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ABSTRACT

Soil respiration (SR) is a major component of the global

carbon cycle and plays a fundamental role in ecosys-

tem feedback to climate change. Empiricalmodelling is

an essential tool for predicting ecosystem responses to

environmental change, and also provides important

data for calibrating and corroborating process-based

models. In this study, we evaluated the performance of

three empirical temperature–SR response functions

(exponential, Lloyd–Taylor and Gaussian) at seven

shrublands located within three climatic regions (At-

lantic, Mediterranean and Continental) across Europe.

We investigated the performance of SR models by

including the interaction between soil moisture and

soil temperature. We found that the best fit for the

temperature functions depended on the site-specific

climatic conditions. Including soil moisture, we iden-

tified thresholds in the three different response func-

tions that improved the model fit in all cases. The direct

soil moisture effect on SR, however, was weak at the

annual time scale. We conclude that the exponential

soil temperature function may only be a good predictor

for SR in a narrow temperature range, and that

extrapolating predictions for future climate based on

this function should be treated with caution as mod-

elled outputs may underestimate SR. The addition of
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soil moisture thresholds improved the model fit at all

sites, but had a far greater ecological significance in the

wet Atlantic shrubland where a fundamental change

in the soil CO2 efflux would likely have an impact on

the whole carbon budget.

Key words: annual soil respiration; empirical soil

respiration models; soil moisture threshold; shrub-

land; temperature dependence; temperature sensi-

tivity.

INTRODUCTION

Soil respiration (SR) is a dominant component of

the terrestrial carbon cycle and has a significant

influence on global radiative forcing (IPCC 2013).

In terrestrial ecosystems, atmospheric CO2 is

assimilated during photosynthesis, and then re-

leased either via autotrophic respiration or through

heterotrophic decomposition of carbon compounds

differing in recalcitrance and sensitivity to tem-

perature (Davidson and Janssens 2006). Both soil

moisture availability and temperature may alter

with a changing climate, and this will affect

decomposition processes and root activity, poten-

tially changing rates of CO2 efflux from soils.

However, it is poorly understood how altered

temperature and soil moisture availability will af-

fect soil CO2 efflux across multiple ecosystems. In

fact, because of the interaction of multiple envi-

ronmental processes often occurring simultane-

ously it is hard to make predictions beyond

empirical data bounds (Vicca and others 2014). SR

response functions derived from empirical data

collected at different temporal and spatial scales

could be useful for improving the predicted impact

of future climate on ecosystem processes (Kirsch-

baum 2004; Vicca and others 2014).

Temperature is often a predominant factor con-

trolling biological metabolic processes and a broad

spectrum of relationships between temperature and

SR has been tested (Subke and Bahn 2010; Wu and

others 2011; Shen and others 2013). Most com-

monly, the exponential function has been used to

model the temperature–respiration relationship

(Davidson and Janssens 2006; Beier and others

2009; Vicca and others 2014). In these cases, how-

ever, exponential models were usually applied in a

relatively narrow temperature range not exceeding

30�C. In situ SR studies covering a wide range of

temperature and moisture conditions are rare and

the limited availability of such data affects the ability

of modellers to fit SR functions to empirical data

(Vicca and others 2014). Consequently, to study SR

on a wide range of ecosystems and climatic condi-

tions, the Arrhenius, Lloyd–Taylor, Gaussian, and

Quadratic functions have been used (Lloyd and

Taylor 1994; Tuomi and others 2008; Reichstein and

Beer 2008; Lellei-Kovács and others 2011; González-

Ubierna and others 2014).

Occasionally, to improve on the fit of a simple

exponential model, a wider environmental range

has been incorporated by fitting separate functions

to subranges of temperature (Murthy and others

2003; Bradford and others 2008) and soil depth

(Pavelka and others 2007) or to Mediterranean wet

versus dry seasons (de Dato and others 2010).

Other studies have used additional parameters to

account for factors other than temperature like

soil moisture content (Suseela and others 2012;

Kopittke and others 2013; Wang and others 2014),

soil physical and chemical properties (Wang and

others 2003; Balogh and others 2011; Kotroczó and

others 2014), different substrate availability

(Davidson and others 2006), or different SOM

content and quality (Curiel Yuste and others 2010).

Other studies have also attempted to provide

mechanistic explanations for the temperature

dependence of SR (Davidson and others 2006; von

Lützow and Kögel-Knabner 2009). In a review,

Billings and Ballantyne (2013) examined the

mechanisms that are linked to SR, and reported

that temperature-induced changes in microbial

community structure, microbial metabolic rates

and catalytic rate of exo-enzymes may lead to a

decline of SR as a response to an increase in the soil

temperature.

The relationship between soil moisture and SR

has been modelled using many different functions

that include linear (Leirós and others 1999),

exponential (Rodrigo and others 1997), second-

order exponential, that is, Gaussian (Howard and

Howard 1993; Mielnick and Dugas 2000; Vicca and

others 2014) and reverse exponential (Zhou and

others 2007) relationships. Limitation of SR by soil

moisture has been observed when substrate diffu-

sion is limited by low soil water availability (Ho-

ward and Howard 1993), but also when the

diffusion of O2 is restricted by high soil water

content (Skopp and others 1990). Mechanistic

studies of the relationship between soil moisture

and SR conducted by Davidson and others (2006)

revealed that not only CO2 efflux is influenced by

moisture-induced changes in soil physical proper-

ties, but also autotrophic root respiration and
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heterotrophic microbial decomposition are directly

impacted by changes in soil moisture. Evaluation of

the impact of soil moisture is more difficult than

that of temperature because the efficiency of water

uptake is influenced by various soil physical prop-

erties and also by physiological processes of the

organisms. At any given soil moisture content,

water uptake may differ for numerous reasons such

as soil texture (sand or clay), plant water use effi-

ciency, stress tolerance and soil microbial compo-

sition (for example, fungal to bacterial ratio)

(Moyano and others 2013).

The approaches to studies that combined impact

of temperature and moisture on SR modelling dif-

fer in two fundamental ways: (1) Additive versus

interactive (Mielnick and Dugas 2000; Reichstein

and others 2002; Qi and others 2002; Xu and others

2004; Zhou and others 2006); (2) Continuous

versus threshold (Davidson and others 1998;

Reichstein and others 2002; Rey and others 2002;

Fernandez and others 2006; Yan and others 2011).

Moisture thresholds that alter SR activities signifi-

cantly may be very important in modelling carbon

fluxes, not only in arid and semiarid, but also in

mesic ecosystems (Suseela and others 2012).

