluding Remarks

Understanding of the broad-scale drivers of forest

biomass change is essential for forecasting future

forest changes and their implications for the global

carbon cycle (for example, Friend and others 2014;

Seidl and others 2014). Our results, based on

nationally representative plot network, identify

contrasting drivers of net biomass change for sec-

ondary and old-growth forests and highlight the

importance of disturbance and disturbance history

in determining broad-scale patterns of forest biomass
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change. The significant biomass sink observed in

secondary forest suggests that opportunities exist to

increase forest biomass storage through large-scale

facilitation of secondary forest succession in defor-

ested areas. Efforts, such as REDD+ (Miles and Kapos

2008), that aim to minimise future anthropogenic

forest disturbances will be important to maintain the

carbon balance of old-growth forests. Further re-

search on the broad-scale balance between sec-

ondary and old-growth forests is essential to inform

our understanding of the global forest biomass sink.
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Chambers JQ, Negrón-Juárez RI, Hurtt GC, Marra DM, Higuchi

N. 2009. Lack of intermediate-scale disturbance data prevents

robust extrapolation of plot-level tree mortality rates for old-

growth tropical forests. Ecol Lett 12:E22–5.

Cairns MA, Brown S, Helmer EH, Baumgardner GA. 1997. Root

biomass allocation in the world’s upland forests. Oecologia

111:1–11.

Coomes DA, Allen RB. 2007. Mortality and tree-size distribu-

tions in natural mixed-age forests. J Ecol 95:27–40.

Coomes DA, Allen RB, Scott NA, Goulding C, Beets P. 2002.

Designing systems to monitor carbon stocks in forests and

shrublands. For Ecol Manag 164:89–108.

Coomes DA, Flores O, Holdaway R, Jucker T, Lines ER, Van-

derwel MC. 2014. Wood production response to climate

change will depend critically on forest composition and

structure. Glob Change Biol 20:3632–45.

Coomes DA, Holdaway RJ, Kobe RK, Lines ER, Allen RB. 2012.

A general integrative framework for modelling woody bio-

mass production and carbon sequestration rates in forests. J

Ecol 100:42–64.

Broad-Scale Drivers of Biomass Change 957

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Chisholm RA, Muller-Landau HC, Abdul Rahman K, Bebber DP,

Bin Y, Bohlman SA, Bourg NA, Brinks J, Bunyavejchewin S,

Butt N, Cao H, Cao M, Cárdenas D, Chang L-W, Chiang J-M,

Chuyong G, Condit R, Dattaraja HS, Davies S, Duque A,

Fletcher C, Gunatilleke N, Gunatilleke S, Hao Z, Harrison RD,

Howe R, Hsieh C-F, Hubbell SP, Itoh A, Kenfack D,

Kiratiprayoon S, Larson AJ, Lian J, Lin D, Liu H, Lutz JA, Ma

K, Malhi Y, McMahon S, McShea W, Meegaskumbura M,

Mohd. Razman S, Morecroft MD, Nytch CJ, Oliveira A, Parker

GG, Pulla S, Punchi-Manage R, Romero-Saltos H, Sang W,

Schurman J, Su S-H, Sukumar R, Sun IF, Suresh HS, Tan S,

Thomas D, Thomas S, Thompson J, Valencia R, Wolf A, Yap S,

Ye W, Yuan Z, Zimmerman JK. 2013. Scale-dependent rela-

tionships between tree species richness and ecosystem func-

tion in forests. J Ecol 101:1214–24.

Durán SM, Sánchez-Azofeifa GA, Rios RS, Gianoli E. 2015. The

relative importance of climate, stand variables and liana

abundance for carbon storage in tropical forests. Glob Ecol

Biogeogr 24:939–49.

Erb K-H, Kastner T, Luyssaert S, Houghton RA, Kuemmerle T,

Olofsson P, Haberl H. 2013. Bias in the attribution of forest

carbon sinks. Nat Clim Change 3:854–6.

Fernández-Martı́nez M, Vicca S, Janssens IA, Sardans J, Luys-

saert S, Campioli M, Chapin FSIII, Ciais P, Malhi Y, Ober-

steiner M, Papale D, Piao SL, Reichstein M, Roda F, Penuelas

J. 2014. Nutrient availability as the key regulator of global

forest carbon balance. Nat Clim Change 4:471–6.

