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ABSTRACT

Understanding and predicting patterns arising

from the dynamics of marine food webs is central

to trophic and community ecology and numerical

models of food webs constitute a primary tool to

simulate these dynamics. Food web simulation

models are often highly complex while at the

same time often too constrained to reproduce the

level of variability observed in real systems. The

recently developed non-deterministic network

dynamics (NDND) modelling framework has been

suggested as a simulation alternative, which can

generate multiple patterns of food web variability

despite great structural simplicity. Two important

aspects of the NDND modelling framework re-

main unexplored: first the derivation of model

input parameters from empirical or theoretical

studies and second the evaluation of the model

simulations against observations. We provide a

methodology for the derivation of model param-

eters based on empirical observations, the meta-

bolic theory of ecology and life-history theory

and apply it to the specific case of the Barents Sea

food web. We then evaluate the ability of the

NDND simulations to reproduce a wide range of

patterns of food web dynamics against observa-

tions collected in the Barents Sea during 28 years.

Patterns emerging from the simulations include

trends and cycles in biomass, trophic levels and

transfer efficiency, density-dependent growth,

top-down vs bottom-up oscillations, ecosystem

level stability and synchrony and trophic func-

tional responses. The ability of the NDND to

generate so many patterns observed empirically in

the Barents Sea is remarkable given that it is

based only on random trophic interactions

operating within few constraints set by ecological

rules. Our results show that investigations of

food web dynamics in marine ecosystems,

including the definition of reference states and

responses to climate and exploitation pressures,

may be achieved with models that are structurally

simple and based on few well-established

assumptions.
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INTRODUCTION

Ecological systems are intrinsically complex; they

consist of many components (for example, species,

habitats), without a central control of the system

dynamics. Such systems are self-organised (inter-

actions generate the system’s organisation) and

display complex and non-linear feedback mecha-

nisms. Furthermore, ecological systems are usually

characterised by being capable of innovation and

operate at multiple scales (for example, from viru-

ses to whales and micrometres to ocean basin

scales), and offer a limited window of observability.

In addition, stochastic phenomena play an impor-

tant role in real-world physical and biological sys-

tems, and thus in shaping the dynamics of such

systems. As a result, ecosystems are difficult to

analyse, understand and, not the least, model.

Marine ecosystems are known to undergo major

structural and functional changes (regime shifts)

with possible long-lasting consequences (Blenckner

and Niiranen 2013). These events, which are often

caused by interactions among multiple drivers

(climate, overfishing, eutrophication and species

invasions) (Lees and others 2006), may have major

social–ecological consequences and are difficult to

predict (Scheffer and Carpenter 2003; Lade and

others 2013). Interpreting the state and dynamics

of ecosystems requires a reference of the potential

variability of ecosystems (Clark and others 2001).

Retrospective data can inform about the past vari-

ability of the system and help in resolving under-

lying causes and rates of ecological change. Most

temporal series of ecological observations of marine

systems go back 3–5 decades at most, a time frame

that is too short to inform about system dynamics

given the long lifespans of many species and the

temporal dynamics of historic environmental dri-

vers (Lotze and Worm 2008). Constructing refer-

ence baselines from past observations is often

difficult as it involves a wide range of information

sources, such as paleontological, archaeological,

historical and fisheries records (Lotze and Worm

2008), as well as many assumptions which can

result in large uncertainties (Longhurst 2010). A

complementary approach is to derive references for

the variability of ecosystems from numerical sim-

ulation models of ecosystem dynamics (Landres

and others 1999). Ideally, a numerical model

should be parsimonious and it should be possible to

evaluate model outputs against observations. Par-

simony implies that the model be based on a lim-

ited number of principles, each derived from well-

defined underlying assumptions, that the number

of model entities be restricted to the minimum

necessary, and that input data and parameters are

few and derived from observations or theoretical

considerations.

Food web models, which represent a specific class

of ecosystem models that describe trophic interac-

tions between species or groups of species in terms of

energy or biomass fluxes, are commonly used to

simulate ecosystem dynamics (Christensen and

Walters 2004). A recurrent difficulty, in building

food web models, is to ensure that the dynamics

represented and simulated in a mathematical model

bares some degree of isomorphism with the

dynamics in real ecosystems (Ruiz and Kuikka

2012). Most operational food web models today are

highly complex, with structures that rely on large

numbers of parameters and state variables, and with

many parameter values not derived from direct

observations or lacking theoretical support. Despite

their complexity, food web models are usually too

constrained to reproduce the variability patterns

observed in real systems, and they are rarely capable

of simulating regime shifts or other ‘ecological sur-

prises’ that are commonly observed (Blenckner and

Niiranen 2013; Möllmann and others 2015).

A novel approach to food web modelling, intro-

duced by Mullon and others (2009), was evaluated

by Planque and others (2014a) who termed it ‘‘non-

deterministic network dynamics’’ (NDND) modelling.

The NDND model, with a basis in the concept of

‘‘viability’’ in mathematics (Aubin 1991; Aubin and

others 2011), does not rely on optimal solutions but

rather on sets of possible viable system states and

trajectories. It is well known that the dynamic be-

haviour of modelled food webs is highly sensitive to

the shape of the consumer–resource functional re-

sponses (Williams and Martinez 2004; Koen-Alonso

and Yodzis 2005; Kearney and others 2012), which

are difficult to specify and even more so to parame-

terise (Hunsicker and others 2011). In contrast to

conventional food web models, which rely on

numerous consumer–resource functional responses,

the trophic fluxes in the NDND model are simulated

as stochastic (non-deterministic) processes whilst the

system state and trajectory are constrained by few

simple rules. Treating this process as a constrained

random process, or an emergent property, seems

appropriate given the considerable uncertainty and

variability of the consumer–resource functional re-

sponses (Englund and Leonardsen 2008).

