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ABSTRACT

Human behavior has rapidly evolved from fire-

promoting to aggressively attempting to minimize

its magnitude and variability. This global shift in

human behavior has contributed to the adoption

of strict policies that govern the purposeful and

planned use of fire in ecosystem science and

management. However, it remains unclear the

extent to which modern-day prescribed fire poli-

cies are altering the potential magnitude and

variation of fire behavior in scientific investiga-

tions and ecosystem management. Here, we

modeled the theoretical historical range of vari-

ability (ROV) in fire behavior for the tallgrass

prairie ecosystem of North America. We then

compared sensitivities in the magnitude and

variation in the historical ROV in fire behavior as

a result of (1) policies governing prescribed fire

and (2) woody and herbaceous plant invasions.

Although considerably more attention has focused

on changes in fire behavior as a result of biolog-

ical invasions, our model demonstrates that con-

temporary fire management policies can meet or

surpass these effects. Policies governing prescribed

fire management in tallgrass prairie reduced the

magnitude and variability of surface fire behavior

more than tall fescue invasion and rivaled

reductions in fire behavior from decades of Ju-

niperus encroachment. Consequently, fire and its

potential as a driver of ecosystem dynamics has

been simplified in the study and management of

this system, which may be contributing to mis-

leading conclusions on the potential responses of

many highly researched environmental priorities.

We emphasize the need to study changes in fire

dynamics as a function of both social and eco-

logical drivers, in an effort to advance our

basic understanding of the role of fire in nature

and its potential usefulness in ecosystem man-

agement.
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INTRODUCTION

Management should strive to retain

critical types and ranges of natural vari-

ation in resource systems in order to

maintain their resilience.

Holling and Meffe (1996)

Variation is central to biological organization. The

concept is fundamental to Darwin’s (1859) Theory of

Evolution and is the guiding principle for Holling and

Meffe’s (1996) Golden Rule for Natural Resource

Management. Yet societal policies and practices often

seek to limit variability in the processes driving

biological organization in an effort to reduce

uncertainties for human utility or well-being (Hol-

ling and Meffe 1996; Poff and others 1997). Con-

sequently, many disturbance regimes have been

greatly altered compared to their historical range of

variability (ROV) (Turner 2010). Human-induced

alterations of natural disturbance regimes have led

to trophic cascades within food webs (Wootton and

others 1996; Sanders and others 2013), threats to

species and ecosystems of conservation concern

(Keeley and others 1999; Chapin and others 2000;

Allen and others 2002), widespread species inva-

sions (D’Antonio and Vitousek 1992; Hobbs and

Huenneke 1992) and biome-level transformations

that deplete environmental services (for example,

Twidwell and others 2013a). A major priority of

ecologists and biogeographers is thus to characterize

how recent changes in human actions and policies

have altered critical disturbance processes and

subsequently contributed to the degradation of

natural resources in contemporary social-ecological

systems around the world (Turner 2010).

The occurrence of fire in nature is at the fore-

front of modern humanity’s attempts to minimize

the magnitude and unpredictability of extreme

disturbance events. However, fire is unique from

other disturbances in that its historical ROV is lar-

gely coupled to human activities. For thousands of

years, human inhabitants increased the incidence

of fire beyond its theoretical potential for occur-

rence in the absence of human ignitions (Bowman

and others 2011; McWethy and others 2013;

Twidwell and others 2013a). This human-driven

increase in fire activity has given rise to a suite of

fire-dependent ecosystem services that society

continues to value today (van Wilgen and others

1996; Twidwell and others 2013a). However, hu-

man fire use has changed on every vegetated

continent (Bowman and others 2009, 2011).

Developed countries incur incredible expenses to

support formal institutions and policies designed to

eliminate fires that are beyond human control

(Dellasala and others 2004; Hawbaker and others

2013). Yet, fire is also recognized as an important

driver of ecosystem structure and function (Bond

and Keeley 2005), so many countries have devel-

oped policies that explicitly dictate when humans

can ignite fires for ecosystem management. The

goal of such policies is to allow prescribed fires to be

conducted within a narrow range of pre-deter-

mined conditions to insure safety and containment

while providing ecosystem services dependent

upon fire (van Wilgen and others 2012; Hawbaker

and others 2013). However, by adhering to these

policies and burning under narrow prescription

windows, we have also bound the conditions under

which prescribed fires are used in experimental

manipulations or ecosystem management. This has

been referred to as the ‘‘Failure of Safe Prescribed

Burning’’ (van Wilgen 2013) because tight burning

windows have predominantly resulted in low

intensity prescribed fires, which have failed to

create differences in fire severity and corresponding

spatial heterogeneity required for numerous floral

and faunal specialists (Smucker and others 2005;

Hutto 2008; van Wilgen 2013).