In a coordinated network of climate change

experiments (EU projects CLIMOOR, VULCAN and

INCREASE), along a natural temperature and pre-

cipitation gradient across European shrublands,

whole ecosystem manipulations of warming and

summer drought conditions were conducted. The

experiments resulted in a trend of increased SR in

response to the warming treatments and significant

reduction in SR in response to the drought treat-

ments (Emmett and others 2004; Kopittke and

others 2014). However, some of the ecosystems

also had an individual response to warming and

drought that makes general conclusions difficult to

draw. In the longer term, repeated summer

drought resulted in an increased SR in the hydric

ericaceous shrubland in Wales. Sowerby and others

(2008) suggested that the year-round reduction in

soil moisture content of the organic-rich podzol soil

resulted in a year-round stimulation of SR. Lellei-

Kovács and others (2008) found that in the semi-

arid Hungarian shrubland, warming and drought

reduced the rate of SR. In the Italian Mediter-

ranean shrubland, de Dato and others (2010) ob-

served a temporary decrease in SR as a short-term

response to the warming and drought treatments.

In a previous study, we investigated the mecha-

nisms that control SR in the semiarid Hungarian

shrubland with extreme temperature and soil mois-

ture regimes, by empirically modelling SR as a re-

sponse function of temperature and moisture (Lellei-

Kovács and others 2011). Applying the same ap-

proaches, here we expand this work by modelling SR

using 2- or 3-years of empirical data collected from

seven different shrubland ecosystems across Europe

with markedly different natural temperature and

moisture regimes. We compared the performance of

three empirical SR models, the exponential, the

Lloyd–Taylor and the Gaussian functions, and inte-

grated moisture into the models using additive and

interactive approaches. The aims were to (i) investi-

gate the effect of soil temperature and soil moisture

content on SR in the different soils, and (ii) improve

model predictions of SR under future climate change

scenarios. We hypothesized, that (i) the exponential

model performs appropriately only in a relative nar-

row temperature range, (ii) theGaussian temperature

dependence function would be the best predictive SR

model in ecosystems exposed to a relatively large

temperature range, and (iii) inclusion of soil moisture

thresholds would improve the predictive power of the

models at sites in which moisture is an obvious con-

trolling factor (for example, xeric or hydric ecosys-

tems), whilst in mesic ecosystems the inclusion of

moisture would have a smaller impact.

MATERIALS AND METHODS

Characteristics of the Studied Shrubland
Ecosystems

The study was conducted along natural tempera-

ture and precipitation gradients across Europe

(Beier and others 2009), in seven different shrub-

land ecosystems (see Tables 1, 2), that included

four Atlantic heathlands at two sites in Denmark

(Mols, DK-M, and Brandbjerg, DK-B), one site in

the Netherlands (Oldebroek, NL), and one site in

the United Kingdom (Clocaenog, UK) (Sowerby

and others 2008), two Mediterranean garrigues,

one in Spain (Garraf, ES) (Sardans and others

2008) and one in Italy (Capo Caccia, IT) (de Dato

and others 2010), and one shrubland in the Pan-

nonian sandy forest steppe region in Hungary

(Kiskunság, HU) (Lellei-Kovács and others 2011).

Meteorological data between 2001 and 2012 (ex-

cept ES between 2002 and 2003 and DK-B between

2006 and 2012) were recorded either directly at the

sites, or at standard meteorological stations located

nearby (Table 1). Mean annual temperature ranges

from 8.0 at the DK-B site to 16.8 at the IT site.

Mean annual precipitation varies between 549 mm

in IT and 1345 mm at the UK site. The variability of

climate among sites could be expressed by the

modified Gaussen-index (mean annual precipita-

tion/29 mean annual temperature, Peñuelas and
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others 2007) with higher aridity at its lower values

(Table 1).

Field Experiments and Measurements

Plot-sized climate manipulation experiments were

established in the seven shrubland ecosystems (see

above). The experimental plots were subjected to

either year-round passive night-time warming by

insulating reflective curtains, extended drought

periods by rain-activated transparent polyethylene

roofs or an un-treated control since 1999 (ES, UK,

NL, DK-M), since 2001 (HU, IT) or since 2005 (DK-

B) (for detailed description of the experimental

design and the effects on soil temperature and

moisture, see at Beier and others 2004; Lellei-Ko-

vács and others 2008; Mikkelsen and others 2008;

de Dato and others 2010). In this study, we used

data from different treatments together with data

from control plots, that is, a response surface ap-

proach, where treatments are seen as a widening of

the natural range of environmental variables (see

also Lellei-Kovács and others 2011, and Table S1

for data of the treatment effects on soil tempera-

ture, soil moisture and SR).

Two or three years of SR measurements were

conducted biweekly or monthly in the experimen-

tal plots, with exception of periods with snow cover

and when the soil surface was frozen. Measure-

ments were done between 2010 and 2012, but in ES

between 2002 and 2003. SR data presented are the

sum of autotrophic (root respiration) and hetero-

trophic (microbial respiration) soil processes. SR

rates were measured by infrared gas exchange sys-

tems equipped with SR chambers: LI-6400XT with

LI-6400-09 chamber (LICOR Biosciences, Lincoln,

NE USA) in the NL and DK sites; LI-8100 with 8100-

102 chamber (LICOR Biosciences, Lincoln, NE

USA) in the UK and IT sites; EGM-3 (PP Systems,

Hertfordshire, UK) in manual mode to analyse air

samples from a closed-type, custom-built PVC

chamber in ES; ADC Leaf Chamber Analyzer 4 with

PLC and 2250 Soil hood (ADC BioScientific, Hod-

desdon, UK) in HU. Three permanent subplots were

used within each plot to capture within-plot

heterogeneity, and plot means were used in the

subsequent analyses. (For further details see: Beier

and others 2009; de Dato and others 2010; Lellei-

Kovács and others 2011; Kopittke and others 2013.)

Micrometeorological variables were recorded in

every plot continuously by automated instruments

(Table 3): Soil temperature at 5 cm below the soil

surface, and volumetric soil moisture content at the

defined soil depths (Table 2).

Soil properties including soil texture (mechanical

and Pipet Method), soil organic matter content

(Tyurin method or dry combustion) and soil pH (by

potentiometer with glass electrode) were measured

at each site at the given soil depths (Table 2) before

starting the treatments. Wilting point and field

capacity were determined from the soil moisture

retention curve (pF curve) using soil samples from

the sites (Table 5) at the defined soil depths

(Table 2). An exception was IT, where soil texture

data were used to determine wilting point and field

capacity (Saxton and Rawls 2006).

Empirical Model of the Temperature and
Moisture Sensitivity of SR

For statistical evaluation, we followed the method-

ology used by Lellei-Kovács and others (2011) and

treated the datasets of the seven sites indepen-

dently. Separate analyses for each site were nec-

essary to account for differences in biota, organic

matter content, texture and moisture content

(Tables 2, 3).