In the present study, we develop a parsimonious

food web dynamic simulation model for the Bar-

ents Sea, using the NDND modelling framework. A

crucial step in model development is the setting of

input parameter values, and we show how these

can be derived from metabolic theory (Brown and

164 U. Lindstrøm and others



others 2004) and life-history theory (Hoenig 1983).

Another critical step is model evaluation through

comparison of model simulation outputs against

empirical observations. Because the NDND model is

a stochastic simulation model, it is not possible to

directly match simulated trajectories to those

observed in nature. Instead, we use summary

statistics of specific ecosystem properties (food web

biomass and fluxes, biomass variability, growth and

density dependence, trophic controls, temporal

stability, synchrony and consumer–resource func-

tional responses) to evaluate model performance by

comparison with empirical observations, following

the pattern-oriented modelling approach advocated

by Grimm and Railsback (2012). Finally, we show

that many of the ecosystem variability patterns

empirically observed in the Barents Sea can emerge

from the simulations of this simple model.

MATERIALS AND METHODS

Barents Sea Ecosystem

The Barents Sea is a high-latitude, seasonally ice-

covered, Arctic shelf sea ecosystem that is strongly

influenced by the advection of relatively warm

North Atlantic water from the Norwegian Sea

(Dalpadado and others 2014). Four decades of

observations have revealed major fluctuations in

species abundance, spatial distribution and trophic

interactions (Johannesen and others 2012; Dal-

padado and others 2012). Climate warming has

been accompanied by changes in fish community

structure, particularly in northern areas where the

Arctic fish community has been gradually replaced

by an Atlantic community (Fossheim and others

2015). Analyses of historical records (Johannesen

and others 2012) have revealed patterns of vari-

ability such as regime shifts, decadal variations in

trophic interactions or multi-annual community

changes. The degree to which these result from

climate pressures and exploitation patterns or

simply reflect the natural variability of marine

ecosystems remains unclear. Information on year-

to-year fluctuations in environmental and biotic

conditions, synthesised in Johannesen and others

(2012) and ICES (2014a, b), are used in this study

as the primary sources of data to evaluate the re-

sults of model simulations against empirical obser-

vations.

Modelling Principles

Here we provide a brief summary of model con-

cepts, structure and parameters followed by the

specific details of the model implementation for the

Barents Sea food web.

We use the NDND modelling framework and

define the food web as a network consisting of

nodes and links. Nodes are trophospecies (trophic

groups) and can refer to taxonomic species, groups

of species or specific developmental stages of sin-

gle species. Links represent trophic interactions

between trophospecies. The topology of the food

web is invariant during a simulation. Contrary to

other food web models, such as Ecopath with

Ecosim and Atlantis (Christensen and Walters

2004; Fulton 2001), trophic interactions are not

deterministically specified in the NDND frame-

work. Instead, the key principle is that at each

time step, trophic flows are drawn randomly

within a restricted set defined by a few physical

and biological constraints. The physical constraints

are determined by the law of conservation of

mass, which entails that fluctuations in the bio-

mass of individual species solely result from the

balance between gains (feeding, import) and losses

(predation, metabolic losses, export). Trophic

flows from prey to predators cannot be negative.

Naturally, biomasses are constrained to remain

positive, each with a minimum threshold value

called refuge biomass. Species-specific biological

constraints also include satiation: the maximum

consumption rate, and inertia: the maximum

population growth and mortality rates. The latter

are derived from life-history theory and the me-

tabolic theory of ecology. Additional input

parameters for potential assimilation efficiency (the

proportion of prey biomass that can potentially be

assimilated) and for other losses (the rate of meta-

bolic losses and losses not explicitly accounted for

in the model) are also required. In the original

NDND formulation, biomass is used as a surrogate

for energy, so variations in energy content per

unit biomass in different organisms are ignored.

This can be an inappropriate assumption when

various prey organisms display different energy

concentrations (for example, echinoderms vs.

fish). Therefore, an additional species-specific in-

put parameter was introduced in the present

version of the model to account for variations in

energy content: digestibility correction factor. The

product of the potential assimilation efficiency by the

digestibility correction factor is the absorption efficiency

(the proportion of prey biomass digested and ab-

sorbed).

In summary, the NDND is a mass balance model

in which food web topology is fixed, trophic flows

are drawn randomly, food intake does not exceed

satiation, biomass variations are bounded between a
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maximum growth rate and a maximum mortality

rate (inertia) and biomass does not fall below a

minimum level (refuge biomass).

The dynamics of species in the food web is de-

fined by the general equation:

dBi

dt
¼ ci

X

j

jjFji þ Ii �
X

j

Fij � Ei � liBi
; ð1Þ

where
P

jFji represents the biomass fluxes to spe-

cies i (consumption),
P

jFij represents the biomass

fluxes from species i (predatory loss), ci is the

potential assimilation efficiency of species i, jj is the
digestibility correction factor for species j, Ii is im-

port (immigration), Ei is export (fishing, emigra-

tion), li is ‘‘other losses’’ (metabolic losses and

other mortality not accounted for explicitly in the

model) and Bi is the biomass of species i. At each

time step, a set of trophic flows (F) is drawn ran-

domly, given that mass balance and physical and

biological constraints are satisfied. A detailed

description of the model structure is given in

Planque and others (2014a) and the method for

sampling trophic flows is detailed in Subbey and

others (2016).

Configuration of the Barents Sea Model

The temporal resolution of the model is annual and

the spatial scale is the Barents Sea shelf (1.6 million

km2). The topology—who eats whom—is presented

in Figure 1, and the list of taxa included in each

trophospecies is detailed in Appendix S1. Simula-

tions start in 1986 and starting biomass values are

derived from the literature as described in Appen-

dix S2. Biological input parameters inertia, other

losses and satiation were derived from metabolic

theory (Yodzis and Innes 1992; Brown and others

2004), life-history theory (Hoenig 1983) and pre-

viously reported values (Blanchard and others

2002; Makarieva and others 2008). The derivation

of biological input parameters is detailed in Sup-

plementary Material (S3). Simulations where run

for 200 years. The first 28 years (1986–2013) are

used for comparison against empirical observations.

