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Olga Khitun,5,6 Ulf Molau,5 Sofie Sjögersten,7 Philip Wookey,8
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ABSTRACT

Tundra vegetation is responding rapidly to on-going

climate warming. The changes in plant abundance

and chemistry might have cascading effects on tundra

food webs, but an integrated understanding of how

the responses vary between habitats and across envi-

ronmental gradients is lacking. We assessed responses

in plant abundance and plant chemistry to warmer

climate, both at species and community levels, in two

different habitats. We used a long-term and multisite

warming (OTC) experiment in the Scandinavian for-

est–tundra ecotone to investigate (i) changes in plant

community composition and (ii) responses in foliar

nitrogen, phosphorus, and carbon-based secondary

compound concentrations in two dominant evergreen

dwarf-shrubs (Empetrum hermaphroditum and Vaccini-

um vitis-idaea) and two deciduous shrubs (Vaccinium

myrtillus and Betula nana). We found that initial plant

community composition, and the functional traits of

these plants, will determine the responsiveness of the

community composition, and thus community traits,

to experimental warming. Although changes in plant

chemistry within species were minor, alterations in

plant community composition drive changes in com-

munity-level nutrient concentrations. In view of

projected climate change, our results suggest that

plant abundance will increase in the future, but

nutrient concentrations in the tundra field layer veg-

etation will decrease. These effects are large enough to

have knock-on consequences for major ecosystem

processes like herbivory and nutrient cycling. The

reduced food quality could lead to weaker trophic

cascades and weaker top down control of plant com-

munity biomass and composition in the future.

However, the opposite effects in forest indicate that

these changes might be obscured by advancing tree-

line forests.
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warming; grazing; secondary plant metabolite;
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INTRODUCTION

Arctic-alpine vegetation is currently changing to-

ward a more thermophilic state (Gottfried and

others 2012). Trees are expanding into tundra

(Tømmervik and others 2009; Harsch and others

2009), and tundra is becoming greener (Walker and

others 2009; Bhatt and others 2010). These changes

are assumed to be driven by warmer temperatures

(Harsch and others 2009; Bhatt and others 2010)

although social factors, such as industrial develop-

ment or nomadic reindeer herding, can also be

important (Walker and others 2009; Forbes and

others 2009). Moreover, studies on treeline ecotone

dynamics throughout Scandinavia reveal diverse

regional patterns due to local climate, herbivory,

and land-use history (Dalen and Hofgaard 2005;

Van Bogaert and others 2011). Meta-analyses of

warming experiments on tundra (Dormann and

Woodin 2002; Walker and others 2006; Elmendorf

and others 2012) and dendrochronological studies

(Forbes and others 2010; Blok and others 2011)

indicate that increased greenness is strongly related

to increased plant abundance in response to

warming. Indeed, a number of observational studies

have documented a rapid circumpolar increase of

deciduous shrubs, especially willows (Tape and

others 2006; Myers-Smith and others 2011) and

dwarf birch (Olofsson and others 2009), which

seems to drive this greening. Nevertheless, the

meta-analyses paint a diverse picture of warming

impacts on the other functional plant groups; for

example, only Walker and others (2006) recorded

an increase of graminoids, whereas the two other

meta-analyses reported no net effect on graminoids,

because of diverse species-level responses within

the group (Dormann and Woodin 2002; Elmendorf

and others 2012). Because all functional groups,

and the species within them, have different mor-

phological and chemical traits, these changes in

species composition can also drive changes in

community traits (Graglia and others 2001; Hansen

and others 2005; Sundqvist and others 2011).

Accelerated growth and altered environmental

conditions may also transform plant chemistry

within species. A global meta-analysis (Reich and

Oleksyn 2004) revealed that plant leaves tend to

have lower nutrient concentrations in warmer

temperatures, which corresponds with the findings

from altitudinal gradients, where plants from lower

altitudes have lower nitrogen (N) (Körner and

others 1986) and phosphorus (P) (Kitayama and

Aiba 2002) concentrations than plants from higher

altitudes. Furthermore, according to the plant

defense hypothesis (Coley and others 1985),

benign, less-stressful, environmental conditions

should diminish plant allocation to carbon-based

secondary compounds (CBSC). However, after more

than 20 years of research and debate, solid empirical

support for this hypothesis is still lacking, and a

mechanism for the suggested allocation transfor-

mation is unclear. In the Arctic, especially, studies on

the links between warming and CBSCs are limited in

number and also local in scope, which further con-

strains the detection of large-scale patterns (see

however (Graglia and others 2001).