We first fit three different temperature depen-

dence models (see equations 1–3). Each of the

three response functions represents a possible

Table 1. Characterization of the Study Sites

Country Site Location Altitude

(m)

MAT

(Jan.:July) (�C)

MAP

(mm)

Gaussen-index

(MAP/2MAT)

HU Kiskunság 46�52’N 19�25’E 108 10.9 (-0.1:22.0) 569 26.1

ES Garraf 41�18¢N 01�49¢E 210 15.9 (8.6:24.2) 568 17.9

IT Capo Caccia 40�36¢N 08�09¢E 35 16.4 (9.5:23.6) 549 16.7

DK Mols 56�23¢N 10�57¢E 58 8.7 (1.1:17.9) 644 37.0

DK Brandbjerg 55�53¢N 11�58¢E 2 8.0 (1.6:19.4) 613 38.3

NL Oldebroek 52�24¢N 05�55¢E 25 10.5 (3.8:18.2) 1004 47.8

UK Clocaenog 53�03¢N 03�28¢W 490 8.2 (3.2:13.7) 1345 82.0

MAT (mean annual temperature) and MAP (mean annual precipitation) between 2001 and 2012, except for ES between 2002 and 2003 and DK-B between 2006 and 2012.
Gaussen-index of aridity, as modified by Peñuelas and others (2007) related to annual climatic data of the study sites, highlighting the climatic differences between them.
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relationship between increasing soil temperature

and SR. Specifically: (i) the exponential function

assumes that the logarithm of respiration is a linear

function of temperature, thus the Q10 temperature

coefficient is constant (equation 1); (ii) the Lloyd–

Taylor function assumes that the influence of

temperature change is higher at lower than at

higher temperatures, thus the logarithm of respi-

ration is a saturating function of temperature, and

Q10 decreases with increasing temperature and its

asymptote is one (that is, at extremely high tem-

perature there is no further change in respiration)

(equation 2); and (iii) the Gaussian function pre-

sumes that there is an optimal temperature for SR.

Above this optimum, an increase in temperature

causes a decline in SR. In this case Q10 is also a

decreasing function of temperature, but it can fall

below one (equation 3).

Equations (1)–(3). The models used to fit soil

temperature and SR field data, where SR = soil

respiration; T = soil temperature in Kelvin; a, b and

c are parameters of the models:

Exponential: SR ¼ expðaþ bTÞ; ð1Þ

Lloyd-Taylor: SR ¼ expðaþ b=ðT�cÞÞ; ð2Þ

Gaussian: SR ¼ expðaþ bT þ cT2Þ: ð3Þ

After a log transformation of SR data, the expo-

nential and the Gaussian functions (equations 1, 3)

could be fit using linear regression. The Lloyd–

Taylor function (equation 2) was fit by non-linear

least squares regression also using log-transformed

SR as a dependent variable to make the models

statistically comparable, as discussed further below.

To initialize the parameters of non-linear fit,

parameter c was set to zero, whereas starting values

of a and b were calculated by linear regression

using 1/T as an independent variable.

In some cases, to preserve the expected shape of

the fit curve, we had to apply constraints on the

parameters of equations (1)–(3). These constraints

for the functions were

Table 2. Soil Characteristics of the Study Sites

Country Site Soil type Soil depth (cm) Soil texture (%) SOC (%)

Sand Silt Clay pH

HU Kiskunság Calcaric Arenosol 0–20 97.5 1.8 0.7 8.0 0.3

ES Garraf Petric Calcisol 0–12 42.9 38.7 18.4 8.1 1.3

IT Capo Caccia Chromic Luvisols 0–20 75.4 11.2 13.4 7.7 4.6

DK Mols Haplic Podzol 0–20 (3) 91.4 2.9 5.7 3.8 4.5

DK Brandbjerg Haplic Podzol 0–32 (2) 91.7 5.9 2.4 3.9 2.7

NL Oldebroek Haplic Podzol 0–16 (4) 93.5 6.0 0.5 3.8 1.9

UK Clocaenog Humo-ferric Podzol 0–17 (6) 40.2 50.0 9.8 3.8 33.8

Soil depth stands for the sampling depth for soil moisture and other measurements, representing the most active soil layers. Parenthetical numbers represent the thickness of the
organic soil layers; pH was measured in H2O; SOC stands for the soil organic carbon content.

Table 3. Measurement Periods and Ranges of Soil Temperature, Moisture, and Respiration

Country Site Measurement

periods (yyyy.mm)

Soil temperature

(�C)

Soil moisture

(vol%)

Soil respiration

(lmol m-2 s-1)

HU Kiskunság 2010.04–2012.11 0.40–40.50 (21.97) 2.0–8.1 (4.1) 0.11–2.48 (0.84)

ES Garraf 2002.04–2003.12 4.35–44.25 (19.04) 5.6–31.6 (19.0) 0.27–2.60 (1.16)

IT Capo Caccia 2010.02–2011.11 7.73–28.85 (17.59) 3.2–27.6 (14.8) 0.98–5.38 (2.65)

DK Mols 2011.05–2012.09 2.32–22.30 (12.82) 5.8–18.3 (12.3) 0.65–17.66 (3.71)

DK Brandbjerg 2011.03–2012.12 -0.25 to 18.48 (9.93) 5.4–30.2 (16.3) 0.02–8.48 (1.59)

NL Oldebroek 2010.07–2012.06 2.49–18.89 (10.46) 7.4–39.9 (24.7) 0.26–3.05 (0.98)

UK Clocaenog 2010.01–2012.12 0.60–14.29 (7.91) 8.7–71.4 (41.7) 0.13–4.00 (1.15)

Measurement periods and ranges of soil temperature at 5 cm soil depth, soil moisture measured in the soil depths presented in Table 2, and soil respiration during the
measurements. Overall average values are in bold within brackets.
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Exponential: b � 0;

Gaussian: c � 0;

Lloyd-Taylor: b � 0; c � 0:

The potential effect of soil moisture content on

SR was analysed comparing three different soil

moisture inclusion methods in the temperature

dependence models:

1. There is no inclusion of soil moisture content,

2. The effects of soil moisture content and soil

temperature are additive (that is, only parame-

ter a depends on soil moisture content),

3. The effects of soil moisture content and soil

temperature are interactive.