Food Web Topology

Three mass balance food web models have previ-

ously been developed for the Barents Sea (Blan-

chard and others 2002; Dommasnes and others

2001; Skaret and Pitcher unpublished). These

comprise 41, 30 and 58 functional groups and 267,

169 and 545 trophic links respectively. The use of

food web topologies with such a level of complexity

within the NDND framework is unrealistic and

inappropriate since the NDND model is designed to

simulate the variability of whole-ecosystem prop-

erties, rather than detailed population dynamics.

Food web complexity can be substantially reduced;

typically to less than 14 species and 40 trophic links

while conserving essential properties at the

ecosystem level (Ulanowicz and others 2014). The

topology used in the present study is a simplifica-

tion into eight functional groups covering all taxa

included in earlier food web models, but excluding

detritus. The eight trophospecies are phytoplank-

ton, herbivorous and omnivorous zooplankton,

benthos, pelagic and demersal fish, marine mam-

mals and birds (Figure 1).

Biomasses, Import and export

Starting biomasses were derived from literature

and, when possible, several estimates from differ-

ent sources were used for each species. To avoid

bias toward a particular source, we used the geo-

metric mean of the estimates as the input value.

Refuge biomasses were set arbitrarily to 1% of

starting biomasses. The annual net primary pro-

duction (modelled as import of phytoplankton) and

the import of herbivorous and omnivorous zoo-

plankton from the Norwegian Sea were derived

from published estimates. As for starting biomasses,

when several estimates were available from differ-

ent sources, the geometric mean of these was used.

The imports of benthos, pelagic and demersal fish,

marine mammals and birds were set to zero. The

imports are assumed to be constant throughout the

simulation period. The export term represents

Figure 1. Trophospecies (circles), trophic interactions

(black arrows) and imports (green arrows). The size and

thickness of the circles and lines are indicative of species

biomass trophic and imports flows, respectively (median

of 1000 simulations of 28 year). Trophic flows are

pointing to predators. Looped flows denote cannibalism

(Color figure online).
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processes such as fishing and emigration and was

set to zero for all species. Supplementary simula-

tions were conducted to explore the possible effects

of fishing (Supplementary Material S4). A detailed

description of the derivation of input data is given

in the Supplementary Material (S2).

Assimilation Efficiency and Digestibility

The absorption efficiency, defined as the ratio of

absorbed to ingested food, can vary markedly

depending on the quality and quantity of prey, the

consumer species and the stage/age of the con-

sumer (Valiela 1984). As stated in Eq. 1, the

absorption of a species is the product of the

potential assimilation efficiency (c) of a consumer

and the prey digestibility correction factor (j).
These coefficients were selected so that the

absorption efficiencies (c(predator) Æ j(prey)) were

similar to the values reported in the literature,

ranging from 0.56 (absorption efficiency of dem-

ersal fish feeding on benthos) to 0.90 (absorption

efficiency of marine mammals feeding on zoo-

plankton and pelagic fish). These values are similar

to the absorption efficiencies reported by Blanchard

and others (2002): 0.65–0.82 for benthos, 0.80 for

pelagic fish, 0.82 for zooplankton and 0.89 for sea

mammals, birds and demersal fish. Note that the

digestibility correction factor (j) is irrelevant for

mammals and birds because they are not preyed

upon in this model.

Inertia, Other Losses and Satiation

In the NDND, the inertia coefficient (q) accounts

both for maximum mortality and maximum

growth rates (using -q and +q). Maximum mor-

tality and growth rate can be derived from life-

history theory (Hoenig 1983; Hewitt and Hoenig

2005), metabolic theory of ecology (Savage and

others 2004) or from allometric relationships

(Yodzis and Innes 1992).

The term ‘‘other losses’’ (l) includes metabolic

losses and losses not explicitly accounted for in the

model, such as disease-induced mortality. The rate

of metabolic losses is approximated by the field

metabolic rate (FMR) of a species, which is as-

sumed to be three times the basal metabolic rate

(BMR, Speakman and Selman 2003). This estimate

of l is a minimum because it only accounts for

metabolic losses but not for other types of losses.

Estimates of l were derived from three different

sources (Yodzis and Innes 1992; Gillooly and others

2001; Makarieva and others 2008), and the arith-

metic mean of these estimates was used as the

input value to the NDND model. In contrast, to

inertia (q) and other losses (l), estimates of satia-

tion (r) were derived from one source (Yodzis and

Innes 1992), based on allometric scaling relation-

ships. The detailed derivations of inertia, other

losses and satiation coefficients are provided in

Supplementary Material (S3). The set of input

parameters and starting values for the Barents Sea

NDND model is summarised in Table 1.

Model Evaluation

The outputs of the NDND model cannot be evalu-

ated by measuring the likelihood of observed ver-

sus simulated biomass trajectories because

modelled trajectories are stochastic and are not

aimed at fitting observational data directly. Because

the NDND model is designed to generate sets of

possible viable trajectories—rather than to recon-

struct observed past trajectories—comparison be-

tween observed and simulated time series should

be conducted by checking whether empirical tra-

jectories lie within the simulated envelopes or not.

The model is considered valid if the ensemble of

simulations contains the empirical trajectories even

when the latter deviate noticeable from the median

trajectories.

One the other hand, the NDND model can be

evaluated using summary statistics that capture key

properties of the system. These summary statistics,

also called second-order properties, can be calcu-

lated from model simulations and observational

data (Hartig and others 2011). The model evalua-

tion approach follows the general principles of

‘pattern-oriented modelling’ (POM, Grimm and

Railsback 2005, 2012) that uses multiple criteria for

design, selection and calibration of models of

complex systems. Using repeated simulations, it is

possible to derive empirical frequency distribution

of summary statistics in the model. These distri-

butions can then be used to empirically estimate

the probability that the value of summary statistics

in the observed data be obtained in the simulations.

