
The Power and the Pitfalls of Large-
scale, Unreplicated Natural

Experiments

Shanta C. Barley* and Jessica J. Meeuwig

School of Animal Biology and the Oceans Institute, University of Western Australia, 35 Stirling Highway, Crawley, Perth, Western

Australia 6009, Australia

ABSTRACT

Large-scale, unreplicated natural experiments

(LUNEs) have a unique power to test hypotheses at

ecologically realistic scales and have delivered in-

sights of great power into cosmology, evolution and

geology. Yet, LUNEs are relatively rare in the field

of ecology and continue to meet resistance due to

their lack of replication. However, in the vast

majority of cases, large-scale experiments cannot

be replicated for practical and ethical reasons. Here,

we make the case that LUNEs have had a dispro-

portionately positive effect on conservation policy

and are a crucial next step in the extrapolation of

our understanding of ecological processes from

small-scale experiments to relevant scales, partic-

ularly in the context of the current ‘‘replication

crisis’’ affecting many sciences. Greater inclusion of

LUNEs in mainstream ecology will help humanity

to solve global problems as human transformation

of the planet accelerates in coming decades.

Key words: ecosystem scale; ecological processes;

large-scale experiment; natural experiment;

pseudo-experiment; replication.

We must rely more on long-term, ecosys-

tem-scale experiments and real case histo-

ries, and less on small-scale experi-

mentation.-David Schindler (2012)

THE MODERN CHALLENGE

Since the beginning of the Anthropocene, Homo

sapiens has transformed the planet’s ecosystems via

exploitation, deforestation, pollution, eutrophica-

tion and climate change (Estes and others 2011;

Ehrlich and Ehrlich 2013). Not only have we

eradicated apex predators in many parts of the

world (Myers and others 2007; Atwood and others

2015), but we are a uniquely voracious ‘‘hyper-

keystone’’ species and super-predator, consuming

adult prey at a rate 14 times that of any other

predator (Darimont and others 2015; Worm and

Paine 2016). Humanity failed to anticipate many of

the ecological problems that it has caused, includ-

ing the depletion of the ozone layer and bio-accu-

mulation of DDT (Kates and Clark 1996). It has

been argued that this lack of foresight was partly

due to an overreliance on small-scale, short-term

experiments that failed to capture the complex

nature of large-scale perturbations and net

ecosystem responses (Carpenter 1989, 1990; Pace

and others 1998; Schindler 1998; Table 1). Al-

though small-scale, controlled studies provide a

useful means to test hypotheses, there is an urgent
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need to replicate findings at the level of ecosystems

to better anticipate ecological ‘‘surprises’’ (Knowl-

ton 1992; Clark and Gelfand 2006; Miao and Car-

stenn 2006; Chave 2013). However, a significant

challenge remains: how does one robustly test

hypotheses at large scales?

THE MODERN SOLUTION?

The solution to this problem may lie in ecologists

making greater use of large-scale but unreplicated

‘‘natural experiments’’ (LUNEs). LUNEs have been

generated by natural phenomena such as El Niño,

hurricanes and tsunamis (Kessler 2011; Zoback and

Gorelick 2012). However, these ‘‘accidental’’

experiments (sensu Hillerislambers and others

2013) are also a by-product of scientific and eco-

nomic activities, including fisheries, large-scale

infrastructure projects such as the Suez canal, car-

bon capture and storage projects and catastrophic

oil spills such as Deepwater Horizon and the fur

trade (Estes and Palmisano 1974; Smith and others

2004; Madin and others 2010). LUNEs, regardless

of their origin, can provide unique insights into

ecosystem-level processes that complement the

findings of classical laboratory and field experi-

ments (Hillerislambers and others 2013).

However, LUNEs constitute a Faustian bargain: in

exchange for rare insights into net ecosystem re-

sponses, the ecologist may have to sacrifice treat-

ment replication (Hargrove and Pickering 1992;

Johnson 2006). Replication has traditionally been

considered a prerequisite for extrapolating results to

other systems and, where manipulations are in-

cluded, for inferring cause (Fisher 1926). Yet, the

replication of LUNEs is typically challenging for

ethical and practical reasons (how does one mimic a

tsunami or build a life-size replica of the Panama

Canal?). In the deepest sense, ‘fully controlled’

replication of any natural experiment is impossible,

because the initial conditions have not been fully

described. Furthermore, the ‘‘treatments’’ that cre-

ate LUNEs are often unique to a single location

(Johnson 2002), and even if true replicates exist, the

number required to preclude a Type II error may be

prohibitively high due to the variability inherent in

ecosystems (Carpenter 1989).