Combining the three temperature dependence

functions and the three soil moisture effects re-

sulted in nine models for each site. We treated the

soil moisture effect as a categorical variable as we

did not have any a priori knowledge of its func-

tional form. Additive effect means that soil mois-

ture influences only the parameter a, thus, within

Table 4. Results of the Model Intercomparisons: AICc Values and Akaike Weights

Site, country Soil moisture is not considered Additive effect between

temperature and moisture

Interaction between

temperature and moisture

Exponential Lloyd–

Taylor

Gaussian Exponential Lloyd–

Taylor

Gaussian Exponential Lloyd–

Taylor

Gaussian

(a)

Kiskunság, HU 413.34 371.27 326.48 356.75 296.00 263.50 282.98 304.67 246.62

Garraf, ES 364.00 297.03 285.46 191.32 185.53 186.78 169.95 154.55 153.58

Capo Caccia, IT 125.22 127.01 127.14 85.96 106.56 87.96 86.13 87.92 88.26

Mols, DK 142.24 136.66 135.13 142.24 136.66 135.13 131.24 136.66 135.13

Brandjberg, DK 879.75 874.19 874.82 864.36 864.66 866.01 879.75 874.19 874.82

Oldebroek, NL 107.07 109.72 109.13 107.07 109.72 109.13 67.36 69.83 91.94

Clocaenog, UK 610.37 613.28 612.39 595.29 598.32 597.33 565.46 567.32 573.72

Site, country Soil moisture is not considered

Exponential Lloyd–Taylor Gaussian

(b)

Kiskunság, HU <0.01 <0.01 1.0000

Garraf, ES <0.01 <0.01 0.9969

Capo Caccia, IT 0.5679 0.2231 0.2090

Mols, DK 0.0191 0.3115 0.6694

Brandjberg, DK 0.0346 0.5581 0.4073

Oldebroek, NL 0.6156 0.1641 0.2203

Clocaenog, UK 0.6266 0.1458 0.2276

Site, Country Soil moisture is not considered Additive effect between tem-

perature and moisture

Interaction between tempera-

ture and moisture

Exponential Lloyd–

Taylor

Gaussian Exponential Lloyd–

Taylor

Gaussian Exponential Lloyd–

Taylor

Gaussian

(c)

Kiskunság, HU <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.9998

Garraf, ES <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.3809 0.6190

Capo Caccia, IT <0.01 <0.01 <0.01 0.3437 <0.01 0.1182 0.3157 0.1206 0.1018

Mols, DK <0.01 0.0406 0.0873 <0.01 0.0406 0.0873 0.6114 0.0406 0.0873

Brandjberg, DK <0.01 <0.01 <0.01 0.4301 0.3701 0.1885 <0.01 <0.01 <0.01

Oldebroek, NL <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.7747 0.2253 <0.01

Clocaenog, UK <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.7087 0.2799 0.0114

Results of the model intercomparisons: (a) Corrected Akaike Information Criterion (AICc) values of all temperature dependence models (equations 1–3); best AICc values by
moisture considerations are in bold; (b) Akaike weights of the models without considering soil moisture; (c) Akaike weights of all models compared. Values of supported models
(>0.1) are in bold and italic. In case of only one supported model, Akaike weight is highlighted in bold.
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one model, temperature dependence curves of

logSR are parallel at different moisture levels,

whereas interaction means that soil moisture

influences parameters b and c too resulting in non-

parallel temperature dependence curves of logSR.

In many cases, arbitrarily chosen cut-off points

are used for transforming continuous variables into

categories that introduce subjectivity into the

modelling process. To avoid this problem, our cat-

egorizations were created by fitting decision tree

models using a conditional inference framework

that resulted in different soil moisture cut-off

points depending on the applied temperature

functions. When testing for additive effects, the

residuals of the temperature functions were the

dependent functions of the conditional inference

trees (Hothorn and others 2006) that search for

homogeneous groups of residuals (and thus

parameter a) according to moisture values. We

applied model-based recursive partitioning (Zeileis

and others 2005) to search for categories in soil

moisture that were homogeneous in the parame-

ters of temperature dependence. Because model-

based partitioning can handle linear models only,

we assumed that the parameter c of the Lloyd–

Taylor function was independent of soil moisture,

and equal to the value estimated in the first ap-

proach (no soil moisture effect). Based on this

assumption, we fit the Lloyd–Taylor function by

linear regression using 1/(T - c) as independent

variable.

To compare the performance of SR models with

different numbers of parameters, we used corrected

Akaike Information Criteria (AICc) that combine fit

and complexity of models; smaller values indicate a

better model (Johnson and Omland 2004). Because

log-transformed SR values were used as dependent

variables in all models, AICc values calculated for

different models were comparable (Burnham and

Anderson 2002). For statistical comparison of the

models, we calculated the Akaike weights (Johnson

and Omland 2004) of the models in two ways: (i)

models that considered only soil temperature; (ii)

all the nine models of the three temperature

functions combined with the three ways of soil

moisture inclusions. Akaike weights were calcu-

lated for each site and in each of aforementioned

methods separately (see in Table 4). As the sum of

Akaike weights calculated in one inter-comparison

is 1, the model with an Akaike weight above 0.9

was considered unequivocally the best, and all the

others were not interpreted. In case of more models

having Akaike weights above 0.1, all these models

were accepted with approximately a similar level of

support in the data (Johnson and Omland 2004).

All statistical analyses were conducted in the R

statistical environment (R Development Core Team

2008), tree models were fit using the party package

(Hothorn and others 2006).

Calculations of Annual SR Rates by the
Empirical Models of SR

Based on the soil temperature and moisture models

of SR demonstrated above, we calculated the an-

nual SR using the daily measured soil temperature

and soil moisture meteorological data for years

2010, 2011 and 2012 in the control plots at all but

the ES site. For the ES site year-round daily soil

moisture data were not available for the calcula-

tions. We estimated the median and the 90%

confidence interval of the estimated annual SR

Table 5. The Best Fit Soil Temperature–Soil Respiration Models

Country Site Wilting

point

(vol%)

Field

capacity

(vol%)

The BEST

temp. models

with moist. integration

Threshold moisture

values (vol%) of the

BEST models (p < 0.05)

HU Kiskunság 1.0 8.0 Gaussian 2.5; 3.8; 4.3; 5.6

ES Garraf 8.0 26.0 Lloyd–Taylor, Gaussian 6.7; 9.2L; 9.3G; 17.6L; 22.2L

IT Capo Caccia 7.8 28.0 Exponential, Lloyd–Taylor, Gaussian 10.8; 17.7Additive

DK Mols 4.0 18.0 Exponential 9.6

DK Brandbjerg 2.5 38.0 Exponential, Lloyd–Taylor, Gaussian 8.8E; 9.9E,G; 16.4L

NL Oldebroek 4.5 34.5 Exponential, Lloyd–Taylor 16.8; 23.7; 28.2

UK Clocaenog 7.0 39.0 Exponential, Lloyd–Taylor 33.3; 38.2; 57.9

The best fit soil temperature–soil respiration models according to the AIC, and the thresholds in soil moisture of the best models (P < 0.05), ranked by the splitting up points of
the decision trees; thresholds in moisture at P < 0.01 significance level are highlighted. When a threshold is not supported by all the significant models, it is marked with the
abbreviation of the concerned models. The field capacity at pF = 2.1 (-0.02 MPa) and wilting point at pF = 4.2 (-1.58 MPa) for every site are also included to help the
comparison of the thresholds.
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using the Monte Carlo simulation: predicted values

were calculated with parameters randomly chosen

from a multivariate normal distribution with

means and co-variances estimated by fitting 10,000

times. Because of the collinearity of partial

derivatives with respect to the parameter b and c in

the Lloyd–Taylor model, these parameters were

associated with large values in the variance–co-

variance matrix, leading to extremely wide confi-

dence intervals. Because the wide confidence

intervals were an artefact of the non-linear

regression, in the case of the Lloyd–Taylor model,

we decided to use only the predicted values.