Given the importance of understanding variability

in fire behavior and how ecosystem components

respond to this variability, we argue that it is critical

to understand how policies governing the purpose-

ful and planned use of fire (that is, prescribed fire)

have reduced the ROV in fire behavior compared to

historical contexts. To date, social drivers of fire re-

gime change have been more difficult to quantify

than ecological ones, such as woody plant

encroachment or exotic herbaceous invasion

(D’Antonio and Vitousek 1992; Scholes and Archer

1997; Mack and D’Antonio 1998; Brooks and others

2004; Balch and others 2013; Twidwell and others

2013b). In this study, our objectives were to (1)

model changes in fire behavior resulting from con-

temporary policies governing prescribed fire and (2)

compare those changes tomodeled departures in fire

behavior resulting from woody and herbaceous

plant invasions. We focus our efforts on the tallgrass

prairie ecosystem of North America, one of the most

extensively studied fire-dependent ecosystems in

the world, but where fire has been primarily studied

as a binary context (fire, no fire). Treating fire as a

binary variable also includes experimental manip-

ulations focused on fire frequency and time since

fire when they do not consider variability in fire
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intensity,which represent the prevailing approaches

for tallgrass prairie. A formal review of the literature

supports this point—very few studies have charac-

terized the magnitude and variation in fire behavior

and its role in structuring tallgrass prairie (Box 1).

This well-studied ecoregion therefore provides an

The tallgrass prairie of North America is considered to be one of the most well-studied ecosystems in fire 
ecology, but our formal review of the scientific literature shows that only a small fraction of empirical studies 
have quantified any aspect of fire behavior (summary provided in table below). We propose that the degree of 
departure of contemporary fire management 
practices from the historical ROV is an 
unprecedented change in human behavior that 
needs to be accounted for in efforts to conserve 
biological diversity and sustain ecosystem 
services unique to fire-dependent ecosystems. 
This requires scientists and managers to 
consider new, core questions at the interface of 
disturbance ecology, invasion ecology, novel 
ecosystems, global environmental change, 
social science and governance, among others.
For example, to what extent are contemporary 
social policies and practices changing fire as a 
biophysical process? How do changes in fire 
regimes as a result of social feedbacks compare 
to changes resulting from ecological feedbacks, 
such as those plant or animal invasions that 
have received the majority of attention in the 
ecological literature? Clearly, addressing 
knowledge gaps surrounding these questions 
has become increasingly important with 
prevailing human desires to completely control 
variability in nature, coupled with global 
confirmations of the decline in the distribution 
of fire-dependent ecosystems (as predicted by 
Bond and others 2005; the inset map shows losses in tallgrass prairie). Disentangling the historical ROV in fire 
regimes from modern social contexts will set the stage for advancing our basic understanding of the role of fire in 
nature and its potential usefulness in ecosystem management. 

Numbers correspond to studies that have quantified fire behavior 
in tallgrass prairie (Table S2). Aboriginal and current tallgrass 
prairie remnants are based on Smith (2011) and TNC (2001).

Web of Knowledge Search
Search 
Results

No. of field studies 
conducted in 

tallgrass prairie

No. of field studies 
quantifying fire 

behavior*
"tallgrass prairie" fire ecology 223 149 2
"tallgrass prairie" "fire behavior" 8 2 1
“tallgrass prairie” fire intensity 75 20 6
"tallgrass prairie" fire rate of spread 8 2 1
"tallgrass prairie" fire temperature 78 29 6
"tallgrass prairie" flame 142 114 3
"tallgrass prairie" "flame length" 0 0 0
"tallgrass prairie" "flame height" 0 0 0
*Total number of independent studies quantifying fire behavior = 9

Note: Table S2 lists the 9 studies quantifying fire behavior.

Box 1. Fire in the tallgrass prairie: an example of ecological science constrained by social influence over the ROV in fire

behavior?
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outstanding model system for other areas that also

impose tight constraints on prescribed burning but

have yet to characterize its control over fire behavior

or ecosystem response dynamics.