Changes in chemical properties of the plant com-

munity, driven by changes in species composition or

changes in chemistry within species, may also

influence food web interactions (Schmitz 2008) and

nutrient cycling (Cornelissen and others 2007).

Plants, in general, have higher carbon (C) to N and C

to P ratios compared to the elemental composition of

herbivores and decomposers, which in turn have

consistently high levels of N and P relative to C

(Sterner and Elser 2002). This stoichiometrical mis-

match may weaken the importance of herbivores in

regulating plant biomass, leading to reduced digest-

ibility of the vegetation (Sterner and Elser 2002) and

the slower rate of plant litter decomposition (Cor-

nelissen and others 2007). The concentrations of

CBSCs, such as carbon-based tannins and phenolics,

may further reduce the digestibility of plants to

herbivores (Bryant and Kuropat 1980; Iason 2005;

Dearing and others 2005) and the decomposability of

their litter in the soil (Cornelissen and others 2004).

The effects of a changing climate on plant abundance

and chemistry are thus expected to have cascading

effects on above- and belowground food webs

(Schmitz 2008) with cascading effects on the func-

tion of the whole ecosystems. Based on the reason-

ing above, a warmer climate should accelerate the

growth of plants in general, but change the compo-

sition by favoring the fastest growing species

(deciduous shrubs and graminoids). Because fast

growing species are expected to have high nutrient

concentrations and low levels of secondary com-

pounds (Coley and others 1985), both the quality

and quantity of food for herbivores and litter for

decomposers are expected to increase with a warmer

climate. However, because changes in plant com-

munity composition and plant chemistry have rarely

been investigated simultaneously, and the response

of plant chemistry to warming is known to vary be-

tween sites and species (Graglia and others 2001;

Hansen and others 2005), the generality of these

predictions is unknown.

In this study, we used a long-term and multi-

site experiment to study the responses of plant
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abundance and plant chemistry to experimental

warming. Based on the studies mentioned above,

we hypothesized that warming will result in (i)

accelerated growth and increased shrub abun-

dance, especially of deciduous shrubs, (ii) increased

N and P concentrations in plants, and (iii) dimin-

ished concentrations of CBSC.

MATERIALS AND METHODS

Study Species

We selected two deciduous and two evergreen

dwarf-shrubs, which are common in oligotrophic

arctic tundra heaths and subalpine forest under-

storey, as study species (note: at our study sites,

graminaceous plants were present at abundances

too low to be included in this analysis). These four

species represent, on average, 80% of the total field

layer biomass in the habitats studied (Dovref-

jell = 69%, Abisko = 74%, Joatka = 95%), and can

thus be used as a valid measure of field layer plant

community in the oligotrophic forest–tundra eco-

tone in Fennoscandia. Evergreen northern crow-

berry (Empetrum hermaphroditum Lange ex

Hagerup) and cowberry (Vaccinium vitis-idaea L.) are

unpreferred species that mammalian herbivores

feed on only occasionally (Batzli and Lesieutre

1991; Warenberg and others 1997). Our focal

deciduous species, dwarf-birch (Betula nana L.) and

bilberry (Vaccinium myrtillus L.), are favored by

reindeer in summer (Warenberg and others 1997;

Kumpula and others 2004), whereas microtine

rodents feed extensively on V. myrtillus in winter

(Kalela 1957), also as mountain hares occasionally

do (Hjältén and others 2004). Hereafter, for sim-

plicity, we refer to our four study species as shrubs

s.l. including both dwarf-shrubs and shrubs.

Study Locations

The study was conducted in three locations span-

ning a 900 km (7.45�) latitudinal gradient from

Dovrefjell in central Norway through Abisko in

northern Sweden to Joatka in northern Norway

(Figure 1). Joatka is the most continental location

with the coldest winters, warmest summers, and

shortest growing seasons (Table 1), whereas Dov-

refjell has the coldest summers and warmest win-

ters. All sites are very dry (Table 1). However, the

up to 18-cm deep organic horizon in Dovrefjell

should retain moisture better than the thin (max

4 cm) organic layer in Joatka. The study sites are

situated in the forest–tundra ecotones. Mountain

birch (Betula pubescens Ehrh. subsp. tortuosa (Ledeb.)