LUNEs may nonetheless contribute a modern

solution to the current ‘‘replication crisis’’ affecting

science (Stroebe and Strack 2014; Nosek and others

2015). Relatively few attempts are typically made

to replicate research findings and a disconcerting

proportion of studies have turned out to be irre-

producible (McNutt 2014). In response, some critics

have sought to redefine the role of replication inT
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science, arguing that exact replications should no

longer be treated as all-powerful, ‘‘one-off’’ con-

firmations or rejections of a theory (Stroebe and

Strack 2014). Instead, scientists should prioritise

‘‘conceptual’’ replications that test the real-world

relevance of theories in diverse field contexts

(Hüffmeiera and others 2016). LUNEs offer a way

to conduct such conceptual replications, as exem-

plified recently by Atwood and others (2015).

THE POWERS OF LUNES

LUNEs have led to new insights into a range of

ecological issues, including the role of apex preda-

tors and prey within ecosystems, the effectiveness

of ocean ‘‘geo-engineering’’ and the impact of cli-

mate change on marine communities, in addition

to habitat fragmentation and eutrophication (Car-

penter 1990; Vanni and others 1990; Rowan and

others 1997; Kessler 2011; Gabric and others 2015).

Yet, LUNEs remain an under-utilised minority in

the scientific literature relative to classical experi-

ments, that is, small-scale, controlled and replicated

studies (Hillerislambers and others 2013). Ecolo-

gists and journal referees largely continue to view

the latter as the scientific ‘‘gold standard’’ (Gross-

man and Mackenzie 2005), even though some of

the most influential, manipulative field experi-

ments in the history of ecology lacked replication

(Schindler and others 1971, 2008; Raffaelli and

Moller 1999). As a result, few LUNEs are conducted

in the first place and fewer still are accepted for

publication. However, in the context of emerging

environmental challenges, LUNEs are uniquely

positioned to answer challenging, time-sensitive

ecological questions (Worm and Paine 2016).

Power 1: Testing Logistically and/or
Ethically Challenging Hypotheses

Under rare circumstances, scientists have conducted

controlled and randomised experiments at large

spatial scales (Naeem and others 1994; Ewers and

others 2011). However, in most cases, conducting

classical experiments at large spatial scales is pro-

hibitively expensive, time consuming, labour

intensive or unethical. As a result, LUNEs provide

one of the very few means available to scientists to

test hypotheses at ecologically relevant scales (Car-

penter 1990; Hargrove and Pickering 1992). For

example, the construction of the Panama Canal

created a unique opportunity to investigate com-

petitive exclusion in previously isolated communi-

ties of freshwater fishes (Smith and others 2004).

The Deepwater Horizon oil spill provided Kessler

(2011) with a unique and otherwise unobtainable

simulation of the effects of climate change on subsea

deposits of methane hydrates. Similarly, the inva-

sions of Guam by brown tree snakes Boiga irregularis

andChristmas Islandbyyellowcrazy antsAnoplolepis

gracilipes yielded insights into the ecological roles of

keystone prey species that were unreplicable due to

the ethical challenges around reducing the abun-

dance of protected, endemic species (O’Dowd and

others 2003; Rogers and others 2012).