METHODS

Weused BehavePlus ver. 5.0.5 to simulate the effect

of contemporary prescribedfire policy and ecological

invasions on the potential magnitude and variation

in surface fire behavior in tallgrass prairie. Behave-

Plus is a mathematical simulation program that de-

scribes the influence of the wildland environment

on fire behavior (Heinsch and Andrews 2010). The

SURFACE module in BehavePlus uses Rothermel’s

(1972) semi-physicalmodel of fire spread as the basis

for characterizing surface fire behavior (rate of fire

spread, fireline intensity, flame length). SURFACE

allows users to customize the parameters driving the

model and input a range of values for each input

parameter. We used BehavePlus because it is widely

used by fire managers in a variety of ecosystems in

the USA to predict potential fire behavior, develop

prescribed fire plans, assess wildland fuel hazards,

and develop training programs (Andrews 2007) and

it has been applied internationally (for example,

Goldammer and de Ronde 2004). Because of its

broad application, BehavePlus provides other re-

searchers the opportunity to easily repeat our

methodology to quantify and compare the effects of

social fire policies and ecological invasions on fire

behavior in other ecosystems.

MODEL PARAMETERIZATION

Modeling Historical ROV in Fire
Behavior

To develop a first approximation of the historical

ROV in fire behavior in tallgrass prairie, we cus-

tomized a model in BehavePlus to include a rea-

sonable range of maximum and minimum values

observed for fuel properties, wind speed, and slope

(the factors driving surface fire behavior in Beha-

vePlus) in tallgrass prairie. Data values used to

parameterize the model are presented in the Sup-

plemental Materials (Table S1). Values for one-hour

fuel load, fuel moisture, and fuel bed depth were

available in the scientific literature. Minimum one-

hour fuel moisture and maximum wind speed val-

ues were determined using the Mesonet (www.

mesonet.org), a weather station network estab-

lished in 1994 that has been used to parameterize

regional fire danger models. Mesonet calculates 1-,

10-, 100-, and 1000-h dead fuel moisture at hourly

intervals using a field-calibrated version of the

Nelson dead fuel moisture model (Carlson and

others 2007). Mesonet has recorded minimum 1-hr

fuel moisture values of 2% multiple times for the

region, and so this value served as the minimum in

our model. With respect to wind speed, Mesonet

measures wind speeds at 3-s intervals at 2 and 10-m

elevations, the latter level being used in this study.

Wind speeds of 77 km h-1 corresponded with the

highest wind speed that was sustained for at least

5 min every year for the history of the Mesonet. We

did not find any published data on surface area-to-

volume ratio (SAV) for tallgrass prairie. We there-

fore used unpublished data from an ongoing

experiment established in tallgrass prairie near

Stillwater, OK (see Supplemental Materials for full

details on SAV sampling). The lowest and highest

mean SAV ratios from our samples were used to

parameterize the range of SAV ratio values in our

model (Table S1). These values fit within the range

observed for other grass fuels (Brown 1970, 1971;

Cheney and others 1998) as well as the values ap-

plied in grassland fuel models (Scott and Burgen

2005). Where data were not available to customize

the model, we used the default parameter for a GR7

fuel model (a fuel model is a fire/fuels-based char-

acterization of an ecosystem; see Scott and Burgen

2005); a GR7 fuel model has been used previously

to characterize fuels in tallgrass prairie (McGrana-

han and others 2013).

Using these minimum and maximum values,

independent simulations were conducted for 11

grass curing scenarios (ranging from 0 to 100% at

10% intervals, where 0 and 100% correspond to

‘‘green’’ grass fuels that are not cured and ‘‘brown’’

fully cured grasses, respectively). Curing is the

process of senescence-related dehydration (Wittich

2011) and is measured as the percentage of dead

grass material that is present in a grass fuel bed

(Luke and McArthur 1978). The curing process

results in discoloration or ‘‘yellowing’’ of the green

grass material because of declines in leaf moisture

and chlorophyll due to soil-water deficits, freezing,

and senescence (Wittich 2011). In BehavePlus, the

curing process is used to transfer a portion of the

herbaceous fuel load from live to dead and is meant

to represent change in surface fire behavior

resulting from change in live herbaceous fuel

moisture content (Scott and Burgen 2005).

