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ABSTRACT

Most studies of land change have focused on pat-

terns, rates, and drivers of deforestation, but much

less is known about the dynamics associated with

agricultural abandonment and ecosystem recovery.

Furthermore, most studies are conducted at a single

spatial scale, and few have included variables re-

lated with internal socio-political conflicts. Here we

evaluated the effect of environmental, demo-

graphic, and socio-economic variables on woody

cover change in Colombia between 2001 and 2010

at the country, biome, and ecoregion scales. We

also incorporated factors that reflect the unique

history of Colombia such as the presence of illegal-

armed groups and forced human displacement.

Environmental variables explained the patterns of

deforestation and forest regrowth at all scales be-

cause they can restrict or encourage different land

uses across multiple spatial scales. Demographic

variables were important at the biome and ecore-

gion scales and appear to be a consequence of the

armed conflict, particularly through forced human

displacement (for example, rural–urban migra-

tion), which in some areas has resulted in forest

regrowth. In other areas, the impact of illegal

armed groups has reduced forest cover, particularly

in areas rich in gold and lands appropriate for cattle

grazing. This multi-scale and multivariate approach

provides a new insight into the complex relation-

ship between woody cover change and land aban-

donment triggered mainly by armed conflict.

Key words: forest change; land abandonment;

armed conflict; forced displacement; multiple spa-

tial scales; multivariate approach.

INTRODUCTION

Land change is a key component of global envi-

ronmental change, and it has direct and indirect

impacts on climate, biodiversity, and natural and

human systems (Sala and others 2000; Geist and

Lambin 2002; Lambin and others 2003; Thuiller and

others 2005). Land change is driven by the complex

interaction between multiple factors that act from

global (for example, climate change, international
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markets) to local scales (for example, topography,

soil fertility) (Lambin and others 2001; Geist and

Lambin 2002; Aide and Grau 2004). Most land-

change research has focused on drivers, patterns,

and rates of deforestation (Achard and others 2002;

Lambin and others 2003) because it is the prevailing

process of forest cover change; however, others

have suggested that there is a global reforestation

trend (Rudel and others 2005; Kauppi and others

2006). Spontaneous forest regeneration on aban-

doned agricultural lands can potentially diminish

the ecological damage of deforestation and degra-

dation (Guariguata and Ostertag 2001; Chazdon

2008). Thus, forest cover change (that is, defores-

tation and reforestation) needs to be investigated

because both processes have repercussions for bio-

diversity, soil conservation, carbon sequestration,

and carbon emission.

Furthermore, it is important to determine the

causes of deforestation and reforestation to

improve management and conservation activities.

In addition, these causes should be analyzed at

multiple spatial scales because they are likely to

vary depending on the location, resolution, and

extent of the analysis (Veldkamp and Lambin 2001;

Redo and others 2012). Forest cover change has

been related to environmental factors because they

can restrict or enhance the expansion of economic

activities. For example, areas with favorable envi-

ronmental conditions will be more economically

attractive; therefore, more likely to be deforested.

In contrast, areas with harsh environmental con-

ditions located in less productive lands may expe-

rience agricultural abandonment and subsequent

forest regrowth (Aide and Grau 2004; Wright and

Muller-Landau 2006; Meyerson and others 2007).

These recovery patterns have been documented in

developed countries (Rudel and others 2005), and

in many developing countries, including Colombia,

Costa Rica, Ecuador, Mexico, and Puerto Rico

(Rudel and others 2002; Céspedes and others 2003;

Grau and others 2003; Klooster 2003; Sanchez-

Cuervo and others 2012).

Several studies have shown that forest cover

change is also affected by demographic dynamics,

where deforestation is often associated with popu-

lation growth (Geist and Lambin 2002; Carr 2004),

whereas forest regrowth is mainly associated with a

decline in local population (Aide and Grau 2004;

Rudel and others 2005). For example, rural–urban

migration could promote ecosystem recovery due to

the reduction of human pressure on natural

resources (Aide and Grau 2004; Wright and

Muller-Landau 2006; Meyerson and others 2007).

Industrialization and urbanization patterns have

contributed to the rural–urban migration and

abandonment of farming and grazing on marginal

lands giving way to forest regrowth (Aide and Grau

2004). Other studies have stressed that forest cover

change could also be triggered by armed conflict

(Aide and Grau 2004). These conflicts can have

mixed environmental effects, either promoting

deforestation through overuse and empowerment of

natural resources by the armed groups (Etter and

others 2006a) or stimulating forest regrowth as

agricultural fields are abandon and wood extraction

is hindered (Witmer and O’Loughlin 2009; Stevens

and others 2011). Some studies have shown that

after the conflict deforestation increases because

people resettled and expanded agricultural lands

(Stevens and others 2011). These examples illustrate

the complexity of land change during and following

civil strife. Consequently, it is essential to under-

stand the direct and indirect impacts of armed con-

flict on ecosystems and global biodiversity

conservation (Sutherland and others 2009).