RESULTS

Variability of Environmental Factors and
SR During the Study

Soil texture varied among sites, with high sand

content at HU, NL, DK-M and DK-B, high silt content

at ES and UK, and relatively high clay content at the

Mediterranean ES and IT sites. Soil pH was alkaline

at HU, ES and IT, whereas it was acidic at the Atlantic

UK, NL, DK-M and DK-B sites. Soil organic carbon

content, the main substrate for SR, was highly

variable among sites (Table 2).

Soil temperature, moisture and SR all differed

markedly among the different sites and over the

studied period (Table 3). Soil temperature at 5 cm

depth showed the largest range in HU between

0.4�C in early spring and 40.5�C in summer,

whereas the lowest range was recorded in the UK

between 0.6�C in winter and 14.3�C in summer.

Volumetric soil moisture content was always

higher than the wilting point at the UK, DK-B, DK-

M, and the NL sites, but could approach the wilting

point at the ES, IT and HU sites (Table 5). The

lower soil moisture content in ES and IT than the

wilting point is due to the offset caused by the stone

fraction (>2 mm) of these soils, which is not in-

cluded in the determination of the wilting point

and field capacity.

SR varied among sites during the measurement

periods (Table 3). Overall mean of observed SR

rates ranged from 0.84 lmol CO2 m-2 s-1 at the

HU site to 3.71 lmol CO2 m-2 s-1 at the DK-M

site.

Temperature Control on SR

The best model fit based on Akaike’s Information

Criteria (AICc) value, varied among sites (Table 4a;

Figure 1). Refer to Table S2 for parameter estimates

of the models.

In four of the seven study sites, the exponential

soil temperature–respiration model was not sup-

ported by the empirical data (that is, Akaike

weights were lower than 0.1). At the Mediter-

ranean ES site, and the Continental HU site, with

relatively wide soil temperature ranges (Table 3),

we found the Gaussian temperature dependence

function to be unequivocally the best model (Ta-

ble 4b), whereas at the Atlantic heathland of the

DK-M site, the Lloyd–Taylor and the Gaussian

temperature dependence functions also achieved a

low AICc value, that is, high Akaike weight. At the

Atlantic heathland of DK-B, the Lloyd–Taylor

Figure 1. Empirical temperature dependence functions

of soil respiration (exponential as solid line, Lloyd–Taylor

as dotted line and Gaussian as dashed line) fit to the data of

the experimental sites with different climatic conditions.

See Table S2 for parameter estimates of the functions.
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model showed the lowest AICc value and was ac-

cepted with approximately a level of support in the

data similar to that of the Gaussian model (see

Akaike weights in Table 4b).

In the other three sites, including the Capo

Caccia (IT) with Mediterranean climate, and the

Atlantic heathlands of Oldebroek (NL) and Clo-

caenog (UK), the exponential model showed the

lowest AICc value, whereas the other two models

were also supported by the data (Table 4a, b).

However, at the NL and UK sites, the Gaussian

model had a c parameter of 0, which corresponds to

the exponential model (see Table S2).

Additive and Interactive Soil
Temperature and Soil Moisture Control
on SR

Inclusion of soil moisture improved model perfor-

mance in all cases. Table 5 shows the effects of soil

moisture characteristics identified by conditional

inference trees for the three temperature response

functions of SR. We identified separate soil mois-

ture intervals for every study site. Number of

intervals ranges from 1 (DK-B, DK-M, NL) to 5

(HU, ES) (Table S2), suggesting the existence of

thresholds in the soil moisture effect on SR.

Thresholds identified at individual sites were

very consistent across the three different models

(Table S2). In additive models, functions fit for

different soil moisture intervals differed in param-

eter a, which increased with increasing soil mois-

ture, thus at the same temperature higher moisture

resulted in higher SR.

Assuming interactions between soil moisture

content and temperature, we found several soil

moisture intervals that were homogeneous in the

parameters of temperature dependence (Table S2).

At most sites, we could not find any trend in the

parameter values of temperature dependence

functions fit with changes in soil moisture inter-

vals, resulting in crossing curves in the plotted

functions (Figure 2), suggesting that optimal soil

temperature for SR depended also on moisture.

We found that in most cases (except the IT and

the DK-B sites), only the models with an interac-

tive soil moisture effect were supported by the

empirical data. At the Mediterranean IT site, the

exponential temperature model with both additive

and interactive moisture models were supported, as

well as the Gaussian and the Lloyd–Taylor tem-

perature functions with an interactive moisture

effect (Table 4). (The Gaussian model with additive

soil moisture model had a c parameter of 0, which

corresponds to the exponential model (see

Table S2)). The other exception was the Atlantic

DK-B site where models with an additive soil

moisture effect performed better, and the three

temperature models were almost equally supported

(Table 4a, c). At the Atlantic DK-M site, the expo-

nential function had unequivocally the best fit,

whilst at the Atlantic NL and UK sites, the expo-

nential and the Lloyd–Taylor temperature func-

tions, each with interactive moisture effect, were

supported by the data (all these models had an

Akaike weight above 0.1). At the Mediterranean ES

and the Continental HU sites, the Gaussian tem-

perature model had the highest Akaike weight; at

the HU site, this model could be found being

unequivocally better than any others, whereas at

the ES site also the Lloyd–Taylor temperature

model proved to be supported, all with interactive

soil moisture integration (Table 4a, c).

Thresholds in Soil Moisture Influencing
Soil Temperature Dependence of SR

The applied method revealed significant soil mois-

ture thresholds in the temperature dependence

functions showing how the temperature sensitivity

was altered at different soil moisture levels. Some

thresholds identified by the best model fits were

close to the field capacity or wilting points of the

studied ecosystems (Table 5), others may reflect

characteristic temperature and moisture relations

of a given season, see below.