Nyman) forms the treeline in all sites. In Dovrefjell,

dense mountain birch forest forms a short, some

hundreds of meters wide, transition from tundra.

The forest–tundra ecotone in Abisko is a 3–4-km

wide mosaic of mountain birch forest patches

extending to tundra. In Joatka, discontinuous birch

woodlands change to tundra above 400 m a.s.l.

The forests in Abisko and Joatka are sparser com-

pared to Dovrefjell, but the understorey in each

location is dominated by the same dwarf-shrub

species, E. hermaphroditum and V. myrtillus. Other

common species in the forests are dwarf-shrubs

blue heath (Phyllodoce caerulea (L.) Bab.) in Joatka,

northern bilberry (Vaccinium uliginosum L.) in Abi-

sko, and herbs such as goldenrod (Solidago virgaurea

L.) and chickweed wintergreen (Trientalis europaea

L.) in Dovrefjell. Wavy hair-grass (Deschampsia

flexuosa (L.) Drejer) is a common forest species in all

three locations, and the forest bottom layer consists

of the bryophytes Hylocomium splendens, Pleurozium

schreberi, and Dicranum spp. and a few lichens (for

example, Cladonia spp.). The tundra vegetation is

dominated by the shrubs E. hermaphroditum, V. vitis-

idaea, and B. nana. Other common species in the

tundra field layer are V. uliginosum in Joatka and

Abisko, and bearberry (Arctostaphylos uva-ursi (L.)

Spreng.) and sheep fescue (Festuca ovina (L.) in

Dovrefjell. The bottom layer in the tundra is dom-

inated by a moss Rhytidium rugosum in Dovrefjell

but by lichens, for example, Cladonia mitis, Cetraria

Figure 1. Map of Scandinavia showing the study loca-

tions, Dovrefjell (Norway), Abisko (Sweden), and Joatka

(Norway).
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cucullata, Nephroma arctica and a liverwort, Ptilidium

ciliare, in Joatka and Abisko.

The most abundant large herbivores in Dovrefjell

are not only domesticated sheep but also wild

reindeer (Rangifer tarandus tarandus) and moose

(Alces alces L.) can occasionally graze in the forest–

tundra ecotone. Study sites in Dovrefjell were

fenced against ungulate herbivores. In Abisko and

Joatka, semi-domesticated reindeer and moose are

the large herbivore species. Smaller herbivores in-

clude mountain hares (Lepus timidus L.), willow

grouse and ptarmigan (Lagopus spp.), lemmings

(Lemmus lemmus L.), and voles (Microtus spp.,

Clethrionomys spp.), which are present in all study

locations and were able to enter the study plots.

Experimental Design

At each of the three locations, two mountain birch

forest patches and two tundra heath patches in the

forest–tundra ecotone were selected as study sites

in June–July 1998. Five control plots of 1 m2 and

five experimental warming plots were randomly set

out in each of the four study sites, resulting in a

total of 40 study plots per location: 20 in forest, 20

in tundra. The warming treatment was conducted

using International Tundra Experiment (ITEX)

hexagonal Open Top Chambers (hereafter OTC)

(Marion and others 1997) with a maximum basal

diameter of 146 cm. The chambers, standing at the

plots year around, increased the surface air tem-

peratures in July by between 0.8 and 2.5�C and

annually by between 1.2 and 1.3�C in the tundra

sites (Sjögersten and others 2003), which are

within the range of what we expected based on

other studies using OTC chambers (Arft and others

1999). These OTC chambers reduced the wind

speed, especially in the tundra (Dalen 2004). The

reduced wind speed in the chambers might cause

larger increases in plant-experienced temperature

than these air-temperature measurements (De

Boeck and others 2012). Moreover, open top

chambers could also influence snow and thaw

depth (Bokhorst and others 2011b). These effects

seem to be minor in the chambers used here

because they advanced snowmelt only by 1–2 days.