Colombia has had a long history of armed con-

flict and socio-political instability, and thus pro-

vides an excellent opportunity to incorporate

armed conflict variables in a multivariate analysis

of patterns of deforestation and reforestation. In

Colombia, studies of land change have mainly

focused on deforestation of lowland areas, partic-

ularly in the Amazon and Orinoco regions. Most of

these studies in the Amazon have been conducted

in the Caquetá river basin (Etter and others 2006a,

b) and other lowland forest areas (Armenteras and

others 2006), whereas in the Orinoco region stud-

ies have been conducted in the foothills (Viña and

Cavelier 1999), in the lowlands (Etter and others

2006c) or in the entire region (Romero-Ruiz and

others 2011). Only a few studies have been con-

ducted in montane forests (Etter and van Wynga-

arden 2000), and dry forest dynamics have been

virtually ignored. The few studies that have

included both reforestation and deforestation were

conducted in specific areas located in both lowlands

and highlands throughout Colombia (Etter and

others 2006c; Dávalos and others 2011), and in a

historical analysis (1,500–2,000) at the country

scale (Etter and others 2008).

Typically, the factors explaining deforestation in

Colombia have been related with accessibility,

slope, climate, soils, demography, and land use

(Armenteras and others 2006; Etter and others

2006c; Dávalos and others 2011). Nevertheless,

these models have not taken into account multiple

spatial scales or non-traditional variables such as

armed conflict, gold production, poverty, and forced

human displacement. The relative importance of
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the Colombian armed conflict on forest cover

change has been debated (Etter and others 2006a;

Dávalos and others 2011; Sanchez-Cuervo and

others 2012), but no study has included armed

conflict variables in a formal analysis. In a country

with over 50 years of internal conflict, contrasting

political decisions (for example, Plan Colombia),

social instability, poverty, and the active presence

of illegal armed groups, one could expect impacts

on natural resources. These issues are particularly

worrisome given that Colombia has been identified

as a mega-diverse country (Chaves and Arango

1998) and that its biodiversity and natural re-

sources are at risk. Therefore, it is essential to

identify the variables that influence forest cover

change at multiple scales to predict the future tra-

jectory of forest dynamics, and to understand the

causes of habitat and biodiversity loss.

In this study, we analyzed woody vegetation

change (deforestation and reforestation) between

2001 and 2010 for all municipalities at the country,

biome, and ecoregion scales. In addition to incor-

porating traditional environmental and socioeco-

nomic variables, we also incorporated variables

that reflected the unique history of Colombia (for

example, variables related to armed conflict). The

simultaneous analysis of deforestation and refor-

estation patterns coupled with the analysis of the

factors explaining these changes can provide

important insights for land change science and

the development of appropriate conservation

strategies.

METHODS

Study Area

Colombia is rich in natural and mineral resources;

half of the country is covered by forest and there

are large deposits of metals, oil, and natural gas.

Colombia also has remarkable differences in ele-

vation (0–5800 m), precipitation (350–12,000 mm/

y), and annual mean temperature (over 27�C in the

lowlands and between 13 and 17�C in the high-

lands), which have promoted high diversity of

habitats and species, making Colombia one of the

most biodiverse countries on earth (Chaves and

Arango 1998).

Even though Colombia has vast amounts of

natural resources, a long history of social disparity,

unequal distribution of land and wealth, coupled

with high levels of poverty promoted the rise of

several guerrilla groups during the 1960s. Since the

1980s, the armed conflict expanded as these groups

shifted from political motives to the control of

natural and mineral resources to accumulate

wealth and power (Cotte 2010). Since the 1990s,

the principal illegal-armed groups are the Fuerzas

Armadas Revolucionarias de Colombia (FARC-left-

wing) and the Autodefensas Unidas de Colombia or

paramilitaries (AUC-right-wing). The FARC is

financed partially from the drug trade and devotes

about one-third of its soldiers to indirect or direct

coca-related activities (Echandı́a 1999). This illegal

economy (stimulated by the increase of interna-

tional demand) had a gross value of about US$517

million in 2008, and the total area under illicit

crops increased from approximately 250 km2 in

1985 to approximately 1,600 km2 in 1999 (UNODC

2008). The paramilitary groups are mainly financed

by drug traffickers, landowners with extensive

properties, and even security officers for petroleum

companies (Gillard and others 1998). The para-

militaries typically cause forced displacement of

rural populations (for example, peasants) by seizing

the land and resources for their clients. Therefore,

landowners and traffickers are able to expand their

holdings and increase the size of their cattle-

ranching farms (Cubides 1999). The government

response to overcome the drug economy was the

implementation of Plan Colombia during the term

of President Andrés Pastrana (1998–2002). Under

President Alvaro Uribe (2002–2010), Plan Colom-

bia continued with the coca crop eradication pro-

gram, but expanded to include the ‘‘Democratic

Security’’ program. This program is based on the

premise that the major socio-economic problems of

Colombia are caused by violence and insecurity;

therefore, the program focused on reducing the

presence and power of guerrilla groups, particularly

the FARC (Acevedo and others 2008). These socio-

political issues represent important factors that may

influence land change in Colombia.

In this study, municipalities (second administra-

tive scale) were the main unit of analysis. We

included 1,097 municipalities and 20 areas no mu-

nicipalizadas or corregimientos (name of the third

administrative scale in Colombia) because these

areas occupied almost 190,000 km2 in the Ama-

zonas, Guainı́a, and Vaupes departments.

Land-Use Mapping

Our LULC classification methodology follows the

methods described in Clark and others (2012) and

Sanchez-Cuervo and others (2012). Here, we

summarize the three main steps used to produce

the maps analyzed in this study.