The Continental HU and the Mediterranean ES

sites had the most thresholds: these were at the

zone of limited water availability approaching the

wilting point, and near field capacity (Table 5;

Figure 2A, B). At the ES site, the curve that rep-

resented the highest soil moisture threshold (at

22.2 vol%, only found with the Lloyd–Taylor

model) showed a decrease in SR under the highest

soil moisture conditions, indicating lower microbial

response to soil moisture during the colder days

between November and March, when these higher

soil moisture values occurred (Figure 2B). At the

other Mediterranean site in IT, one threshold point

was also found above the wilting point, and a sec-

ond threshold (only found with the additive

moisture model) between the wet (winter and

spring) and the dry (summer and early autumn)

periods (Table 5; Figure 2C). Similar to the curve of

the Lloyd–Taylor model at the ES site, at the IT site

the curve above this second threshold of the addi-

tive exponential model represents the wet season

(highest soil moisture above 17.7 vol% and lowest

soil temperature below 15�C) (Figure 2C). At the

mesic DK-M, the only threshold for SR was found

1468 E. Lellei-Kovács and others



Figure 2. Empirical

temperature dependence

models with moisture

integration best fit to the

site data; every box

represents one of the nine

models in one site,

whereas each curve within

a box is an individual soil

moisture category of the

models (see also Table 5);

A Kiskunság, HU; B

Garraf, ES; C Capo Caccia,

IT; D Mols, DK-M; E

Brandbjerg, DK-B; F

Oldebroek, NL; G

Clocaenog, UK. Lines are

black during the

temperature intervals

within which defined

intervals of volumetric

soil moisture contents

occured in the field. Grey

line segments mean

extrapolated fittings

outside the measured

temperature range.
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Figure 2. continued
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above the wilting point, but far below the field

capacity value (Table 5; Figure 2D). The similar

DK-B site also presented this threshold (Table 5;

Figure 2E). At the mesic Atlantic NL site, the first

threshold was found between the wilting point and

field capacity, whereas the next threshold was

found near the field capacity, close to the third

threshold. At the NL site, the lowest SR rates were

measured at soil moisture contents between 23.7

and 28.2 vol%, coinciding with the winter inactive

period between October and March, whereas

higher soil moisture occurred often in July and

August. At soil moisture contents below 23.7 and

above 28.2 vol%, the SR rates increased with

Table 6. Annual Soil Respiration Values (g C m-2 y-1) from Six Study Sites (Color table online)

(a)

Country Year No soil moisture effect

Exponential Lloyd–Taylor Gaussian

HU 2010 216.7 (201.9, 232.3) 188.4 198.9 (189.2, 209.1)

2011 220.2 (205.9, 236.2) 192.8 206.3 (196.5, 216.7)

2012 225.0 (211.2, 240.5) 198.1 208.7 (199.1, 219.2)

IT 2010 931.2 (889.2, 976.7) 928.9 930.5 (887.7, 975.5)

2011 939.1 (895.9, 984.6) 935.5 938.1 (894.1, 983.9)

DK-M 2011 914.5 (858.0, 974.4) 944.3 959.3 (896.1, 1027.1)

2012 866.2 (809.8, 924.5) 899.3 914.9 (853.2, 980.1)

DK-B 2011 499.8 (481.9, 518.2) 492.2 492.7 (474.7, 511.4)

2012 456.6 (441.3, 472.1) 455.0 455.4 (440.3, 471.4)

NL 2011 350.4 (337.7, 363.8) 348.8 350.4 (337.7, 363.8)

2012 340.9 (328.6, 353.3) 339.5 340.9 (328.6, 353.3)

UK 2010 338.5 (326.7, 350.8) 337.4 338.5 (326.7, 350.8)

2011 362.7 (349.9, 375.9) 362.4 362.7 (349.9, 375.9)

2012 346.3 (334.3, 358.7) 345.7 346.3 (334.3, 358.7)

Country

(b)

Year
Exponential Lloyd-Taylor Gaussian Exponential Lloyd-Taylor Gaussian

2010 217.0 (204.4 , 230.5) 212.0 218.2 (206.6 , 230.7) 232.4 (219.1 , 247.2) 194.4 225.3 (210.8 , 241.3)

2011 224.6 (211.8 , 238.2) 199.9 209.0 (200.0 , 218.6) 207.3 (196.4 , 218.6) 180.3 201.9 (192.0 , 212.6)

2012 222.9 (210.4 , 235.9 201.4 208.4 (199.7 , 217.5) 206.2 (195.6 , 217.4) 197.5 199.7 (190.2 , 210.0)

2010 939.0 (897.7 , 982.2) 910.3 939.0 (897.7 , 982.2) 957.8 (917.1 , 1000.6) 957.9 963.3 (926.1 , 1002.4)

2011 889.3 (852.6 , 927.9) 880.5 889.3 (852.6 , 927.9) 903.1 (864.3 , 943.4) 901.2 901.6 (873.8 , 931.3)

2011 914.5 (858.0 , 974.4) 944.3 959.3 (896.1 , 1027.1) 985.2 (919.6 , 1055.2) 944.3 959.3 (896.1 , 1027.1)

2012 866.2 (809.8 , 924.5) 899.3 914.9 (853.2 , 980.1) 923.6 (862.2 , 987.2) 899.3 914.9 (853.2 , 980.1)

2011 511.9 (492.9 , 531.5) 512.3 504.6 (494.3 , 515.6) 499.8 (481.9 , 518.2) 492.2 492.7 (474.7 , 511.4)

2012 461.0 (445.8 , 477.0) 456.0 458.3 (453.7 , 463.3) 456.6 (441.3 , 472.1) 455.0 455.4 (440.3 , 471.4)

2011 350.4 (337.7 , 363.8) 348.8 350.4 (337.7 , 363.8) 393.1 (369.7 , 418.0) 391.4 364.2 (298.0 , 451.2)

2012 340.9 (328.6 , 353.3) 339.5 340.9 (328.6 , 353.3) 393.5 (369.5 , 420.1) 392.8 296.4 (266.2 ,327.0)

2010 335.5 (323.8 , 347.4) 335.9 335.5 (323.8 , 347.4) 342.9 (330.0 , 356.3) 340.9 340.0 (328.8 , 351.0)

2011 354.8 (342.3 , 367.8) 356.2 354.8 (342.3 , 367.8) 345.1 (331.1 , 359.9) 345.2 348.8 (336.5 , 361.7)

2012 329.7 (317.1 , 343.3) 330.8 329.7 (317.1 , 343.3) 323.4 (310.6 , 336.6) 322.8 388.9 (384.0 , 395.5)

DK-B

NL

UK

Additive soil moisture effect Interactive soil moisture effect

HU

IT

DK-M

Annual soil respiration values (g C m-2 y-1) from six study sites, median and, for the exponential and the Gaussian models only, the boundaries of the 90% confidence interval
in brackets. Calculations by the 9 models were based on the site meteorological data in the control plots of each site. (Confidence intervals would be extremely wide for the Lloyd–
Taylor model because of the collinearity between its parameters.) Annual values by the overall best fit models are highlighted.
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increasing soil moisture (Table 5; Figure 2F). At the

hydric Atlantic UK site, two thresholds for SR were

found near field capacity and also far above field

capacity. In this wet ecosystem, SR rates decreased

with higher soil moisture content (Table 5; Fig-

ure 2G), because of anaerobic soil conditions.