Fisher JI, Hurtt GC, Thomas RQ, Chambers JQ. 2008. Clustered

disturbances lead to bias in large-scale estimates based on

forest sample plots. Ecol Lett 11:554–63.

Flores O, Coomes DA. 2011. Estimating the wood density of

species for carbon stock assessments. Methods Ecol Evol

2:214–20.

Friend AD, Lucht W, Rademacher TT, Keribin R, Betts R, Cadule

P, Ciais P, Clark DB, Dankers R, Falloon PD, Ito A, Kahana R,

Kleidon A, Lomas MR, Nishina K, Ostberg S, Pavlick R, Peylin

P, Schaphoff S, Vuichard N, Warszawski L, Wiltshire A,

Woodward FI. 2014. Carbon residence time dominates

uncertainty in terrestrial vegetation responses to future cli-

mate and atmospheric CO2. Proc Natl Acad Sci USA

111:3280–5.

Ghimire B, Williams CA, Collatz GJ, Vanderhoof M, Rogan J,

Kulakowski D, Masek JG. 2015. Large carbon release legacy

from bark beetle outbreaks across Western United States. Glob

Change Biol 21:3087–101.

Grace J. 2006. Structural equation modeling and natural sys-

tems. Cambridge, UK: Cambridge University Press.

Hermosilla T, Wulder MA, White JC, Coops NC, Hobart GW.

2015. Regional detection, characterization, and attribution

of annual forest change from 1984 to 2012 using Landsat-

derived time-series metrics. Remote Sens Environ 170:121–

32.

Hicke JA, Allen CD, Desai AR, Dietze MC, Hall RJ, Hogg EH,

Kashian DM, Moore D, Raffa KF, Sturrock RN, Vogelmann J.

2012. Effects of biotic disturbances on forest carbon cycling in

the United States and Canada. Glob Change Biol 18:7–34.

Holdaway R, McNeill S, Mason NH, Carswell F. 2014. Propa-

gating uncertainty in plot-based estimates of forest carbon

stock and carbon stock change. Ecosystems 17:627–40.

Kalis AJ, Merkt J, Wunderlich J. 2003. Environmental changes

during the Holocene climatic optimum in central

Europe—human impact and natural causes. Quat Sci Rev

22:33–79.

Keller M, Palace M, Hurtt G. 2001. Biomass estimation in the

Tapajos National Forest, Brazil: Examination of sampling and

allometric uncertainties. For Ecol Manag 154:371–82.

Kurz WA, Stinson G, Rampley GJ, Dymond CC, Neilson ET.

2008. Risk of natural disturbances makes future contribution

of Canada’s forests to the global carbon cycle highly uncertain.

Proc Natl Acad Sci USA 105:1551–5.

Leathwick JR, Wilson G, Rutledge D, Wardle P, Morgan F,

Johnston K, McLeod M, Kirkpatrick R. 2003. Land environ-

ments of New Zealand. Auckland: David Bateman.

Lewis SL, Lopez-Gonzalez G, Sonke B, Affum-Baffoe K, Baker

TR, Ojo LO, Phillips OL, Reitsma JM, White L, Comiskey JA,

Djuikouo KMN, Ewango CEN, Feldpausch TR, Hamilton AC,

Gloor M, Hart T, Hladik A, Lloyd J, Lovett JC, Makana J-R,

Malhi Y, Mbago FM, Ndangalasi HJ, Peacock J, Peh KSH, Sheil

D, Sunderland T, Swaine MD, Taplin J, Taylor D, Thomas SC,

Votere R, Woll H. 2009. Increasing carbon storage in intact

African tropical forests. Nature 457:1003–6.

Luyssaert S, Schulze ED, Borner A, Knohl A, Hessenmoller D,

Law BE, Ciais P, Grace J. 2008. Old-growth forests as global

carbon sinks. Nature 455:213–15.

Mason NWH, Bellingham PJ, Carswell FE, Peltzer DA, Holdaway

RJ, Allen RB. 2013. Wood decay resistance moderates the

effects of tree mortality on carbon storage in the indigenous

forests of New Zealand. For Ecol Manag 305:177–88.