First, reference data (over 10,000 samples) for

classifier training and accuracy assessment were

1054 A. M. Sánchez-Cuervo and T. M. Aide



collected with human interpretation (authors)

using a custom web-based application: the Virtual

Interpretation of Earth Web-Interface Tool (VIEW-

IT) that overlays MODIS pixel (250 9 250 m) on

high-resolution imagery in Google Earth (Clark

and Aide 2011). Each sample was assigned the year

of the image and the percent cover of seven cover

classes: woody (woody vegetation including trees

and shrubs), herbaceous vegetation, agriculture,

plantations, built-up areas, bare areas, and water.

Samples were assigned to a class if the cover in this

class was 80% or more. Samples with 20–80%

woody, with a bare soil, herbaceous vegetation or

agriculture components were assigned to a mixed-

woody class.

Second, we used the MODIS MOD13Q1 Vege-

tation Indices 250 m product (Collection 5) for

LULC classification (Clark and others 2010; Clark

and others 2012). The product is a 16-day com-

posite of the highest-quality pixels from daily

images and includes the Enhanced Vegetation

Index (EVI), red, near infrared (NIR), and mid-

infrared (MIR) reflectance and pixel reliability with

23 scenes per year available from 2001 to present

(Huete and others 2002). For each pixel, we cal-

culated the mean, standard deviation, minimum,

maximum, and range for EVI, and red, NIR and

MIR reflectance values for calendar years 2001 to

2010. Statistics were calculated for all 12 months, 2

six-month periods, and 3 four-month periods. The

MOD13Q1 pixel reliability layer was used to

remove all unreliable samples (value = 3) prior to

calculating statistics.

Third, we mapped LULC with the Random For-

ests (RF) tree-based classifier (Breiman 2001) fol-

lowing methods in Clark and others (2012). The RF

classifier was implemented using R (v. 2.12.2; (R

2011) and the randomForest package (v. 4.6-2;

(Liaw and Wiener 2002)). Predictor variables were

MODIS-based 4-, 6- and 12-month statistics for

EVI, red, NIR and MIR, and were extracted for the

year corresponding to the QuickBird image year

(2001 to 2010; Clark and Aide, 2011) for each GE

reference sample. We trained four separate RF

based on samples in separate biomes (that is,

Tropical and Subtropical Moist Broadleaf Forests,

Tropical and Subtropical Dry Forests, and Tropical

and Subtropical Tropical Grasslands, Savannas and

Shrublands) with boundaries defined by munici-

palities (see Sanchez-Cuervo and others 2012). We

used R and the RGDAL library to apply the RF

objects to every pixel in MODIS tiles covering

the zone-biome region for each year, 2001 to 2010.

The four separate maps were then mosaicked

and reclassified (post-classification) by grouping

agriculture and herbaceous, mixed-woody and

plantations, and built-up and bare. The combining

of classes into a five-class scheme helped reduce

inter-class confusion and increase map accuracy

while still allowing us to focus on major trajectories

of change in woody vegetation. The final five-class

maps had an average overall accuracy of 87.4%

(±4.3%), with non-water average producer’s

accuracies ranging from 36.3% (mixed-woody/

plantations) to 96.9% (woody) and user’s accura-

cies ranging from 72.5% (mixed-woody/planta-

tions) to 89.4% (woody) (see Sanchez-Cuervo and

others 2012). The five-class LULC map was sum-

marized for the 1,117 municipalities or study units.

Explanatory Variables

We collected data for 52 variables at the munici-

pality scale (n = 1,117) to evaluate their effect on

woody cover change. These variables were grouped

into six categories: (1) Accessibility: density of riv-

ers, paved roads, unpaved roads, and dirt roads;

(2) Land-use data: change in coca crops area (2001–

2010) and the change in crop area (2006–2010) for

cotton, corn, mechanized rice, irrigated rice, plan-

tains, potatoes, and sugarcane. We also included the

extent of coffee plantations (2007); (3) socio-eco-

nomic: poverty (1993 and 2005), head of cattle

(2006), and total gold production (2008); (4) armed

conflict: forced human displacement (1996 and

2009), and its change (1996 to 2009), paramilitary-

AUC presence (2001 and 2005), and guerilla-FARC

presence (2001 and 2005); (5) demographic: total

population size (1993, 2005, and 2010), total pop-

ulation density (1993, 2005, and 2010), total pop-

ulation change (1993–2005 and 2005–2010), and

total population density change (1993–2005 and

2005–2010); (6) environmental: biome, ecoregion,

topographic index, elevation, precipitation, and

temperature. See Table 1 and supplementary

material Appendix A for detailed descriptions of

these variables and their sources.

Woody Cover Dynamics

To evaluate the patterns of woody cover change

within each municipality, we analyzed the trends

performing a linear regression of woody cover area

(dependent variable) against time (independent

variable, the 10 years of the study—2001 to 2010).

If more than 1% of the total municipality area had

pixels mapped as No Data for a given year, the land

cover data for that year were removed from the

regression. To determine the strength of this linear

relationship (area vs. time) we used Pearson’s

correlation coefficient (R), where positive values of

A Multi-scale Analysis of Forest Change in Colombia 1055
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R represent an increase in woody cover and nega-

tive values of R represent a decrease. We used this

approach to standardize woody cover change

through time due to outliers or missing data in any

given year, and the use of R for trends allows us to

compare municipalities, which can vary in size

from 17,6 to 65,568 km2. In addition, this trend

analysis takes advantage of the 10 years of data,

and it is not based on just two points in time.