Annual SR

To compare the performances of the SR models, we

calculated annual SR using the parameterized

models (see model parameters in Table S2) and the

daily meteorological data from the sites. The results

for the six sites, HU, IT, DK-M, DK-B, NL and UK

(Table 6) demonstrate that the annual SR esti-

mated by the significant exponential models are in

most cases higher than those estimated by the sig-

nificant (DK-B) and non-significant (DK-M, NL)

Gaussian models, however, the differences are

mostly under 3%. Only at NL were the differences

7–25%. Also, for HU, the non-significant expo-

nential model overestimated SR relative to the

significant Gaussian model. Only at the IT and UK

sites did the exponential models not predict higher

annual SR than the other models. At the IT site, the

models produced similar estimates. At the UK site,

depending on year, the estimates were either not

significantly different or the Gaussian model pre-

dicted 20% higher annual SR than the exponential

and Lloyd–Taylor models. Relative to models

without moisture effects, models that included soil

moisture resulted in 8, 2 and 14% higher estimates

of annual SR for the mesic sites DK-M, DK-B and

NL, respectively. For the semiarid HU and the arid

IT sites, models without moisture effects underes-

timated annual SR when it was humid in 2010, but

overestimated annual SR in drier years. For the

hydric UK site, this tendency was reversed, annual

SR was overestimated by the models without

moisture effects in the more humid years but

underestimated annual SR in 2010 when precipi-

tation was lowest (see Table 6). Soil organic matter

content, used as a proxy for soil microbial activity,

varied highly among the study sites (Table 2).

Apart from the UK site, a significant relationship

between annual SR and the soil organic matter

content was found (Figure 3; r2 = 0.961). How-

ever, at the UK site with considerably higher soil

organic matter content, estimated annual SR was

near the mean rate at the other sites (Figure 3),

which is likely the result of anaerobic limitation of

decomposition and the associated accumulation of

organic matter at this site (Table 2).

DISCUSSION

Temperature Control on SR

To accurately predict SR from ecosystems in future

climates, it has become necessary to parameterise

models with a wider range of temperatures than

currently used. In this study, we examined the

temperature response functions of SR at seven

European shrubland sites of different climatic

conditions from Atlantic heathlands through

Mediterranean macchias to Continental poplar

shrubland, thus extending the temperature and

moisture range of our previous SR investigations

Figure 3. Relationship between the average annual soil respiration values (g C m-2 y-1) calculated by the significant

models and the soil organic carbon contents of six study sites: Kiskunság, Hungary (HU); Oldebroek, the Netherlands (NL);

Brandbjerg, Denmark (DK-B); Mols, Denmark (DK-M); Capo Caccia, Italy (IT); Clocaenog, United Kingdom (UK). The

ranges between the lowest and the highest annual soil respiration values calculated by all the presented models are shown

to demonstrate the low interannual variability and the low variability of the model estimations compared to the high

intersite variability. Apart from the UK site, a significant relationship between annual SR and the soil organic matter

content is demonstrated.
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(Lellei-Kovács and others 2011). In most previous

field studies, the temperature–SR function used

was fit to a relatively narrow range of soil tem-

peratures, usually below 30�C. Typically, the

exponential temperature function fits respiration

data well in a relatively narrow temperature range

below 30�C, whereas the relationship is weaker at

higher temperatures. Thus, our approach increases

the predictive power when forecasting the response

to a warming future climate, if temperatures are

expected to be higher than 30�C (Mielnick and

Dugas 2000). When SR is studied under a wider

range of temperatures, it is possible that the inter-

action of additional soil processes, such as substrate

and water availability could alter respiration rates,

resulting in lower respiration at higher soil tem-

peratures (Ågren and others 1991; Tuomi and

others 2008; Reichstein and Beer 2008; Lellei-Ko-

vács and others 2011; González-Ubierna and others

2014).

In the present study, at the Atlantic sites, we could

not find a model that unequivocally explained one of

the temperature–SR relationships, that is, the

exponential function fit was as good as the Gaussian

and Lloyd–Taylor functions (Table 4b; Figure 1).

This was probably due to the narrow temperature

range, always under the optimum temperature,

making it impossible to detect differences in the

shape of the three models. Despite our efforts to

obtain data that spanned a large temperature range

by including climate change treatments (Table S1),

the measurements taken at the Atlantic sites biased

the data to a narrower range than anticipated, with

the soil temperature rarely exceeding 20�C. At the

Mediterranean IT site, where the exponential SR

models performed the best, soil temperature re-

mained within the bounds of 7–29�C. In this case,

the relatively high winter soil temperature range

was probably due to the strong moderating effect

from the Mediterranean Sea that causes mild winter

temperatures, in most cases above 10�C. It is there-

fore likely that at this site we were not able to detect

either the lower or the upper temperature limitation

on SR (Table 4b; Figure 1).

At the ES and HU sites, the Gaussian function

was found to be the best performing temperature–

SR function. The Gaussian function assumes that

there is an optimal temperature for SR, which can

be detected only when field measurements are

performed in a sufficiently broad range of temper-

atures (Ågren and others 1991; Lellei-Kovács and

others 2011; González-Ubierna and others 2014).

The wide range of soil temperatures at the HU and

ES sites (�40�C) may explain why the Gaussian

function proved to be the best.

The Influence of Soil Moisture on the
Temperature Sensitivity of SR

Our modelling approach integrated both soil

moisture and temperature to examine the SR

relationship. We revealed clear soil moisture

thresholds in the temperature dependence of SR.

This indicated that low soil moisture content was

an important limiting factor of SR at both the sea-

sonally dry Mediterranean and semiarid Conti-

nental sites, and also at the mesic Atlantic sites,

whilst high soil moisture content imposing anaer-

obic conditions proved to limit SR at the hydric

Atlantic site in the UK. In some cases, soil moisture

thresholds could be connected to the wilting point

or the field capacity (Table 5), but other thresholds

might be related to more complex physiochemical

or biological conditions (Robinson and others

2016), such as the effect of soil moisture content on

the availability of various soluble substrates or the

effect of specific microbial enzymes with charac-

teristic kinetic properties (Davidson and others

2006). Kopittke and others (2014) reported that

integration of soil moisture at the mesic Atlantic NL

site did not improve the model fit of the tempera-

ture dependence of SR for control treatments,

whereas it significantly improved the model fit for

drought treatments. The lack of a moisture effect in

control plots but appearance of an effect in the

drought plots found by Kopittke and others (2014)

support our analytical approach of using all treat-

ment data together to cover a wider environmental

range within the same model. Under Mediter-

ranean climate at the IT site, de Dato and others

(2010) showed a significant difference between

temperature sensitivity of the wet vegetative sea-

son and the dry non-vegetative season between

2002 and 2004. At this site, we also found that the

best fit of the exponential temperature function to

the dataset between 2010 and 2011 was separated

by soil moisture thresholds (Figure 2C). These two

approaches gave similar results in ecosystems

where vegetation periods are determined by water

availability.