Modeling Sensitivities to Contemporary
Social-Ecological Change

We compared departures from the historical ROV in

fire behavior by determining sensitivities of the
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model to changes imposed by (1) prescribed fire

management policies, (2) Juniperus encroachment,

and (3) tall fescue invasions (Table 1). In general,

fire management policies and biological invasions

(as well as other novel system changes; for example,

climate change) either impose constraints on the

historical ROV in fire behavior, thereby reducing its

potential range of behavior, or push theROVbeyond

historical bounds, thereby increasing its potential

range. Our sensitivity analysis determines the mag-

nitude and direction of change to the historical ROV

in surface fire behavior as a result of contemporary

prescribed fire policy and plant invasions.

Modeling Changes Due to Prescribed Fire Policy

Prescribed fire policies have been established to

impose constraints on the upper limit of prescribed

fire conditions. The most relevant policies in tall-

grass prairie are associated with self-imposed

guidelines used in prescribed fire management and

government-imposed bans on outdoor burning

practices. Based on information from the scientific

literature and published reports by fire practitioners

in tallgrass prairie, fire management policies in this

ecosystem impose constraints on wind speed, 1-h

fuel moisture, and grass curing (during the growing

season) (as summarized in Table 1). We imposed

these constraints on the full model to determine

how prescribed fire management policies constrain

the potential ROV in fire behavior when applying

prescribed fires. To account for the effect of gov-

ernment-imposed burn bans that either limit or

outlaw outdoor burning at high levels of grass

curing during drought in the growing season, we

imposed a conservative threshold scenario of 80%

grass curing to mimic how regulatory officials enact

burn bans during periods of drought in the growing

season (Table 1). However, it should be recognized

that, in practice, regulatory officials enact burn

bans at any level of drought-induced grass curing

and use various metrics to determine when to cease

outdoor burning activities. Thus, our conservative

estimate likely underestimates the policy effect

associated with enacting burn bans in many regions

within tallgrass prairie.

Modeling Changes Due to Juniperus Encroachment

Juniperus virginiana L. encroachment into tallgrass

prairie decreases herbaceous fuel loading and fuel

bed depth in the model. The rate of decrease in

herbaceous fuel loading over time as a result of

Juniperus encroachment was established by com-

bining two studies: (1) Limb and others (2010)

quantified the rate at which herbaceous fuel load-

Table 1. Modeling Sensitivities of the Historical ROV of Surface Fire Behavior to Contemporary Prescribed
Fire Policies and Ecological Invasions in Tallgrass Prairie.

Model scenario Description Reference

Historical ROV Range of potential fire conditions occur-

ring in tallgrass prairie prior to modern

social-ecological constraints

Based on range of values given in

Table S1

Social

Prescribed fire policy Limit prescribed fires to:

Wind speeds <32 km h-1 Wright and Bailey (1982), Weir

(2009)

1-h fuel moistures to >7% OK-FIRE (2013a, b)*

Government burn bans

in growing season

droughts

Eliminate prescribed fires in growing

season once grass curing thresholds are

crossed; thresholds are variable (0–

100% grass curing levels) and specific to

individual regulatory officials�

OK-FIRE (2013b, c)*

Ecological

Juniperus encroachment Reduce 1-h fuel load, live herbaceous fuel

load, and fuel bed depth as Juniperus

cover increases over time

Briggs and others (2002), Limb and

others (2010)

Tall fescue invasion Increase live herbaceous fuel moisture

content to 250%

McGranahan and others (2013)

* Regional fire danger rating system (www.okfire.mesonet.org)
� Regulatory officials actually enact burn bans at any time and for a variety of reasons, but consistently enact burn bans in this region as drought severity increases in the
growing season; we used grass curing scenarios to account for such regulation since it is strongly and positively related to drought in the growing season (Wittich 2011) and the
actual relationships of drought on the fuel properties used in BehavePlus are not known
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ing (w) decreases as Juniperus cover (CJUVI) in-

creases (1), and Briggs and others (2002) charac-

terized the rate of Juniperus encroachment over

time (t) in tallgrass prairie when it is not burned

(2). We combined the equations from these studies

to give the amount of herbaceous fuel loading that

has been lost over time (wl,t) as a result of Juniperus

encroachment (as summarized in equation, 3):