McGlone MS. 1989. The Polynesian settlement of New Zealand

in relation to environmental and biotic changes. N Z J Ecol

12:115–29.

Michaletz ST, Cheng D, Kerkhoff AJ, Enquist BJ. 2014. Con-

vergence of terrestrial plant production across global climate

gradients. Nature 512:39–43.

Miles L, Kapos V. 2008. Reducing greenhouse gas emissions

from deforestation and forest degradation: global land-use

implications. Science 320:1454–5.

Ministry for the Environment. 2012. Land use and carbon

analysis system natural forest data collection manual.

Wellington: Ministry for the Environment.

Ministry for the Environment. 2014. New Zealand greenhouse

gas inventory 1990–2012. Wellington: Ministry for the Envi-

ronment.

Muller-Landau HC, Detto M, Chisholm RA, Hubbell SP, Condit

R. 2014. Detecting and projecting changes in forest biomass

from plot data. In: Coomes DA, Burslem DFRP, Simonson

WD, Eds. Forests and global change. Cambridge, UK: Cam-

bridge University Press. p 381–415.

Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB,

Kent J. 2000. Biodiversity hotspots for conservation priorities.

Nature 403:853–8.

Nowacki GJ, Abrams MD. 2015. Is climate an important driver of

post-European vegetation change in the Eastern United

States? Glob Change Biol 21:314–34.

Pan YD, Birdsey RA, Fang JY, Houghton R, Kauppi PE, Kurz

WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P,

Jackson RB, Pacala SW, McGuire AD, Piao SL, Rautiainen A,

Sitch S, Hayes D. 2011. A large and persistent carbon sink in

the world’s forests. Science 333:988–93.

Payton IJ, Newell CL, Beets PN. 2004. New Zealand Carbon

Monitoring system indigenous forest and shrubland data col-

lection manual. Christchurch: Caxton Press.

Pederson N, D’Amato AW, Dyer JM, Foster DR, Goldblum D,

Hart JL, Hessl AE, Iverson LR, Jackson ST, Martin-Benito D,

McCarthy BC, McEwan RW, Mladenoff DJ, Parker AJ, Shu-

958 R. J. Holdaway and others



man B, Williams JW. 2015. Climate remains an important

driver of post-European vegetation change in the eastern

United States. Glob Change Biol 21:2105–10.

Perry GLW, Wilmshurst JM, McGlone MS, McWethy DB,

Whitlock C. 2012. Explaining fire-driven landscape transfor-

mation during the Initial Burning Period of New Zealand’s

prehistory. Glob Change Biol 18:1609–21.

Phillips CJ, Watson AJ. 1994. Structural tree root research in

New Zealand Lincoln. New Zealand: Manaaki Whenua Press.

Phillips OL, Aragao L, Lewis SL, Fisher JB, Lloyd J, Lopez-

Gonzalez G, Malhi Y, Monteagudo A, Peacock J, Quesada CA,

van der Heijden G, Almeida S, Amaral I, Arroyo L, Aymard G,

Baker TR, Banki O, Blanc L, Bonal D, Brando P, Chave J, de

Oliveira ACA, Cardozo ND, Czimczik CI, Feldpausch TR,

Freitas MA, Gloor E, Higuchi N, Jimenez E, Lloyd G, Meir P,

Mendoza C, Morel A, Neill DA, Nepstad D, Patino S, Penuela

MC, Prieto A, Ramirez F, Schwarz M, Silva J, Silveira M,

Thomas AS, ter Steege H, Stropp J, Vasquez R, Zelazowski P,

Davila EA, Andelman S, Andrade A, Chao KJ, Erwin T, Di

Fiore A, Honorio E, Keeling H, Killeen TJ, Laurance WF, Cruz

AP, Pitman NCA, Vargas PN, Ramirez-Angulo H, Rudas A,

Salamao R, Silva N, Terborgh J, Torres-Lezama A. 2009.

Drought sensitivity of the Amazon rainforest. Science

323:1344–7.

Poorter L, van der Sande MT, Thompson J, Arets EJMM, Alarcón
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