Although with MODIS we cannot detect changes at

the sub pixel level (250 m), the accumulative

change from the small scale conversion can be

captured by the trend analysis based on the

aggregation of all pixels within a municipality (see

Sanchez-Cuervo and others 2012; Clark and others

2012). Municipalities with significant changes in

woody vegetation had P £ 0.05. All analyses

incorporating absolute area were performed using

estimates based on each municipality’s regression

model, rather than the raw area data used to fit the

model. We calculated the net change in cover

(km2) of the woody cover class between 2001 and

2010 considering the six biomes and 13 ecoregions.

To assess the effect of the 52 explanatory vari-

ables on woody cover change we used Random

Forest (RF) regression analysis using the package

randomForest (Liaw and Wiener 2002) for R soft-

ware (R, 2011). We used RF regression analysis

instead of classic regression models (for example,

ordinary least squares) due to RF’s ability to handle

complex data distributions, non-linear relation-

ships, and spatial autocorrelation (Segal 2004). The

random forest model has two parameters: ntree

(overall number of trees in the forest) and mtry

(randomly preselected predictors for each split). It

is important to set ntree and mtry because these

parameters control variable selection and variable

importance are unbiased (Strobl and others 2007).

The square root of the number of variables is rec-

ommended as a mtry value to guarantee stable

results (Strobl and others 2007). Therefore, we grew

2,000 trees and we set mtry to seven because we

incorporated 52 explanatory variables. RF for

regression analysis determines the most predictive

variables reporting a percentage increase in mean

square error (%IncMSE) instead of coefficient of

multiple determination (R2). Our random forest

model included woody cover trends (Pearson’s cor-

relation coefficient R) as the dependent variable and

the 52 explanatory variables as the independent

variables (seeTable 1 for moredetails). Weperformed

separate random forest models for: (a) all munici-

palities in Colombia, (b) five biomes (excluding the

Mangroves biome due to the small number of

municipalities; n = 6) and (c) 13 ecoregions. Finally,

to visualize the relationship between woody cover

change (R) and the explanatory variable with the

highest predictive power we created a scatterplot

overlaid by a partial dependence plot. The partial

dependence plot shows the directionality and range

of values of the predictor variable where there are

important changes in forest cover.

RESULTS

Patterns of Woody Cover Change
Between 2001 and 2010

There was a clear geographical pattern of woody

cover change between 2001 and 2010 (Figure 1):

municipalities with significant gains were concen-

trated in the Andes, whereas municipalities that

lost woody cover occurred mainly in the lowlands.

Overall, woody cover increased from 580,420 km2

in 2001 to 597,383 km2 in 2010, with a net gain of

16,963 km2 for the entire country. At the biome

scale, the net gain in woody vegetation was located

mainly in the Moist Forest biome (16,077 km2)

followed by the Desert (1,629 km2) and the Dry

Forest (688 km2) biomes (Figure 2A). In contrast,

woody cover showed a net loss only in the Grass-

land biome (-1,636 km2). At the ecoregion scale,

woody cover increased in eleven ecoregions, par-

ticularly in the Montane Forest ecoregions with a

net gain that varied from 4,535 km2 in the North-

ern Andean to 891 km2 in the Cordillera Oriental

ecoregions (Figure 2B). The Moist Forest ecore-

gions also showed an increase in woody cover from

2,955 in the Magdalena-Urabá Moist to only

144 km2 in the Caquetá Moist which is the largest

ecoregion in Colombia (472,066 km2). The Dry

Forest ecoregions had a net gain in woody cover,

particularly in the Sinú Valley (1,290 km2) and in

the Magdalena Valley (164 km2), whereas the

Apure-Villavicencio had a net loss of 691 km2. The

Guajira Xeric and the Northern Andean Páramo

ecoregions also showed an increase of woody cover

of 1,778 and 63 km2, respectively. The Llanos

ecoregion had the greatest net loss (-1,636 km2) of

all ecoregions.

Factors Explaining Woody Cover Change
at Multiple Scales

At the national scale, the random forest regression

analysis explained 36.8% of the variation in woody

vegetation change. This analysis showed that

environmental variables were the most important

predictors (Table 2). For example, the standard

deviation of mean monthly temperature, minimum

1058 A. M. Sánchez-Cuervo and T. M. Aide



elevation, and mean annual temperature were the

three most important variables explaining defor-

estation and reforestation patterns. The partial

dependency plots showed that woody cover

decreased in municipalities with a higher standard

deviation of mean monthly temperature (>0.6�C),

at lower elevations (<250 m; Figure 3A, B), and

higher temperatures (>25�C) in the Grassland

biome but also in other municipalities scattered

throughout the Moist Forest biome. In contrast,

woody cover increased in municipalities with a

lower standard deviation of mean monthly tem-

perature, in the highlands, and lower temperatures

particularly in the Moist Forest biome.