w ¼ �45:6CJUVI þ 4727:9 ð1Þ

CJUVI ¼
0:138

0:001þ e0:337t
ð2Þ

wl;t ¼
5:0

0:001þ e0:3t
ð3Þ

Because no data are available that quantify

reductions in herbaceous fuel bed depth (v) over

time as a result of Juniperus encroachment, we as-

sumed fuel bed depth (v) followed a linear rate of

decrease with increasing Juniperus cover (CJUVI),

resulting in the following relationship:

v ¼ �0:9144CJUVI þ 91:44 ð4Þ

Modeling Changes Due to Invasion of an Exotic Cool

Season Grass

Tall fescue [Schedonorus phoenix (Scop.) Holub] is an

introduced, cool season grass that has invaded prai-

ries throughout North America and transformed

considerable amounts of tallgrass prairie

(McGranahan and others 2012). In areas with high

levels of tall fescue invasion, herbaceous fuel mois-

ture has increased the overall moisture content of

the fuel bed to 250% (McGranahan and others

2013), which is well above the maximum herba-

ceous fuel moisture content reported in the litera-

ture for native tallgrass prairie (76%, Engle and

others 1993). To simulate the effect of tall fescue

invasion on potential surface fire behavior, we re-

parameterized herbaceous fuel moisture content

from its maximum value observed in native tallgrass

prairie, 76, to, 250%, the value observed in fescue-

dominated tallgrass prairie, and then repeated sim-

ulations in BehavePlus. Empirical data were not

available that documented changes of tall fescue

invasion on other fuel bed properties, so we did not

evaluate sensitivities in the model due to fescue-

driven changes in other fuels components.

Statistical Analyses

Using our independent simulations of grass curing

scenarios, we tested for differences in the magni-

tude and variation of fire behavior in historical fire

regimes compared to contemporary fire manage-

ment and ecological invasions. One-way analysis of

variance was used to test for differences in rate of

fire spread, fireline intensity, and flame length for

each modeled comparison. Differences were eval-

uated using a Brown–Forsythe test, which accounts

for nonparametric data. Multiple pair-wise com-

parisons were limited to comparing differences in

the historical ROV in fire behavior to each scenario

(1. modern fire policy; 2. Juniperus encroachment

over time; 3. tall fescue invasion) and were evalu-

ated using Tukey’s HSD. Confidence intervals were

produced for each modeled comparison to simply

show the estimated historical ROV in fire behavior

and the degree of departure in the ROV in fire

behavior as a result of contemporary prescribed fire

policies and ecological invasions.

We graphed change in rate of fire spread, fireline

intensity, andflame length across the realistic ranges

of variability for eachBehavePlus input parameter as

grass curing increased from 0 to 100% [with green

representing grass fuels that are not cured (0%) and

brown representing fully cured grasses (100%),

respectively]. This resulted in model output charac-

terizing the relationship between a fire behavior

variable (rate of fire spread, fire intensity, flame

length) and the interaction between grass curing and

a given fuel, slope, or wind input. We then plotted

and overlaid a prescribed fire policy envelope on

each graphed output to show the range of conditions

and fire behavior that could be expected after policy

constraints were imposed in the model. Such an

approach reveals how contemporary fire manage-

ment policies influence fire behavior for the tallgrass

prairie ecosystem and provides a baseline for

repeating this approach to compare socio-political

constraints present in other ecosystems. The differ-

ence in either the mean or variance in fire behavior

across the various fuels, wind, and slope parameters

was assessed between the historical model and the

prescribed fire policymodel using a paired samples t-

test.

Model Evaluation

Congruence with Empirical Data

Empirical studies in tallgrass prairie provide a basis

for evaluating the output from our model on the

influence of contemporary prescribed fire policies

and ecological invasions on potential fire behavior.

Our primary assumption here is that empirical

studies in tallgrass prairie are bound by the socially

imposed constraints featured in our model. Our

model accurately predicts the ROV of rate of fire

spread and fireline intensity for the empirical
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studies that have quantified fire behavior in this

ecosystem (based on our formal review; Table S2).

Nearly all empirical studies recorded levels of fire

behavior that fell within the range predicted for

contemporary policy constraints in the model. Two

studies recorded fire intensity levels above model

predictions when policy constraints were imposed.

Both of those studies, Crockett and Engle (1999)

and Twidwell and others (2012), were specifically

designed to conduct fires outside the guidelines of

regional fire management policies, resulting in

fireline intensities and flame lengths slightly above

the maximum values output in the model (thus

supporting our modeling approach). In summary,

our model accurately predicted the ROV of fire

behavior for the empirical studies that have quan-

tified fire behavior and have operated both within

and outside the bounds of contemporary prescribed

fire policy constraints.