This corresponds to an empirical null hypothesis

testing approach, in which the NDND is the null

model. In this study, model evaluation is conducted

by constructing frequency distributions of selected

summary statistics (see list below) from 1000 food

web trajectories. We examined the probability of

observing the value of empirical summary statistics

in the null model, that is, the NDND simulations. In

addition, we present some summary statistics for

which there are no empirical data available for di-

rect comparison, but for which there are expecta-
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tions based on expert knowledge or previous

modelling attempts. The NDND model evaluation is

based on the following properties: food web bio-

mass and fluxes, biomass variability patterns,

growth and density dependence, trophic controls,

temporal stability synchrony and consumer–re-

source functional responses. For this purpose, we

used the following set of summary statistics:

– Average individual biomasses and trophic fluxes

estimates based upon 1000 simulation over the

period 1986–2013;

– Trophic level (TL) diet weighted by the trophic

level of its prey (TLi = 1 +
P

jDi,j Æ TLj, where Di,j

is the fraction of prey j in the diet of species i and
TLj is the trophic level of prey j) (Pauly and others
2000);

– Transfer efficiency (TE) the ratio between sum of

predatory fluxes plus export fluxes and the

throughput (sum of consumption and predatory

fluxes) (Pauly and others 2000);

– Envelope of biomass trajectories log-transformed

biomass envelopes (50, 95 and 99%) of individ-

ual trophospecies for the period 1986–2013;

– Biomass distribution of individual trophospecies;

– Density dependence the slope of the growth rate

versus biomass relationship,;

– Trophic control (top-down and bottom-up) measured

as the correlation between predator biomass and

prey biomass in the previous year over sliding

15-year time periods (Johannesen and others

2012);

– Stability of the food web the ratio of mean biomass

over temporal variance in biomass for all species

combined (Lehman and Tilman 2000);

– Synchrony of the food web the ratio of temporal

variance in the biomass of individual species over

the temporal variance for all species (Loreau and

de Mazancourt 2008);

– Trophic functional response the consumption rate of

a trophospecies as a function of prey biomass.

When possible, these statistics were derived from
empirical data for the purpose of model evaluation.
When empirical data were not available, model
evaluation was done against theoretical expectations
and literature.

RESULTS

Average Biomasses, Trophic Flows,
Trophic Levels and Transfer Efficiencies

Average biomasses and trophic flows are illustrated

in Figure 1. The most important trophic fluxes are

between trophospecies situated in the lower

trophic levels, with flows between phytoplankton,

herbivorous and omnivorous zooplankton and

benthos accounting for 85% of the flows in the

food web (when cannibalistic flows are excluded).

The distribution of biomass in the food web shows a

maximum at intermediate trophic levels, a feature

that is consistent with patterns observed in many

marine systems (Pranovi and others 2012).

Comparison of simulated biomasses and trophic

flows with empirical observations from the Barents

Sea should be viewed with caution, in particular for

lower trophic levels, since the new har-

vestable production (defined as the net primary

production or new production) is not explicitly

modelled in the NDND and vertical flux of organic

matter from the surface to the benthos is modelled

as direct predation on phytoplankton by benthos.

Table 1. List of Trophospecies and Associated Parameter Values Used in NDND Simulations of the Barents
Sea Ecosystem

Trophospecies Import Export Initial

biomass

Assimilation

efficiency (c)
Prey

digestibility

(j)

Other

losses

(l)

Inertia

(q)
Satiation

(r)
Refuge

biomass

(b)

Phytoplankton 1000 0 25 1 0.65 6.74 12.9 – 0.25

Herbivorous zooplankton 8 0 23 1 0.9 8.4 7.6 128 0.23

Omnivorous zooplankton 2 0 12.9 1 0.9 5.5 3.1 42 0.13

Benthos 0 0 66 0.94 0.6 1.5 0.74 25 0.66

Pelagic fish 0 0* 0.36 0.9 0.9 2.85 0.9 13.5 0.004

Demersal fish 0 0* 1.18 0.93 0.85 1.65 0.25 5.5 0.018

Mammals 0 0 0.34 1 – 5.5 0.11 10.9 0.0034

Birds 0 0 0.007 0.84 – 60 0.81 123 0.0001

The import, export, initial and refuge biomasses are given in tÆkm-2.
* Additional simulations were conducted (Supplementary Material S4), in which export is set to a fraction of the biomass to mimic extraction by fishing.
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Despite these limitations, the NDND model gener-

ates phytoplankton–benthos biomass fluxes (95%

CI 105–305 t km-2 y-1) that are within the range

of export production estimates (75–550 t km-2 y-1;

Klages and others 2004).

The fluxes were used to derive both the trophic

level (TL) and transfer efficiency (TE) of trophos-

pecies which are given in Table 2. The estimated TL

ranges from 2 (herbivorous zooplankton) to 4.7

(mammals), whereas the mean TE ranges from 1.2

in benthos to 28.1 in herbivorous zooplankton.

With the exception of benthos, the transfer effi-

ciencies decline as trophic levels increase (Table 2).

Biomass Variability Patterns

Empirical biomass trajectories for species in the

Barents over 28 years lie within the simulated 99%

envelopes (Figure 2), indicating that the NDND

model captures a range of biomass variations equal

to or greater than what has been observed in the

recent past. Biomasses of herbivorous and omniv-

orous zooplankton in 1994 and 1989–1991 are

extreme cases which lie outside the 99% limits, but

these remain within the complete simulation en-

velope (100% limits). The median estimates, based

on 1000 simulations, are slightly lower than the

observed trajectories with respect to herbivorous

zooplankton, pelagic and demersal fishes and the

opposite with respect to omnivorous zooplankton.