Power 2: Systems That have no
Replicates

Inmany cases, replicating a LUNE isnot only ethically

unconscionable but also impossible because the sys-

tem is unique (Power and others 1998; Schindler

1998). For example, it is impossible to replicate nat-

ural experiments that explore the effect of invasive

species on fauna endemic to specific islands or loca-

tions (O’Dowd and others 2003; Rogers and others

2012). Similarly, true replicates for LUNEs that

examine lake and river processes remain elusive due

to differences between water bodies in species com-

position, water chemistry and other factors (but see

Schindler and others (1978) for statistical/partial

mitigation measures). To circumvent this problem,

studiesmaycompareupstream, ‘‘control’’ stretchesof

river to downstream, ‘‘treatment’’ stretches that have

been experimentally manipulated (Fraser and Gil-

liam 1987; Hildrew and others 2004).The task of

finding true replicates for natural experiments con-

ducted on coral reefs can also be daunting. Ruppert

and others (2013) compared two reef systems in

northwesternAustralia thatwere similarwith respect

to disturbance history, productivity, habitat structure

and a number of other characteristics, the primary

difference being that one of the systems had a history

of targeted shark exploitation. This study generated

valuable evidence consistentwith thehypothesis that

depletion of sharks may lead to trophic cascades on

coral reefs. However, it is difficult to imagine an exact

‘‘replicate’’ pair of reef systems due to the unique

disturbance histories of coral reefs, the scarcity of

pristine sites and thenatureoffishing,which typically

leads to the removal of not just sharks but also their

prey (Pauly and others 1998).

Power 3: Meta-Analyses

Given the challenges of replicating LUNEs, the

gradual accumulation of independent, unreplicated

studies may be the only way to gather evidence at

the ecosystem level (Carpenter and others 1995;

Johnson 2002, 2006). Like lawyers, ecologists can
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then ‘‘build a case’’ in favour of or against

hypotheses (McArdle 1996). Ultimately, such

studies can fuel meta-analyses in which drivers in

common are reinforced when seen in combination

(Cottenie and Meester 2003; Worm and Paine

2016). Although meta-analyses based on unrepli-

cated studies have been criticised (Hurlbert 2004),

they have provided insights into a range of

important ecological issues including trophic cas-

cades and overfishing (Micheli 1999; Shurin and

others 2002; Prevedello and others 2013).

Meta-analyses of LUNEs have played a particu-

larly important role in demonstrating the effec-

tiveness of marine reserves (Edgar and others

2014). Many reserves are established precisely be-

cause a site is unique or contains endemic fauna

(Allison and others 1998), precluding replication.

Before-after-control-impact (BACI) analyses, in

which samples are collected from ‘‘control’’ and

‘‘treatment’’ sites before and after a reserve is

established, have played a key role in circumvent-

ing this problem (Bence and others 1996). How-

ever, relatively few reserves are subject to long-

term monitoring programmes. Moreover, BACIs

may constitute temporal autocorrelation (Stewart-

Oaten and others 1986). Meta-analyses of

unreplicated studies can provide a solution, but

considerable time will be required to amass a suf-

ficient number of studies to ‘‘fuel’’ the analysis,

particularly if there is a publishing bias towards

replicated studies (Lester and Halpern 2008).

Power 4: Ecological Gradients

LUNEs provide a particularly powerful tool when

they operate across an ecological gradient. This

approach allows a regression model to be fitted to

the data, predictions to be made about how a

variable changes in response to another variable

and may identify ‘‘tipping points’’ within ecosys-

tem function (Lennon 2011). Indeed, Kreyling and

others (2014) recommend that such regression

analyses be used to develop simulation models,

which, in turn, can be validated by further exper-

iments and ultimately generate data that are more

informative about ecosystem processes than those

produced by small-scale, manipulative experi-

ments. Regression analyses based on LUNEs have

proven to be particularly useful in exploring the

role of large piscivores on coral reef systems. For

example, a LUNE created by a gradient in fishing

pressure along the Northern Line islands in Hawaii

has been used to study the relationships between

predator biomass and prey biomass, behaviour and

condition, providing important validations of

hypotheses generated at smaller scales (Madin and

others 2010; Walsh and others 2012).

Power 5: Qualitative Arguments

Some have argued that most robust LUNEs use

evidence-based arguments rather than inferential

statistics to describe ecological patterns. For exam-

ple, even though Likens and others’ (1970) large-

scale deforestation experiment at Hubbard Brook

was unreplicated, it met with approval from critics

because it ‘‘convincingly demonstrated the effects

of the experimental variables, without resorting to

inferential statistical tests that would have been

inappropriate’’ (Hurlbert 1984). Similarly, of the

more than nine large-scale, unreplicated iron and

phosphorus enrichment ocean-based experiments

that have been conducted globally, only two used

inferential statistics, drawing criticism from Hale

and Rivkin (2007). Moreover, LUNEs provide a

powerful test of hypotheses when the effect is both

consistent with a priori hypotheses and the mag-

nitude of the effect is ecologically meaningful

(Stewart-Oaten and others 1992; Moss and others

1996). For instance, when there is a single pertur-

bation in an otherwise unmanipulated, well-de-

scribed lake, it is possible to infer causality

(Schindler, D.W., pers. comm.).