Potential to Replicate Wildfire Behavior

A potential concern is that our modeling approach

might overestimate the maximum potential fire

behavior possible in tallgrass prairie. We therefore

sought to compare our model output to data from

wildfires to assess the potential for the model to

describe the upper range of surface fire behavior

possible in tallgrass prairie. Unfortunately, almost no

data have quantified fire intensity, rate of fire

spread, or flame length for wildfires in the Great

Plains and especially for tallgrass prairie (Fuhlendorf

and others 2011). We therefore evaluated how

effectively our modeling approach replicated the

surface fire behavior observed for the East Amarillo

Complex Wildfire, which burned more area in 24-h

than any other fire in the United States in recorded

history (NOAA 2010). Rate of fire spread for the

2006 East Amarillo Complex Wildfire averaged

134 m min-1 for a nine-hour period (Rideout-

Hanzak and others 2011). Because the Amarillo

Complex Wildfire did not occur in tallgrass prairie,

we repeated our modeling approach for a GR2 fuel

model (this fuel model better represents the semi-

arid mixed grass prairie where the wildfire occurred)

to approximate the fuels, slope, and wind conditions

present during the wildfire. Because data are not

available on the fuel conditions that occurred during

the wildfire, we re-parameterized the model for the

typical fuel conditions present in a GR2 fuel model

(see Scott and Burgen 2005). Terrain in the region of

the East Amarillo Complex wildfire is level to gently

rolling, so slope was set to 5%. Wind speeds were

assigned a range of 48–64 km h-1, the values mea-

sured by local weather stations during the wildfire

event (NOAA 2009). Using these data, our model

produced rates of fire spread of 95 m min-1 when

grass curing was 100%. Given the lack of available

data on the fuel parameters occurring during the

wildfire, this value is remarkably close to the rate of

fire spread observed for the East Amarillo Complex

Wildfire, thereby validating the broader utility of

our model. In fact, using the model to reproduce the

rate of spread observed in the East Amarillo Com-

plex Wildfire (134 m min-1) required only minor

changes from the baseline GR2 fuel model and

increasing herbaceous fuel bed depth by 14 cm.

RESULTS

Social policies governing prescribed firemanagement

reduced fire behavior more than tall fescue invasion

and rivaled reductions in fire behavior from decades

of Juniperus encroachment. The full potential ROV in

tallgrass prairie fire behavior was 2–540 m min-1 for

rate of fire spread, 35–50,372 kW m-1 for fireline

intensity, and 0.4–11.3 m flame length. As a result of

modern policy constraints driving the use of pre-

scribed fire, maximum rate of fire spread and fireline

intensity were reduced 81 and 85%, on average,

while maximum flame length was reduced 59%

(Figure 1). This policy-driven reduction in fire

behavior more than doubled reduction in fire

behavior resulting from exotic invasion of tall fescue,

and it took at least 20 years of Juniperus encroach-

ment to have an effect equivalent to modern fire

management policies (Figure 1).

Policy-driven reductions in the historical ROV in

fire behavior were predominantly the result of how

current prescribed fire policies limit the potential

effect of wind speed (Figure 1). In the absence of

policy constraints, simulations of surface fire

behavior were based on the potential for fires to

occur during sustained wind speeds of 77 km h-1,

which occurs at least once annually. At such high

wind speeds, the effect of grass curing was consid-

erable and resulted in rates of fire spread and fire-

line intensities far beyond that produced by any

other factor in the absence of policy constraints

(Figures 2, 3). Assuming a policy threshold in

which fires could not be conducted once wind

speed exceeded 32 km h-1 (Table 1), rates of fire

spread, fireline intensities, and flame lengths were

reduced 77, 75, and 48%, respectively (Figure 3).

When wind speeds were below 32 km h-1, the

effect of grass curing on fire behavior was markedly

reduced, thereby minimizing variance in all fire

behavior characteristics compared to historical

conditions (Figure 3; t = 3.28, df = 10, P < 0.01 for

rate of spread; t = 3.18, df = 10, P < 0.05 for fire-
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line intensity; t = 3.78, df = 10, P < 0.01 for flame

length). Yet, even beneath the policy threshold of

wind speed of 32 km h-1, wind continued to have

a greater effect on potential surface fire behavior in

tallgrass prairie vegetation than variability in any

other factor. It was not until wind speeds dropped

below 23 km h-1 that 1-h fuel moisture began to

have an equivalent influence on surface fire

behavior in fully cured tallgrass prairie fuels (Fig-

ure 2).