Pelagic fish and, to a lesser extent, zooplankton

groups frequently reach low densities, close or

equal to the refuge biomass (Figures 2, 3). Patterns

of inter-annual variability in the biomass of pelagic

and demersal fish appear to be well simulated,

while simulations tend to generate inter-annual

patterns for zooplankton biomass that are more

variable than empirical observations would suggest

(Figure 2). This is confirmed by the distribution of

biomasses of the observed and simulated 28-year

biomass time series (Figure 3). The observed ranges

of biomass for zooplankton and fish groups are

narrower than the simulated ranges, indicating that

the model generate greater biomass variability than

has been empirically observed in the recent dec-

ades.

Density Dependence and Trophic Control

The model simulations revealed high variability in

population growth rates for all species (Figure 4).

For high trophic levels, simulated growth rates of-

ten cover the entire range allowed by model con-

straints and there was no evidence of density

dependence. For lower trophic levels, variations in

growth rates were substantial but within model

limits and there appeared to be an inverse relation

between maximum growth rates and biomass. All

but two empirical observations (one pelagic and

one demersal not illustrated in the figure) were

within the 95% envelope indicating that the model

encompasses these growth values.

Negative and positive correlations between

predator and prey biomass have been interpreted as

top-down and bottom-up controls, respectively

(Cury and others 2003), and tracking how corre-

lations between predators and prey vary with time

has been used to reveal interdecadal changes in

trophic controls in the Barents Sea (Johannesen

and others 2012). Time series of correlation derived

from simulations can resemble those observed from

empirical data (Figure 5). Typically, stochastic

simulations lead to interdecadal oscillations be-

tween apparent top-down and bottom-up controls.

This feature is particularly salient for demersal

versus pelagic fishes (Figure 5, upper right panel).

The aggregated results (Figure 5, lower panel)

show that the observed trophic correlations lie

within the 95% confidence intervals of the mod-

elled data, thereby confirming that the model

covers the range of situations observed in the wild.

Correlations derived from empirical observations

Table 2. Mean Trophic Level (TL) and Transfer Efficiency (TE) of Seven Trophospecies in the Barents Sea
NDND Model

Trophospecies Trophic level Transfer efficiency

Herbivorous zooplankton 2.0 28.1 (24.3, 30.9)

Omnivorous zooplankton 3.3 (2.9, 3.6) 5.6 (1.1, 17.5)

Benthos 2.5 (2.3, 2.7) 1.2 (0.4, 3.1)

Pelagic fish 4.0 (3.8, 4.2) 22.7 (6.1, 33.1)

Demersal fish 4.4 (4.2, 4.6) 13.4 (7.3, 18.6)

Mammals 4.7 (4.4, 5.0) –

Birds 4.6 (4.4, 4.8) –

The lower and upper 2.5% percentiles are given in parenthesis. The TE and TL estimates are based upon 1000 simulations of 28-year trajectories. Cannibalistic flows were
excluded when estimating the TEs.
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are more negative, on average, than those derived

from simulations, suggesting a dominance of top-

down control in Barents Sea during the period

1986–2013.

Stability and Synchrony

In contrast to the evaluation criteria presented

above, stability and synchrony indices provide

information about the dynamics of the food web as

a whole, rather than on individual trophospecies.

Simulated and empirical stability and synchrony

indices, as well as indices of stability and synchrony

derived by Bell and others (2014) for 19 marine

ecosystems, are presented in Figure 6. Simulation-

based stability and synchrony envelopes display a

wide range of possible situations. Empirical obser-

vations of both indices, with the exception of the

synchrony index in 1993–1997, lie within the

simulated 99% envelopes. The overall stability of

the food web derived from empirical observations is

close to that in simulated food webs. On the other

hand, synchrony derived from empirical observa-

tions is generally greater than that from the simu-

lations. Empirical data suggest that low stability is

associated with high synchrony and vice versa

(R = -0.77). In contrast, there is no relationship

between the two indices in the simulations or in

Bell’s data. Most (95%) of the simulated stability–

synchrony correlations are found between -0.8

and 0.86 (median R = 0.1, Figure 6), which are not

significantly different from zero. This is similar to

the stability–synchrony correlation found in Bell’s

data (R = -0.12).

Trophic functional responses

Consumption-resource envelopes for four selected

consumer–resource pairs are illustrated in Figure 7.

Simulated consumer–resource relationships vary

considerably, particularly for trophospecies feeding

on lower trophic levels such as omnivorous zoo-

plankton and pelagic fish. It appears that the sim-

ulated consumption rates are often far from the

satiation boundaries (horizontal hatched lines in

Figure 7), suggesting that resource availability, ra-

ther than satiation, is limiting consumption. Al-

though trophic interactions are modelled as

random processes in the NDND framework, the

consumer–resource functional responses that

emerge from the simulations resemble Holling-type

II or III patterns (Holling 1965).

DISCUSSION

Rosen (1969) termed biology ‘‘the physics of

intractable systems’’, partly due to our inability to

identify and specify the causal relationships behind

the dynamics of the system. In numerical mod-

elling, Occam’s razor law (also known as the law of

parsimony) prescribes that, when faced with

alternatives, the simplest explanation of a pattern

(or phenomenon) is to be preferred (Blumer and

others 1987). This principle is standard in statistics

when seeking model variance-bias tradeoff, a

compromise between model complexity and fitting

accuracy (Burnham and Anderson 2002). For

ecosystem models, recent trends have gone rather

the opposite way, with process-based models

becoming more and more complex and often

integrating hundreds of functions and even larger

numbers of parameters (for example, Holt and

others 2014). The approach adopted in this

manuscript is underpinned by Occam’s razor and

attempts to explain as many patterns as possible

using a simple model structure with a minimal

number of parameters and assumptions.