THE PITFALLS OF LUNES

Although LUNEs offer unique insights into eco-

logical processes, they are fallible and must be

replicated in a range of systems before becoming

the basis for changes in policy. However, it is

increasingly common for the results of unreplicated

studies to be treated as definitive (an ‘‘ill-informed’’

strategy; Ioannidis 2005). In contrast, we would

argue that ecologists who conduct LUNEs should

present their results as either ‘‘consistent’’ or ‘‘in-

consistent’’ with the tested hypothesis, while

thoroughly exploring and ranking alternative

explanations. In addition, it is important that the

other scientists and the public be aware of the

limitations of LUNEs and view the results in the

context of other studies.

A cautionary example of the pitfalls associated

with the interpretation of LUNEs is provided by the

recent critique of Myers and others (2007), a study

that linked the collapse of a scallop fishery in the

Atlantic Ocean to declines in large sharks due to

overfishing. This LUNE not only led to changes in

fishing policy but also a vigorous campaign to re-

duce numbers of the cownose ray Rhinoptera

bonasus, a slow-growing species with poor resi-

The Power and the Pitfalls of LUNEs 335



lience to fishing. Recently, however, the findings

were questioned (Grubbs and others 2016). We

would argue that both studies, despite their seem-

ingly contradictory results, are crucial steps in the

accumulation of the large-scale evidence needed to

test hypotheses about ecological processes. Indeed,

Worm and Paine (2016) recently argued that the

findings of Myers and others (2007) and Grubbs

and others (2016) may be reconciled by taking into

account non-trophic and/or behavioural factors.

CONCLUDING REMARKS

Despite their lack of replication, LUNEs have a

unique power, not attainable in any other way, to

test hypotheses at large scales and in complex sys-

tems. For example, cosmologists get by with just

the one Big Bang (Gadgil and Bossert 1970), seis-

mologists rely on sound waves generated by

unpredictable earthquakes to constrain deep Earth

structures (Ritsema and Van Heijst 2000) and the

single submarine slump that entombed unique

Cambrian fauna allows the Burgess Shale to be a

key calibrant of evolutionary radiation models

(Morris 1989). Of course, there are limitations to

what conclusions can be drawn from LUNEs and

the findings must be viewed in the context of

classical experiments, models and long-term mon-

itoring programmes. However, as noted by Lennon

(2011), ‘‘unreplicated results do not equal lies, just

as replicated results do not equal truth’’. The

potential pitfalls introduced by diminished control

can be mitigated against by a willingness to explore

and rank alternative interpretations, in addition to

the appropriate use of statistical tests. In line with

the recent ‘‘replication crisis’’, LUNEs also provide a

way to conceptually replicate the findings of

smaller-scale, controlled experiments.

Demonstration that human activities are altering

ecological processes is often necessary for policy

changes to occur (Morrisette 1989). In cases where

rapid action is required to avert environmental

disaster, we would therefore argue that LUNEs and

other large-scale studies should be prioritised (Fig-

ure 1). An illustration of this point is the dramatic

decline in water quality in rivers and lakes in North

America in the 1960s. Whereas small-scale exper-

iments implicated nitrogen and carbon, David

Schindler’s large-scale, unreplicated and manipu-

lative experiments on lakes eventually persuaded

the Canadian government and several US states to

ban phosphorus (Schindler 1998). Similarly, the

Figure 1. A new approach to replication (adapted from Hüffmeiera and others 2016).
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discovery of a hole in the ozone layer precipitated a

global consensus to ban chlorofluorocarbons, even

though evidence based on small-scale lab experi-

ments and modelling had existed for almost

20 years (Morrisette 1989). These examples suggest

that when an environmental threat is immediate

and significant, policy-makers will act on large-

scale evidence and that these actions are largely

appropriate. Our review suggests that we must

urgently fast-track such LUNEs if we are to antici-

pate ecosystem-level feedbacks to contemporary

perturbations.
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