At the biome scale, the random forest regression

analysis explained more than 28% of the variation

in woody vegetation in the Moist Forest, Dry Forest,

and the Grassland biomes, whereas in the Montane

Grassland and the Desert biomes the analysis

explained less than 20% (Table 2). Environmental

variables explained most of the variation in woody

cover, particularly in the Moist Forest, the Dry

Forest, and the Deserts biomes, whereas socio-eco-

nomic and armed conflict variables were the most

important factors in the Grassland and the Montane

Grassland biomes. The partial dependency plots for

the Moist Forest biome showed that woody cover

increased in municipalities with mean annual

temperature above16�C, high population density

(>30 people/km2 in 2005), and low seasonality

(<0.6�C), particularly in the Northern and

the Northwestern Andean ecoregions (Table 2;

Figure 1. Map of the 13

ecoregions. Red and blue

dots represent

municipalities with

significant loss or gain in

woody cover,

respectively. Inset shows

the distribution of the six

biomes (Color figure

online).
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Figure 4). In contrast, woody cover decreased in

municipalities with high mean annual temperature

(>25�C), low population density (<30 people/km2

in 2005), and high seasonality (>0.6�C) mostly in

the Caquetá Moist Forest and Northern Andean

Montane Forest ecoregions. In the Dry Forest

biome, woody cover increased in municipalities

with annual precipitation below 1,500 mm, at ele-

vations above 200 m, and with low unpaved road

density, mainly in the Sinú Valley ecoregion

(Table 2; Figure 4). In contrast, woody cover

decreased in municipalities located in wetter areas, at

lower elevations, and where there was a higher

density of unpaved roads, mainly in the Apure-Vil-

lavicencio and the Magdalena Valley ecoregions. In

the Desert biome, woody cover increased mostly

when topographic variation increased, at higher ele-

vations (>100 m), and where there were low den-

sities of rivers (Table 2; Figure 4). In the Grassland

biome,woody cover decreasedas forceddisplacement

increased in 1996, in municipalities with larger pop-

ulations in 1993 (>5000people), and in municipali-

ties with a lower unpaved road density. In the

Montane Grassland biome, woody cover decreased in

the poorest municipalities in 1993 and 2005

(UBN > 30%) and in those with higher population

density (>30 people/km2 in 2005).

At the ecoregion scale, the random forest

regression analysis explained more than 20% of the

variation in woody vegetation in six of the 13 eco-

regions (Table 2). The woody cover change in the

Moist Forest ecoregions (that is, lowlands) within

the Moist Forest biome was explained mostly by

environmental variables followed by demographic

variables. The partial dependency plots in the Moist

Forest ecoregions illustrated that in the Caquetá

Moist Forest, woody cover decreased mostly in

municipalities with high seasonality (>0.20�C) and

Figure 2. Net change of

woody cover from 2001

to 2010 by biome (A) and

ecoregion (B) scales.
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á
ra

m
o

P
o
v
e
rt

y
0
5

1
5
.2

D
e
cr

e
a
se

d
a
s

p
o
v
e
rt

y
in

2
0
0
5

in
cr

e
a
se

d
(>

3
0
%

)

P
o
p
u

la
ti

o
n

D
e
n

0
5

9
.4

In
cr

e
a
se

d
a
s

p
o
p

d
e
n

si
ty

in
cr

e
a
se

d

(>
7
0

p
e
o
p
le

/k
m

2
)

P
o
v
e
rt

y
9
3

8
.5

D
e
cr

e
a
se

d
a
s

p
o
v
e
rt

y
in

1
9
9
3

in
cr

e
a
se

d
(>

3
0
%

)

D
e
se

rt

%
V

a
r

=
1
3
.0

G
u

a
ji

ra
X

e
ri

c
T
o
p
o
In

d
1
3
.5

In
cr

e
a
se

d
a
s

st
a
n

d
a
rd

d
e
v
ia

ti
o
n

in
cr

e
a
se

d

D
E

M
M

a
x

1
0
.0

In
cr

e
a
se

d
a
t

h
ig

h
e
le

v
a
ti

o
n

s
(>

1
0
0

m
)

R
iv

e
rD

e
n

7
.5

D
e
cr

e
a
se

d
a
s

ri
v
e
r

d
e
n

si
ty

in
cr

e
a
se

d

T
h

e
re

su
lt

s
in

cl
u

d
e

th
e

p
er

ce
n

t
of

va
ri

a
ti

on
ex

p
la

in
ed

b
y

ea
ch

m
od

el
,

th
e

p
er

ce
n

t
in

cr
ea

se
of

m
ea

n
sq

u
a
re

er
ro

r
(I

n
cM

S
E

%
)

w
h

en
th

e
va

ri
a
b
le

w
a
s

ex
cl

u
d
ed

,
a
n

d
th

e
ef

fe
ct

of
th

e
th

re
e

m
os

t
im

p
or

ta
n

t
va

ri
a
b
le

s
on

w
oo

d
y

co
ve

r
ch

a
n

ge
.

1062 A. M. Sánchez-Cuervo and T. M. Aide



with high population density (>10 people/km2 in

2005 and 2010; Table 2; Figure 5A). In the Mag-

dalena-Urabá Moist Forest, woody cover increased

in municipalities with high seasonality (>0.45�C),

lower precipitation (<2500 mm), and high stan-

dard deviation in precipitation (>350 mm). In the

Chocó-Darién Moist Forest, woody were increased

in municipalities that gained population between

2005 and 2010, in the poorest municipalities in

1993 (UBN > 70%), in municipalities with high

standard deviation in precipitation (>600 m).

In all Montane Forest ecoregions (that is, high-

lands) within the Moist Forest biome, woody cover

change was mostly explained by demographic,

armed conflict, socio-economic, and environmen-

tal variables (Table 2). The partial dependency plots

in the Montane Forest ecoregions showed that in

the Cauca Valley Montane Forest, woody vegeta-

tion increased mostly in municipalities that showed

a reduction in forced displacement between 1996

and 2009, at elevations below 3000 m, and with a

high density of paramilitary groups in 2005

(Table 2; Figure 5C). Likewise, in the Cordillera

Occidental woody vegetation increased in places

with a high density of paramilitary groups in 2001,

at elevations below 1,000 m, and low numbers of

cattle. In the Northern Andean, the largest Mon-

tane Forest ecoregion, the effect of the paramilitary

groups seems to be opposite compared with the

previous ecoregions because woody cover

decreased in municipalities with a high density of

paramilitary groups in 2005. Woody cover also

decreased in areas with high gold production and

with low seasonality (<0.40�C). In the North-

western Andean, woody cover gains occurred in

municipalities with a high population density

(>20 people/km2 in 2005 and 2010) and a low

number of cattle.