The NDND framework is not advocated as a pa-

nacea to model the dynamics of complex ecosys-

tems, but rather it is a simple approach primarily

aimed at understanding how patterns in food web

dynamics may emerge from the combination of

chance and necessity (that is, stochastic interac-

tions operating within ecological constraints). The

power of the NDND model for the Barents Sea does

not lie in its efficacy to best reproduce a single

pattern (for example, a biomass trajectory for a

single trophospecies) but rather in its ability to

capture simultaneously multiple patterns of differ-

ent nature while remaining simple. To the best of

our knowledge, this is the first time a food web

simulation model is evaluated against data for such

a wide range of patterns. Simulations with the

NDND model reveal that a limited set of rules and

constraints is sufficient to simulate a multitude of

patterns of the Barents Sea food web dynamics.

Beside the food web synchrony, which is overall

lower than that observed in the Barents Sea and

other areas, the simulated dynamics of the other

Figure 2. Biomass time series of herbivorous and

omnivorous zooplankton, benthos, pelagic and demersal

fishes, mammals and birds. The light, medium light and

dark grey area denote 99, 95 and 50% simulation envel-

opes, respectively. The red and black solid lines denote the

biomass trajectory in the empirical observations and the

median of 1000 biomass simulations, respectively. The

horizontal hatched blue linesmark the refuge biomasses and

the two tilted hatched blue lines denote the lower and upper

inertia boundaries. The dashed black lines denote three

random simulations (Color figure online).
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food web properties resemble empirical observa-

tions and results from other modelling studies.

Emergent Patterns

Basic food web properties, such as TE and TL of

trophospecies, may be used to inform limits in food

web productivity (Libralato and others 2008),

which can be used to estimate fisheries harvest

potential, impact of fishing (Pauly and others 1998;

Shannon and others 2014) and changes in ecosys-

tem structure over time (Pranovi and others 2014).

Previous modelling studies have shown that these

food web properties as well as trophic functional

responses may greatly vary in time and space as a

result of changes in life history and prey availability

(Jennings and others 2002; Koen-Alonso and

Yodzis 2005; Libralato and others 2008). Not

accounting for this variability can strongly alter

simulated food web dynamics and bias the esti-

mates of food web properties.

The consumer–resource functional relationship is

perhaps the most critical process in food web

models and it is one of the most difficult to

parameterise (Koen-Alonso 2007). Although the

dynamics of modelled food webs are known to be

highly sensitive to the choice of the functional re-

sponses, these are generally poorly known for wild

marine populations due to the lack of large-scale

consumer–resource data. Treating the functional

response as an emergent property rather than as a

pre-defined input, can allow for a wide range of

food web dynamics and possible trajectories. There

are no appropriate field observations to evaluate

the functional responses emerging from the simu-

lations, but field and modelling studies report both

type II and III functional responses (Koen-Alonso

and Yodzis 2005; Smout and Lindstrøm 2007), thus

supporting the trophic functional relationships

emerging from the NDND model.

Patterns of inter-annual variability in trophos-

pecies biomass are of particular interest, and the

NDND is capable of generating trends and pseudo-

cycles that resemble those observed in the wild, as

well as decadal variations in trophic controls that

are similar to those empirically described for the

Barents Sea. Given the stochastic nature of the

model, it is likely that the simulated densities of

individual trophospecies are more variable than

those in the wild. This is in contrast with deter-

ministic food web models such as EwE or Atlantis

(Fulton 2001) that are often too smooth to capture

natural patterns of year-to-year variability or

pseudo-cycles effectively. Other deterministic

ecosystem models may produce similar levels of

variability by including detailed biological processes

(Kishi and others 2011; Kearney and others 2012).

Many of these processes are in general poorly

understood and hard to be parameterised with

precision and simulated dynamics can be highly

sensitive to biological assumptions in these models

(Gentleman and others 2003; Subbey and others

2014). The NDND offers a parsimonious comple-

ment to—either simple or complex—deterministic

models for the simulation of inter-annual vari-

ability in food webs.

In comparison to the simulated data, the empirical

observations suggest strong density dependence, in

particular for omnivorous zooplankton and pelagic

and demersal fishes. This can be a statistical artefact

resulting from the small number of observations

(the slopes of the growth-density functions being

non-significant) or a true feature. Whether density

dependence reflects compensation (growth declin-

ing towards zero with increasing abundance),

overcompensation (negative growth at high abun-

dance) or depensation (low growth at low abun-

dance) remains a key issue in population dynamics

studies and in marine fish populations (Rose and

others 2001). Determining the presence and exact

shape of the growth–abundance relationship is

problematic for many species, and slight variations

in the degree of compensation can greatly affect the

modelled dynamics of animal populations (Ginzburg

and others 1990; Turchin 2003; Sibly and others

2005). Aubin and others (2011) have shown that

regardless of the exact shape of the population

growth curve, there exists a region in the growth–

biomass space where population trajectories can

remain viable. The NDND simulations show great

variability in species growth and abundance and

appear to explore the viability space of each

trophospecies, rather than to depict clear functional

forms that could be interpreted unambiguously. For

species with potentially high growth rates—that are

also at lower trophic levels—maximum growth rates

decline with species abundance indicating compen-

satory (herbivorous zooplankton) and overcom-

pensatory (omnivorous zooplankton, benthos and

pelagic fishes) dynamics. For birds and mammals,

there is no apparent density dependence, and this

likely results from the fact that their biomasses

Figure 3. Biomass distribution (log-scale) of herbivorous

and omnivorous zooplankton, benthos, pelagic and dem-

ersal fishes, mammals and birds (from 1000 simulations of

28 year). Bars represent the simulated data, the red lines

denote the median empirical estimates for each group and

the pink region indicates the range of empirical observations

(when available). Vertical dotted blue lines denote the refuge

biomass for each trophospecies (Color figure online).
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rarely approach carrying capacity in the 28-year

simulation period because the biomasses for these

species at the start of the simulation period are low.