Other factors, 1-h fuel load, 1-h fuel bed depth,

and 1-h surface area-to-volume ratio and slope,

were constrained only by prescribed fire policies

that indirectly limited fires to grass curing levels

less than 80% and did not lead to differing levels of

surface fire behavior in the presence or absence of

policy constraints (Figures 2, 3). However, relaxing

the assumption that burn bans are enacted only

after grass curing levels exceed 80%, and instead

considering the potential for burn bans to be

Figure 1. Departures

from the historical range

of variability (ROV) in

surface fire behavior as a

result of contemporary

social prescribed fire

policies and ecological

invasions in tallgrass

prairie. Confidence

intervals represent the

range of variability (ROV)

across grass curing

scenarios used in

simulations, with dashed

lines in box plots

representing the mean

value. Asterisks (*)

indicate significant

differences (P < 0.05) in

fire behavior from

historical levels as a result

of isolating the effect of

each modeled scenario.

Invasion, Policy and Fire Behavior 363



implemented at any level of grass curing, demon-

strated that surface fire behavior could be altered

for every parameter input into the model when

grass curing is less pronounced (Figure 2).

DISCUSSION

The effect of fire management policies on fire

behavior in tallgrass prairie reveals an important

modern conflict present in fire-dependent ecosys-

tems. Ecosystemmanagers are tasked with using fire

to enhance ecological resilience of fire-dependent

ecosystems. This requires that they consider the full

range of variation in fire behavior and its ecological

and evolutionary role, while also weighing uncer-

tainties of how to use fire to enhance resilience in a

changing world (Bradstock and others 2005; Driscoll

and others 2010). A separate mission is tasked to

regulatory officials, who seek to protect society from

large and destructive wildfires. In tallgrass prairie,

the challenge with promoting the full ROV in fire

behavior for ecosystem management is that wind

speed is by far the dominant driver of rate of fire

spread and fire intensity. Targeting higher wind

speeds greatly increases ember transport and spot-

fire distance (Albini 1983), making it more difficult

for fire managers to control fires using current

burning systems and techniques. Moreover, high

wind speeds are also the most important determi-

nant of the occurrence of large wildfires in this

system (Reid and others 2010), which greatly in-

creases risks to firefighter personnel given the high

rates of fire spread and fireline intensities produced

in these conditions (Andrews and Rothermel 1982).

For these reasons, it is no surprise that fire man-

agement policies aggressively select against wind

speed in ecosystems around the world. For example,

guidelines for when prescribed fires can be con-

ducted limit fires to wind speeds below 32 km h-1

in central U.S. (Wright and Bailey 1982; Weir 2009),

with wind speeds no greater than 15 km h-1 being

recommended for most prescribed fires in sub-Sa-

haran Africa (Goldammer and de Ronde 2004).

We contend this modern conflict is symptomatic

of present-day societal norms that demand com-

plete control over nature and the elimination of

extreme disturbance events. Present-day humans

have sought to eliminate ‘‘wildfire’’ from wildlands

prone to burning and remove flooding from flood

plains in efforts to preserve or protect certain re-

source values—yet these processes are often critical

to biological diversity and the sustainability of

many unique ecosystem services desired in con-

temporary society (Poff and others 1997; Bednarek

2001; Smucker and others 2005). It is becoming

increasingly apparent that numerous species are

dependent on high intensity and high severity

disturbance regimes. The absence of high-intensity

fires has been implicated in the near extinction of

species (for example, Mimetes stokoei; van Wilgen

Figure 2. Policy constraints imposed on fire managers and their influence on the factors driving surface fire behavior in

tallgrass prairie. The range of conditions available to modern ecosystem managers (shown as colored envelopes) demon-

strates how policy reduces the magnitude of fire behavior for each factor across different grass curing scenarios ranging

from 0% (no grass curing; shown as dark green circles) to 100% (fully cured grasses; shown as brown circles). Note the scale

of the y-axis differs among panels (Color figure online).
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2013), contributes to the inability of resource pro-