The chamber could also influence the grazing

pressure from the major herbivores (microtine ro-

dents and reindeer). Microtine rodents can enter

the OTCs, but there were no significant differences

in the frequency of signs of small rodents in

warmed and control plots. The chambers will cer-

tainly have excluded reindeer, but excluding rein-

deer by exclosures in the close proximity to the

chambered plots had no significant effect on the

plant traits measured herein (JO pers. obs.).

Excluding reindeer only increased the abundance

of B. nana and reindeer lichens (Olofsson and

others 2009), but the effect of the exclosures on

B. nana was much smaller than the effects of the

Table 1. Site Characteristic of the Study Locations

Dovrefjell Abisko Joatka

Location 62.30�N; 9.62�E 68.31�N; 18.86�E 69.75�N; 23.99�E
Altitude (m a.s.l.) 1,000–1,100 520–600 420–500

Mean annual temp (�C) 0.24 -0.79 -2.42

Mean July temp (�C) 10.6 11.3 12.0

Mean January temp (�C) -6.9 -9.7 -12.4

Annual precipitation (mm) 449 338 443

Growing degree days (3�C) 140 138 124

Soil pH 4.4 4.0 3.5

Soil organic horizon depth (cm) 0–18 0–7 0–4

Soil total N (mg/g)

Forest 19.2 14.0 14.6

Tundra 16.7 13.3 15.1

Soil total P (mg/g)

Forest 1.03 0.91 0.80

Tundra 0.96 0.90 1.05

Climate data for the study period of 1998–2010 from Abisko Scientific Research Station and www.met.no.
Dovrefjell Fokstugu meteorological station at 937 m a.s.l., 27 km south of the study site. Abisko Abisko Research Station at 385 m a.s.l., 4 km north of the study site.
Joatka Temperature from Suolovuopmi and Suolovuopmi-Lulit stations at 380 m a.s.l., 25 km southwest of the study site, precipitation from Joatkajavre station (1999–
2006) 1 km from the study sites. Mean annual temperatures were adjusted to the mean altitudes of study sites by converting with lapse rate of -0.6�C/100 m from values for
respective meteorological stations. GDD3-values from Dalen and Hofgaard (2005) from period 1971 to 2000. Soil data from Sjögersten and others (2003), averages for five
control plots, five cores from 0 to 2 cm depth per plot.
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OTCs. We thus believe that the major differences

between the chambers and the control plots are

due to the warming effect although several of the

mentioned treatment artifacts could also poten-

tially influence the plants. Such influences, how-

ever, would be consistent across all chambered

plots.

Vegetation Sampling and Measurements

Plant community composition in each location was

recorded for the first time in July–August 1999

(after one year of warming), and for the second

time in Abisko and Joatka in July 2009 (after

11 years of warming) and in Dovrefjell in July 2010

(after 12 years of warming). The point intercept

method was used with a total of 87 vertical pins

systematically distributed along the three diagonals

of hexagonal warming chambers (29 per diagonal)

and with the same arrangement on the control

plots. The height of the highest hit and total

number of the hits per species per pin was recorded

individually for each of the pins. For this study, the

total number of hits normalized to hits per 100 pins

is used as an estimate of shrub abundance.

In mid-July 2006, after eight years of experi-

mental warming, the tips (10 cm) of 5–10 shoots of

E. hermaphroditum and V. vitis-idaea were sampled

for nutrient analysis from each study plot

(n = 120). Shoot tips of V. myrtillus were collected

from forest plots (n = 60) and shoot tips of B. nana

from tundra plots (n = 60). Samples were air dried

and stored in a dry dark place. Leaves were sepa-

rated from stems in the laboratory, and all the leaf

material from five control and five warming treat-

ment plots was pooled together at site level to ob-

tain the required amount of leaf material for

chemical analysis. Pooled samples were ground to a

fine powder using a ball mill and analyzed for

carbon (C), nitrogen (N), phosphorus (P), con-

densed tannins, and total phenolics. Total C and N

concentrations were determined using a Leco Car-

bon–Nitrogen Analyzer (Laboratory Equipment

Corporation, Michigan, USA). The concentration of

total P was measured by Kjelldahl digestion fol-

lowed by automated colorimetric methods on a

Lachat flow injection analyzer (Taylor 2000).