In the three Dry Forest ecoregions within the Dry

Forest biome, woody vegetation change was

explained mainly by environmental variables

(Table 2). The partial dependency plots in the Dry

Figure 3. Scatterplots of

the standard deviation of

mean monthly

temperature (A) and

minimum elevation (B)

and woody vegetation

change (R) for all

municipalities in

Colombia. A partial

dependency plot was

added to show directional

effect.

A Multi-scale Analysis of Forest Change in Colombia 1063



Forest ecoregions showed that in the Apure-Villa-

vicencio ecoregion, woody cover loss occurred in

municipalities at elevations below 200 m and with

high seasonality (>0.75�C; Table 2; Figure 5B). In

contrast, in the Magdalena Valley Dry Forest,

woody cover decreased mostly in municipalities

with low seasonality (<0.35�C), at elevations

above 300 m, and with precipitation above

1,500 mm. In the Sinú Valley Dry Forest, woody

cover gains were located in municipalities with low

seasonality (<0.50�C), low precipitation, and low

rural population. Finally, the Grassland, the Mon-

tane Grassland, and the Desert biomes only in-

cluded the Llanos, the Northern Andean Páramo,

and the Guajira Xeric ecoregions, respectively;

therefore, we did not make partial dependency

plots for these ecoregions.

DISCUSSION

Colombia experienced a net gain in woody cover

between 2001 and 2010. This is a positive trend for

biodiversity, soil conservation, and carbon seques-

tration, but gaining a hectare of early successional

species is not the same as losing a hectare of intact

forest and its accompanying fauna (Gibson and

others 2011). But, if these areas are allowed to

continue recovering, secondary forest can recover

forest structure, function, and diversity, and pro-

vide habitat for a large proportion of the fauna

(Bowen and others 2007; Chazdon 2008). Analyses

at the biome and ecoregion scales showed that

woody cover change increased mostly in the Moist

Forest biome, particularly in the Montane Forest

ecoregions. In contrast, woody cover change

decreased in the Grassland and in the Dry Forest

Figure 4. Scatterplots of the mean annual temperature, mean annual precipitation, forced displacement (1996), poverty

(2005), and topographic index and woody vegetation change (R) by biome. A partial dependency plot was added to show

directional effect.
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biomes, particularly in the Llanos and Apure-Vil-

lavicencio Dry Forest ecoregions. At the national

scale, environmental variables were the most

important explaining the patterns of reforestation

and deforestation. At the biome and ecoregion

scale, environmental variables were important, but

demographic, armed conflict, accessibility, and

socio-economic variables also helped to explain the

variation in woody cover change.

Variables Driving Woody Cover Change
at Multiple Scales

At the national scale, the random forest analysis

showed that environmental variables were the

most important factors explaining woody vegeta-

tion change. Our results suggest that reforestation

is occurring mostly in areas with low seasonality

and low temperatures in the highlands of the Moist

Figure 5. Scatterplots of

the most important

variables explaining

woody cover change for

the Moist Forest (A), the

Dry Forest (B), and the

Montane Forest (C)

ecoregions. A partial

dependency plot was

added to show directional

effect.
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Forest biome. In contrast, deforestation occurred

mainly in the Grassland biome and in municipali-

ties scattered throughout the Moist Forest biome,

particularly at low elevations in areas with high

temperatures and high seasonality. This pattern of

reforestation concentrated in the highlands and

deforestation in the lowlands suggests that at the

country scale the environmental conditions asso-

ciated with these regions play an important role in

determining land use decisions. These results also

reflect the contrasting historical settlement patterns

of the country, where most of the population is

concentrated in the highlands (Andean region),

and where today there has been high levels of

rural–urban migration (Etter and others 2008).

Although similar results have been described in

other Latin American countries (Thomlinson and

others 1996; Aide and others 2012; Bonilla-Moh-

eno and others 2012; Redo and others 2012), given

the biogeographic, socio-cultural, economic, and

demographic differences across Colombia, it is not

surprising that other factors (for example, precipi-

tation, illegal-armed groups, poverty) are impor-

tant for land change at more local spatial scales.

In the Moist Forest biome, factors that explain

woody cover change were similar to the predictors

(for example, temperature) found at the country

scale because this biome covers almost 80% of the

national territory. Nevertheless, demographic

variables were important in this biome because the

random forest model took into account the varia-

tion in population density within the Moist Forest

(that is, Amazon region-low) and the Montane

Forest ecoregions (that is, Andes region-high).