Temporal changes in trophic control are well

known (Hunt and McKinnell 2006), and may be

indicative of changes in ecosystem states (Frank

and others 2006). Thus, understanding the under-

lying causes behind these shifts can be beneficial to

the management of marine resources. Fishing and

climate are arguably the most important drivers of

change in ecosystem state (Jackson and others

2001; Frank and others 2006; Lehodey and others

2006), but we show here that the observed decadal

swings in trophic control may also simply emerge

from random predatory interactions. The dynamic

consequences of top-down control on the food web

as a whole are not known, and our results indicate

no apparent relationship between trophic control

and food web stability. This is contrary to empirical

data which indicate slightly lower food web sta-

bility (see below) when the system is top-down

controlled. Whether there is a causal relationship

between food web dynamics and trophic control, as

indicated by the empirical data, remains to be re-

solved.

Given the stochastic nature of the NDND model

and the lack of clear compensatory dynamics in the

simulations, it is not surprising that model simu-

lations are less synchronous than observed in the

wild. This suggests that processes that favour syn-

chronous dynamics in real systems, such as dis-

persal and environmental fluctuations (Gouhier

and others 2010), and which are lacking in the

NDND, might be required to reproduce appropriate

levels of synchrony. In contrast, the simulated

stability is similar to observations from the Barents

Sea and other areas. This is, to some extent, in line

with theory (Allesina and Pascual 2008) that sug-

gests that the food web stability is robust to per-

turbations of interaction strength. It is assumed

that factors that synchronise population fluctua-

tions within and between communities are ex-

pected to be destabilising (Gouhier and others

2010), implying that synchrony and stability

should be inversely related. This feature is evident

in the empirical data but not in the simulations.

The lack of correlation between food web syn-

chrony and stability in the simulations is however

in line with other studies (Bell and others 2014),

thus the empirical food web dynamics in the Bar-

ents Sea may represent an extreme case.

Climate Variability and Fishing

Ocean climate variations and fishing were not

explicitly incorporated in the model simulations,

although these have been described as strong dri-

vers of the Barents Sea ecosystem dynamics (Dal-

padado and others 2012, 2014; Johannesen and

others 2012). Although this could be a major

shortcoming in a standard modelling approach

designed to reproduce the past trajectory of

ecosystem states, the NDND framework is com-

patible with extreme simplifications, even of the

external pressures. The random sampling of trophic

flows is somehow analogous to incorporating ex-

treme variability in external controls such as cli-

mate, affecting all parts of the ecosystem.

Therefore, current simulations implicitly assume

random ocean climate variations, rather than cli-

mate stability. A more explicit representation of

climate impact on ecosystem within the model is

technically possible, but this would require in-

depth understanding and quantification of the

mechanisms by which ocean climate variability

affects all parts of the ecosystem. As it stands, the

NDND model constitutes a ‘null’ model against

which the performance of more complex models

that explicitly include ocean climate forcing can be

evaluated.

During the 28 years investigated in this study,

fishing has been significant in the Barents Sea.

Removal of biomass through fishing is a system-

atic pressure and it affects well-defined compo-

nents of the ecosystem (commercial fish and

shellfish), although indirect effects on non-ex-

ploited species have also been reported. An in-

depth investigation of how fishing dynamics may

alter the patterns of ecosystem variability in the

Barents Sea is beyond the scope of this study.

However, we explored the systematic effects of

fishing through sustained removal of key species

groups by running supplementary simulations in

which fishing export was included for the pelagic

and demersal groups (Supplementary Material

S4). Results from these simulations show that in

the presence of fishing the biomass of demersals

tends to be lower (-6.2%) at the end of the 28-

year simulation period, than when fishing is not

included. Conversely, the biomass of the pelagic

Figure 4. Growth rate versus biomass for herbivorous

and omnivorous zooplankton, benthos, pelagic and

demersal fishes, mammals and birds. Simulated and

empirical data are represented by black and red dots,

respectively. The red lines are fitted to empirical data

(second-order polynom). The green lines highlight how

the maximum population growth rate declines with

increasing population biomass for herbivorous and

omnivorous zooplankton, benthos and pelagic fishes

(Color figure online).
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group tends to increase (+18.8%), possibly as a

result of predation release from the demersal

group. These are relatively minor changes in

comparison with variability in fish biomass be-

tween simulations with identical setups (1 and 3

orders of magnitude for demersals and pelagics,

respectively). For other species groups, there are

no visible changes in biomass in the simulations

that incorporate fishing. In these simulations,

other ecosystem properties (mean trophic flows,

Figure 5. Correlations, calculated on 15-year centred sliding windows, between trophic groups (herbivorous and

omnivorous zooplankton, pelagic and demersal fish) in empirical and simulated data. Top: correlations from 1993 to 2006

for empirical data (left) and one simulation (right). Bottom: boxplot of correlation from 1000 simulations shown with

empirical observations (red dots). The boxes and error bars of the boxes correspond to 50 and 95% confidence intervals of

the modelled data, respectively, and the horizontal solid black lines indicate the median. HZP, OZP, PEL and DEM denote

herbivorous zooplankton, omnivorous zooplankton, pelagic and demersal fish, respectively (Color figure online).
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density dependence, top-down and bottom-up

trophic controls, stability and synchrony) re-

mained virtually unchanged (Supplementary

Material S4). These results do not show how ac-

tual fishing that has taken place in the Barents

Sea has affected the dynamics of the ecosystem,

but they illustrate that the intrinsic variability

generated in the NDND model simulation vastly

exceeds the effect of fishing when averaged over

several decades.