fessionals to prevent woody encroachment in

grasslands and savannas (van Langevelde and

others 2003; Taylor and others 2012), constrains

restoration of grasslands from woody-dominated

ecosystems (for example, in the US Southern Great

Plains, Twidwell and others 2013a, b), and fails to

provide suitable habitat requirements for faunal

specialists (for example, Hutto 2008). Similarly, the

absence of infrequent extreme flood events has led

to trophic cascades in riverine ecosystems (Woot-

ton and others 1996) and the loss of top biomass

species desired for human consumption (Ligon and

others 1995). We highlight these examples to

emphasize the point that policy-makers need to

become more aware of the ecological impacts and

Figure 3. Reductions in

the variance in surface

fire behavior resulting

from contemporary

policies constraining

variability in fuels, wind,

and slope in tallgrass

prairie. Asterisks (*)

indicate significant

differences (P < 0.05)

when contemporary fire

management policies are

absent (white columns) or

present (purple columns).

Values are means ± SE

(Color figure online).
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unintended consequences of establishing broad-

sweeping policies aimed at minimizing or removing

extreme disturbance events.

The ecological benefits of promoting extreme

events such as high-intensity fires will always be

weighed against the actual and perceived risks they

pose to human safety, which places very real con-

straints on the ability to manage for the full his-

torical ROV in disturbance regimes. The resulting

challenges forced upon ecosystem scientists and

managers by society at large are to determine the

extent to which the magnitude and variability of

disturbance processes can be simplified while still

sustaining properties of ecosystems desired by

society, and to effectively communicate to society

the consequences of simplifying disturbance re-

gimes. However, the implications of simplifying

disturbance have generally not been considered in

the conservation of disturbance-dependent ecosys-

tems (Parrott and Meyer 2012). As an example, the

theoretical basis for fire to shape ecosystem

dynamics in tallgrass prairie has been predomi-

nantly derived from socially constrained empirical

studies that do not account for extreme events (for

example, Box 1). Consequently, the role of fire has

been simplified in the study and management of

this system (for example, up to 85% of the potential

magnitude of fire intensity is not being explicitly

considered in empirical studies in tallgrass prairie;

Table S2). The problematic assumption here is that

ecosystem response dynamics observed when fires

are conducted under narrow prescriptions (which is

nearly always the case in the study and manage-

ment of tallgrass prairie) will hold consistent across

the full theoretical ROV in fire behavior. Previous

studies have demonstrated that conclusions built

upon this assumption do not necessarily hold when

fires are conducted beyond typical fire prescriptions

(for example, the irreversibility of grassland to ju-

niper woodland regime shifts; Twidwell and others

2009, 2013b), and our model reveals that only the

bottom 15–19% of the theoretical ROV in fire

behavior is accounted for under this assumption.

For this reason, researchers and managers alike

should seriously consider the implications of

reducing the magnitude and variance of distur-

bances when discussing potential trajectories of

ecosystem responses to fire.

Many ecosystem properties and processes may

respond to slight changes in management without

requiring that managers restore the full historical

ROV in disturbance. Simple manipulations of the

spatial extent of disturbance (sensu patch burning

or pyric herbivory, Fuhlendorf and others 2009) or

intensity (sensu controlled flooding, Robertson and

others 2001; extreme prescribed fire, Twidwell and

others 2012, 2013b) have successfully reshaped

disturbance regimes that sufficiently mimic the

dynamics needed to support the resilience, biodi-

versity, and productivity of those systems. Moving

forward, it would be helpful to advance beyond this

study and elucidate the probabilities or frequency

to which environmental conditions influenced

disturbance regimes historically relative to today,

and how changes in those probabilities relate to

thresholds governing ecosystem responses (for

example, fire-vegetation thresholds; Twidwell and

others 2013b). In cases where thresholds have not

been (or cannot be) quantified, management for

the full range of variability in disturbance regimes

provides safe operating space for managing the re-

silience of fire-dependent resources, given recog-

nition that the historical ROV may not fully

represent current conditions (Moritz and others

2013). Combined with models of how changes in

anthropogenic fire use have altered the spatial

dynamics of large fires (for example, Trauernicht

and others 2015), these approaches provide the

basis for understanding contemporary changes in

ecological conditions as a result of departures in

historical fire regimes. This information can then be

used to make more informed decisions on whether

the magnitude and variability of a fire regime can

be simplified while still providing for ecosystem

services desired by society or, in contrast, where

society needs to reconsider its anthropogenic foot-

print in efforts to promote greater variability in fire

regimes for ecosystem services.
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