Although some studies have shown that demo-

graphic factors do not explain vegetation change at

broader scales (Aide and others 2012; Bonilla-

Moheno and others 2012; Redo and others 2012),

others show that these factors can have a major

impact on land change (Keys and McConnell 2005;

Hazell and Wood 2008). Overall, our results in the

largest Colombian biome support the conclusion

that reforestation often occurs in areas with high

population density (Hecht and Saatchi 2007; Aide

and others 2012) mainly in the Andes region (for

example, Northwestern Andean ecoregion). This

pattern is probably the consequence of urbaniza-

tion or changes in local economies that promote

agricultural intensification in productive areas and

woody regrowth in others (Grau and others 2003;

Aide and Grau 2004; Rudel and others 2005;

Meyfroidt and Lambin 2008). Nevertheless, in the

Caquetá Moist Forest ecoregion woody cover

decreased as population density increased and the

majority of deforestation occurred in the Alto

Caquetá and Alto Putumayo regions. This could be

the result of cattle ranching given that the agri-

culture/herbaceous class increased by 2,200 km2,

whereas the woody cover decreased by 1,800 km2

in these two regions. Our results concur with pre-

vious studies in the western Amazon (Sierra 2000;

Armenteras and others 2006; Etter and others

2006c).

In the Dry Forest biome, reforestation took place

mainly in municipalities with low precipitation, at

high elevations, and where there were low densi-

ties of dirt roads. These non-optimal environmental

conditions appear to have promoted the abandon-

ment of marginal agricultural activities in the Sinú

Valley and Magdalena Valley Dry Forest ecore-

gions. In addition, the cotton industry has declined

greatly in these areas due to a shift in cotton pro-

duction to other countries (Sanchez-Cuervo and

others 2012). In contrast, municipalities with

higher precipitation, at low elevations, and with

high densities of dirt roads tended to be deforested

for the expansion of croplands and cattle ranching,

particularly in the Apure-Villavicencio (mainly the

foothills of the Arauca department) and in the

Magdalena Valley Dry Forest. In these municipali-

ties woody cover decreased by approximately

1,300 km2, whereas the agriculture/herbaceous

class increased by 1,400 km2. The conversion of

Dry Forest into agriculture and pastures in our

study is similar to that documented across Latin

America (Brannstrom 2009), particularly in the

Argentine Chaco (Grau and others 2005; Gasparri

and Grau 2009), Brazilian Cerrado (Brannstrom

and others 2008; Galford and others 2008) and

Bolivian lowlands (Killeen and others 2008; Redo

and others 2012).

In the Northern Andean Paramo, the only eco-

region in the Montane Grassland biome, the slight

net gain in woody cover occurred mainly in

municipalities with high population density and

decreasing levels of poverty. It is possible that these

municipalities are in the early stages of forest

transition; however, the total increase in woody

cover was only 63 km2 compared with an increase

of 188 km2 in the agriculture/herbaceous class.

Woody cover decreased in municipalities with

lower population densities and higher levels of

poverty, supporting the idea that impoverished

communities with few economic opportunities can

be important players in deforestation (Rudel and

Roper 1997).

In the Desert biome, woody cover increased

mostly in municipalities with low topographic

variation and at lower elevations. These munici-

palities (for example, Uribia, Riohacha, Maicao) are
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located in the Guajira peninsula where environ-

mental conditions are not optimal for agriculture

because this is the driest region in Colombia. The

gain of woody cover (that is, shrublands) in these

marginal lands could be related to a precipitation

anomalies (for example, high precipitation in 2009)

or possibly to issues in the classification because the

Desert biome was classified as part of the Dry Forest

biome (Sanchez-Cuervo and others 2012).

Impact of the Armed Conflict

The armed conflict has mainly impacted woody

change in three areas: Montane Forest ecoregions,

Llanos ecoregion, and Chocó-Darién and Magda-

lena-Urabá Moist Forest ecoregions. The Montane

Forest ecoregions were characterized by a complex

dynamic between woody vegetation change and

armed conflict, demographic, and socio-economic

variables. This is not surprising because the Andes

and its inter-Andean valleys have had a long his-

tory of colonization (Etter and others 2008), con-

tain 65% of the total population, and have the

strongest economic growth in the country. We

found that the presence of paramilitary groups

(that is, AUC) was among the top three variables

explaining woody cover change in three of the four

Montane Forest ecoregions and their presence was

associated either with reforestation or deforesta-

tion, depending on the particular ecoregion. The

effect of the paramilitary groups either promoting

reforestation or deforestation seems to be depen-

dent of the physical properties of the landscape,

availability of natural and mineral resources (for

example, gold, oil), and the control of strategic

areas for illegal activities. For example, reforesta-

tion tended to occur in municipalities with a high

density of paramilitary groups at lower elevations

(<3000 m) in the Cordillera Oriental and to the

north of the Cauca Valley Montane Forest. It is

possible that paramilitary groups used these

mountainous areas as corridors to transport drugs

and weapons from the Andes to the Pacific Ocean

and from the Andes to the Orinoco region

(Defensoria del Pueblo 2001; López 2010). On the

other hand, deforestation trends occurred mostly in

municipalities with a high density of paramilitary

groups and high gold production mainly in the

Northern Andean Montane ecoregion, the third

largest ecoregion in Colombia. Furthermore, there

was a dramatic increase in gold production (2001–

13 to 2008–28 tons) in the entire Northern Andean

Montane ecoregion (SIMCO 2012). In addition, in

the Magdalena Medio and several municipalities in

the coffee growing region, paramilitary groups

caused the forced displacement of thousands of

peasants, and much of these areas (>2000 km2)

were converted into the agriculture/herbaceous

class, that is, cattle ranches (Defensoria del Pueblo

2001; Molano 2005).