Figure 6. Food web stability (upper left panel) and synchrony (upper right panel). The dark, medium and light grey areas

correspond to 50, 95 and 99% simulation envelopes, respectively (1000 simulations). Black solid lines denote the median of

simulations and red solid lines denote empirical estimates. Dashed black lines denote three random simulations. The green dots

show the stability and synchrony values estimated for several ecosystems by Bell and others (2014). The histogram (lower

left panel) displays 1000 simulated 14-year stability–synchronicity correlations. The red and green solid lines denote the mean

stability–synchronicity correlations of the empirical data for the Barents Sea and Bell’s data, respectively (Color fig-

ure online).
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Limitations and Future Developments

Like other modelling approaches, the NDND relies

on a set of assumptions, mathematical formula-

tion and parameterisation, which, if violated or

wrongly specified, will affect the results and

conclusions. Model outputs are expected to be

sensitive to the level of complexity of the food

web structure, parameter values and transition

probabilities.

Figure 7. Four consumer–resource functional responses: phytoplankton–omnivorous zooplankton, omnivorous zoo-

plankton–pelagics, pelagics–demersals and pelagic–mammals. The dark, medium and light grey areas correspond to 50, 95

and 99% simulation envelopes, respectively. The black solid lines denote the median of the simulations. The blue tilted and

horizontal hatched lines denote the 1:1 (prey consumption = available prey) and satiation (consumption = satiation) con-

straints, respectively. The scatters correspond to 2000 randomly selected consumer–resource relationships (Color

figure online).
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In the NDND, the food web topology is set a

priori and remains fixed during simulations. The

present version of the Barents Sea application

consists of a simple food web topology, inspired

from Ulanowicz’s suggestion that food web com-

plexity can be set to few species and trophic links

and still conserve essential properties at ecosystem

level (Ulanowicz and others 2014). Yet, alterations

in the complexity of the representation of the food

web can affect model behaviour. The structural

food web properties (link density, connectance and

so on) of the current food web topology deviate

much from those derived from more complex food

webs (Link 2002; Planque and others 2014b). The

dynamic consequences of simplifying the topolog-

ical complexity are difficult to anticipate, but the

structural properties of the food web may affect the

stability and, thus, the synchrony of food webs

(Allesina and Pascual 2008). Few analyses of the

kind have been conducted so far (Pinnegar and

others 2005; Giricheva 2015), and it is unclear how

general their results might be. A dedicated analysis

of the influence of food web topological choices on

emerging patterns in Barents Sea ecosystem simu-

lations remains to be conducted.

We used life-history theory and metabolic theory

of ecology to derive input parameter values for

each individual trophospecies. These estimates are

imprecise and traits are known to vary within and

between species and with time (Rosa and Seibel

2008). For example, the assumption that ‘‘other

losses’’ (l) is equal to three times the basal meta-

bolic rate (BMR) may be reasonable for fish and

mammals (Winberg 1956, Speakman and Selman

2003) but less so for other trophospecies. Dedicated

sensitivity analysis is needed to determine which

parameters the model is most sensitive to and what

range of dynamics may be expected given the

natural variability and uncertainties in input

parameter values. The realism of the NDND model

may be improved using model parameters and food

web structure that can dynamically vary on evo-

lutionary time scales (for example, McKane 2004;

Fussman and others 2007; Loreau 2010).

An important assumption in the NDND is that all

possible transitions, from a food web state at time t

to the subsequent food web state at time t + 1, are

equiprobable. This assumption is consistent with

Occam’s razor principle of using the simplest pos-

sible representation of the stochastic process (here a

uniform distribution). While a model with mech-

anistic trophic functional responses constitutes a

caricature of a fully known and deterministic sys-

tem, the NDND model with random trophic inter-

actions drawn from uniform distributions

constitutes a caricature at the other end of the

spectrum, of a modestly known, non-deterministic

and highly variable system. Real food webs are

likely to lie somewhere between these two ex-

tremes. Dedicated analyses are necessary to evalu-

ate the effect of changing the probability

distribution (between the uniform distribution of

the current NDND and the Dirac delta function of

deterministic trophic functional responses) on the

model emerging patterns. Empirical support is

equally needed to test whether the uniform distri-

bution is the most appropriate representation of

transition probabilities.

Reference Model

Given that theNDNDmodel is bothparsimonious and

capable of simulating a multitude of patterns of food

web dynamics, we suggest that the NDNDmodel can

serve as a reference or nullmodel for the variability of

marine ecosystem. The analysis of additional patterns

would serve to highlight which patterns can be ex-

plained by aminimal set of rules and constraints, and

which patterns may require the consideration of

additional processes. Multiple simulations can be

used to explore how the range of possible food web

configurations may expand into the future, as

exemplified in Figure 2. Projecting future ecosystem

states and dynamicsmay not be possiblewith current

models beyond short time horizons (Beckage and

others 2011; Petchey and others 2015; Planque

2016); however, given its constrained stochastic

nature, the NDNDmodelmay be used to evaluate the

forecast horizon of different ecosystem properties.

Complex ecosystem models are generally not de-

signed to perform predictions, but are rather used to

evaluate tradeoffs in ecosystem configurations or to

investigate possible responses to specific pressures

such as climate warming or exploitation (Fulton and

others 2011). The NDND model can be used for sim-

ilar purpose, for example, to investigate the effects of

changes in environmental or fishing conditions on

the food web dynamics.

CONCLUSIONS

We show here how to parameterise a simple NDND

food web model using empirical observations, me-

tabolic theory and life-history theory. Using a range

of patterns to evaluate model performance against

observations, we show that this parsimonious

simulation model can reproduce many of the pat-

terns observed in a real complex biological system

(The Barents Sea food web) without requiring a

complex model structure or deterministic trophic

Multiple Patterns of Food Web Dynamics Revealed… 179



functional responses. Rather, this simple approach

provides a reference model for expected patterns of

ecosystem dynamics. Many of the patterns ob-

served empirically in the Barents Sea can be

interpreted as resulting from the interplay of ran-

dom interactions with few ecological constraints.
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