Similar to our results, soil moisture content has

been shown to enhance the response of SR to

temperature in a continental arid desert (Zhang

and others 2010), in a semiarid steppe of Inner

Mongolia (Chen and others 2009) and in an old-

field climate change experiment (Suseela and oth-

ers 2012). In the latter study, Suseela and others

(2012) observed that both an upper and a lower

soil moisture threshold related to SR activity ex-

isted, and that changes in soil structural properties

during drought resulted in a hysteresis effect. Soil
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moisture thresholds were also found to change SR

responses to temperature in other studies. Rey and

others (2002) and Guidolotti and others (2013)

found a soil moisture threshold in Mediterranean

forests, below which there was no correlation be-

tween SR and soil temperature. In a study of tem-

perate forest ecosystems, Wang and others (2006)

found that increased temperature sensitivity (Q10)

was related to increasing soil moisture content, but

that Q10 declined after reaching a soil moisture

threshold. Vicca and others (2014) also emphasized

the importance of integrating soil moisture in the

predictive models of SR, especially considering an

altered moisture regime in the future. However, in

the modelling approach of Vicca and others (2014)

soil temperature is integrated as a simple expo-

nential function, which may weaken the extensi-

bility of the models. For comparison, for the dataset

of the ES site, the exponential temperature and

Gaussian moisture dependence (model 4 of Vicca

and others 2014) achieved an AIC of 271.63. If

both temperature and moisture dependence were

modelled with the Gaussian function and their ef-

fect was additive, then an AIC of 201.75 was

achieved. However, for the same dataset, our

model with a Gaussian temperature function and

interactive moisture thresholds achieved an AIC of

152.99, indicating a better performance of the

model.

Our results showed that the SR relationship

with soil moisture, the latter depending mostly on

precipitation, is non-monotonic, which is con-

gruent with the findings of Vicca and others

(2014). In addition, at the plot scale this rela-

tionship can also be described as non-linear, with

soil moisture thresholds being observed. We ex-

pect that the mechanisms that may explain our

results are mediated by changes in the below-

ground community structure that are dependent

on temperature and moisture (Ågren and Wet-

terstedt 2007).

Soil moisture impacts SR directly by changing

soil microbial activity and altering soil structure

and porosity, and also indirectly by affecting sub-

strate availability (Davidson and others 2006).

Under semiarid and arid conditions, there is a

strong edaphic water limitation coupled with

strong pulse dynamics of resources linked to

changes in microclimate (Collins and others 2008;

Maestre and others 2013). The close connection

between substrate availability and soil processes is

also demonstrated by the relationship between

annual SR and soil organic carbon content at the

studied sites (Figure 3). Similarly, Fernandez and

others (2006) demonstrated the impact of soil or-

ganic carbon and nitrogen on SR through soil

texture and soil moisture availability in a cold de-

sert ecosystem. They found that when soil moisture

and temperature are both favourable, soil organic

carbon and nitrogen cannot be used to predict SR.

A limitation of soil substrate availability for mi-

crobes may explain why the Gaussian-type soil

temperature–SR model proved to be the best at the

HU and ES sites (Table 5), where not only the

temperature ranges were the largest (Table 3), but

the soil organic matter content was also the lowest

(Table 2).

Annual Scale Impacts on SR

The upscaled annual rates of SR showed profound

differences among both years and models. As pre-

viously demonstrated at the HU site, annual SR

rates calculated by the exponential function were

systematically higher than those based on the

Lloyd–Taylor and Gaussian functions (Lellei-Ko-

vács and others 2011). In this modelling experi-

ment, we also demonstrated that when excluding

soil moisture from the models, modelled soil carbon

fluxes may be overestimated especially for warm

and dry years, which may be more frequent in the

future. In the present study, annual SR values were

also calculated from modelled data at six study sites

(HU, IT, NL, DK-B, DK-M, UK) (see Table 6). We

found that the rate of annual SR in NL was very

similar to the amount calculated by a different

methodology by Kopittke and others (2013, 2014)

for the same period, which may validate these

methods. Annual SR was also calculated in the

work of de Dato and others (2010) for three study

years between 2002 and 2004, the values calcu-

lated were between 927 and 1145 g C m-2 y-1,

which are also similar to the values between 890

and 963 g C m-2 y-1 calculated by the method

demonstrated here, for data between 2010 and

2011. At the UK site, annual SR decreased since

2000 because of a natural drought period that

triggered an irreversible reduction in soil moisture

and erosion of organic matter (Robinson and others

2016). In the period between 2010 and 2012, an-

nual SR was around 400 g C m-2 y-1 (Domı́nguez

and others 2015), which is also consistent with our

results suggesting annual SR between 323 and

345 g C m-2 y-1.

At every site, the models that included soil

moisture, always improved the model fit compared

to those that excluded soil moisture. Furthermore,

at three of the four Atlantic sites, including soil

moisture resulted in higher estimated annual

SR, independently of the applied temperature
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dependence function. At the IT and the HU sites,

the direction of the alteration was dependent on

the year: including soil moisture effect decreased

the calculated annual SR in a drier year, and in-

creased in a more humid year. The results are

congruent with our previously published work,

where excluding soil moisture resulted in an

overestimation of rates of annual SR during a dry

and hot year, but an underestimation of annual SR

in a wet and cold year (Lellei-Kovács and others

2011). In the present study, which considered the

period 2010 to 2012, variation in soil moisture re-

sulted in a difference of 1 to 25% in the outputs

from the nine different models we considered. This

variation in output warrants further investigation

into the uncertainty of model estimations and

highlights the importance of appropriate model

choice in the prediction of the future impacts of

climate change on SR of different ecosystems.

CONCLUSIONS

In this study of European shrubland ecosystems

under Atlantic, Mediterranean or Continental cli-

mate, we demonstrated that the temperature

dependence function that best explains SR de-

pended strongly on the temperature range where

the study was conducted. We also showed that in

these ecosystems when soil temperature range

was above 30�C, the Gaussian function with

optimum temperature provided a better fit to the

data, than the exponential temperature function.

Furthermore, we found that soil moisture strongly

affected SR, not only in arid and semiarid, but also

in mesic and hydric ecosystems, and the parame-

ters of the temperature dependence functions

changed significantly at distinctive soil moisture

thresholds. These moisture thresholds may be

connected to soil and ecosystem-specific variables,

such as wilting point of the plants or field capacity

of the soil. In years with high precipitation and in

mesic and hydric ecosystems, the models that

integrate moisture may estimate a higher level of

annually respired carbon. These results highlight

the importance of the choice from among the

temperature dependence functions and the inclu-

sion of soil moisture data when modelling SR,

especially when predicting SR responses in a wide

range of climatic conditions or in a changing cli-

mate.
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Ågren GI, Wetterstedt JÅM. 2007. What determines the tem-

perature response of soil organic matter decomposition? Soil

Biol Biochem 39:1794–8.
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Kotroczó Zs, Veres Zs, Fekete I, Krakomperger Zs, Tóth JA,
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