Another area with strong influences from illegal

armed groups is the Llanos, the only ecoregion in

the Grassland biome. In the Llanos, land clearing

was evident in municipalities with high forced

displacement in 1996, a large population in 1993,

and low unpaved road density. Demographic

changes started in the late 1980s to middle 1990s

when five petroleum fields were discovered in

Arauca, Casanare, and Meta departments (Rausch

2009). Following the discoveries, economic devel-

opment increased rapidly, promoting a strong

migration of Andean peasants, which lead to high

rates of land conversion toward mechanized agri-

culture (for example, rice) and cattle grazing

(Romero-Ruiz and others 2011). The economic

growth and the geographic location of the Llanos

represented an important source of funding for ille-

gal armed groups as well as an essential strategic

corridor between the Venezuelan border and central

Colombia (Rausch 2009; López 2010). The presence

of illegal-armed groups (for example, guerilla-FARC,

paramilitaries-AUC) caused the displacement of

over 6,500 peasants from rural to urban areas in

1996 (SIPOD 2010). It is possible that these aban-

doned areas have been transformed into cropland

and pasturelands and presently are expanding be-

cause the agriculture/herbaceous class increased by

approximately 100% in the region. This trend is

likely to continue given that the Llanos is considered

the new agricultural frontier of Colombia.

In the Chocó-Darién and Magdalena-Urabá

Moist Forest ecoregions the armed conflict has

resulted in a high level of forced displacement from

poor rural areas to urban areas (Molano 2005) and

an increase in forest cover. In the Magdalena-Urabá

Moist Forest woody cover change was explained by

environmental factors, but population change also

played a key role through forced displacement of

almost 31,000 peasants in the 1990s (SIPOD 2010);

therefore, the variable displacement in 1996 was

among the top five variables in this ecoregion. The

combination of a high level of rural–urban migra-

tion, low economic growth, and the presence of the

armed groups has contributed to forest regrowth in

several areas of these Moist Forest ecoregions.

Surprisingly, even though the FARC have had a

key role in the forced displacement of rural com-

munities and subsequent land abandonment

since the 1990s (López 2010; Defensoria del

Pueblo 2001), their presence was not an important
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variable explaining woody change in our analyses.

It is possible that the Plan Colombia and its Dem-

ocratic Security policies reduced guerrilla presence

between 2002 and 2010 across the country

(Acevedo and others 2008) and diminished their

effect on forest cover change.

CONCLUSIONS

Our results illustrate the complexity of forest change,

especially when analyzed at multiple spatial scales

and provide new perspectives about the causes of

forest change in Colombia. First, we determined that

environmental variables were important for

explaining woody cover change from the country to

the ecoregion scales because environment condi-

tions can either restrict or encourage different land

uses (for example, agriculture or pastures expan-

sion) at all scales. Second, given that Colombia has

high environmental heterogeneity coupled with

remarkable socio-cultural, economic, and demo-

graphic differences across its regions, demography

and socio-economy factors are important in

explaining woody cover change at the biome and

ecoregion scales. Nevertheless, in Colombia, the

importance of demographic variables appear to

mainly be a consequence of the armed conflict,

particularly through forced human displacement

(for example, rural–urban migration) in areas where

there was a high presence of armed illegal groups.

These factors promoted land abandonment, reduc-

ing forest pressure, and leading to forest regrowth

mainly in rural areas. Third, armed conflict variables

(that is, paramilitary groups) were the most impor-

tant variables in some ecoregions, suggesting that

their presence can have large impacts on local pat-

terns of forest cover change. The direction of their

impact (that is, deforestation or reforestation) de-

pends on: (1) physical properties of the landscape

(for example, lowlands—more deforestation); (2)

availability of areas rich in natural and mineral re-

sources to accumulate and generate wealth as well as

a source of funding (that is, Magdalena Medio, Lla-

nos—more deforestation); and (3) the strategic value

of the areas for illegal activities (for example, corri-

dors to transport weapons and drugs), which favor

reforestation. In summary, this multi-scale/multi-

variate approach provides a new insight into the

complex relationship between forest cover change

and land abandonment triggered mainly by armed

conflict in Colombia.
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Instituto de Investigación de Recursos Biológicos Alexander

von Humboldt.

Chazdon RL. 2008. Beyond deforestation: restoring forests and

ecosystem services on degraded lands. Science 320:1458–60.

Clark ML, Aide TM. 2011. Virtual interpretation of Earth Web-

Interface Tool (VIEW-IT) for collecting land-use/land-cover

reference data. Remote Sens 3:601–20.

Clark ML, Aide TM, Grau HR, Riner G. 2010. A scalable ap-

proach to mapping annual land-cover at 250 m using MODIS

1068 A. M. Sánchez-Cuervo and T. M. Aide

http://dx.doi.org/10.1111/j.1744-7429.2012.00908.x
http://dx.doi.org/10.1111/j.1744-7429.2012.00908.x
http://dx.doi.org/10.1007/s10113-011-0268-z


time-series data: a case study in the Dry Chaco ecoregion of

South America. Remote Sens Environ 114:2816–32.

Clark ML, Aide TM, Riner G. 2012. Land change for all munic-

ipalities in Latin America and the Caribbean assessed from

250-m MODIS imagery (2001–2010). Remote Sens Environ

126:84–103.

Cotte A (2010) Poverty, armed conflict, and human rights: an

analysis of the objective causes of violence in Colombia.

Investigation Group on Violence, Institutions and Economic

Development. Universidad de La Salle, Bogotá, DC, Colombia.
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