Condensed tannins and total phenolics were ex-

tracted in 50% acetone, which enables withdrawal

of not only water-soluble phenolics but also, more

importantly, the total pool of polyphenolics,

including the slowly degradable fraction with high

protein complexation capacity. Tannins were then

analyzed by a modification of the vanillin method

(Broadhurst and Jones 1978), which utilizes the

formation of colored complexes between vanillin

and condensed tannins. Catechin was used as the

standard, and the results are expressed as catechin-

equivalents. Total phenolics were analyzed by

oxidizing phenolate ions in alkaline solution while

reducing ferric ions to the ferrous state. Formation

of a Prussian Blue complex with a potassium fer-

ricyanide reagent was then detected spectrophoto-

metrically (Price and Buttler 1977). Tannic acid

was used as the standard and results are expressed

as tannic acid equivalents.

Statistical Analyses

Effects of location (Dovrefjell, Abisko, Joatka),

habitat (forest, tundra), treatment (OTC, control),

and their interactions on the abundance of E. her-

maphroditum and V. vitis-idaea were tested by

repeated-measures ANOVA with location and

habitat nested within site (two per each habitat in

each location). For V. myrtillus and B. nana only the

effect of location was tested, as these species

occurred mainly in one of the habitats. For N, P,

condensed tannins, and total phenolics, similar

nested three-way (E. hermaphroditum and V. vitis-

idaea) and two-way (V. myrtillus and B. nana)

ANOVA models, without repeated measures, were

run for investigating the effect of location, habitat,

and treatment (and their interactions) on the var-

iability of these chemical traits. To sum the species-

specific responses, abundance-weighted average

chemical traits were calculated for shrub commu-

nities consisting of the four study species which

form, on average, 80% of the field layer above-

ground biomass. Relative abundance weighted

chemical traits were calculated at each plot by the

following formula:

traitcomm ¼
Xn

i¼1

p�i traiti

where traitcomm is the weighted average of a

chemical trait for shrub community in a plot, pi is

the proportional abundance of shrub species i on

the plot measured as hits of species i divided by total

amount of hits for the shrubs at the plot, and traiti is

the chemical trait in species i. Variance of commu-

nity traits was tested for the effect of location,

habitat, and treatment (and their interactions) by

the nested three-way ANOVA with site as an error

term. The model assumptions were checked by

model diagnostic plots and square root or log10 + 1

transformation was performed, if necessary, to meet

the assumption of homogeneity of the variances

(see further Tables 2, 3 and 4). Relationships

Warming Effects on Shrub Abundance and Chemistry 1223



between the chemical traits at the community level

were tested by Pearson’s correlation. All analyses

were run in the R statistical environment (R

development core team 2011).

RESULTS

Plant Community Composition

Warming increased the density of three out of four

species investigated (B. nana, E. hermaphroditum and

V. vitis-idaea) (Figure 2; Table 2); for E. hermaphrod-

itum, the significant location 9 treatment 9 year

interaction reveals that the effect of warming dif-

fered between locations (Table 3). The warming

treatment increased the density of E. hermaphroditum

by greater than 200% in Dovrefjell and greater than

50% in Abisko in 11–12 years, whereas the effect of

warming was minor in Joatka (Table 2). In forest

habitats across the whole latitudinal gradient,

E. hermaphroditum responded more rapidly to

warming than the other species, which led to even

stronger dominance by E. hermaphroditum, mainly at

the expense of V. myrtillus (Figure 2). To our sur-

prise, despite the very large increase in total biomass

in tundra habitat in Dovrefjell, the structure of the

shrub community remained practically unchanged,

that is, all the species increased in a similar way

(Figure 2). In tundra in Abisko, B. nana increased the

most: whereas in tundra in Joatka, the greatest

increase was found for V. vitis-idaea (Table 2). E. her-

maphroditum was the most abundant shrub species

throughout all the study sites, also after 11-12 years

warming; however, in tundra habitats in Abisko and

Joatka, it responded weakly to warming relative to

B. nana and V. vitis-idaea, and hence its dominance

declined (Figure 2). The significant location 9

habitat interaction (Table 3) shows that the density

of V. vitis-idaea differed between forest and tundra,

but the difference was not consistent among loca-

tions; V. vitis-idaea was more abundant in the tundra

in Joatka and Abisko and more abundant in the

forest in Dovrefjell.

Nitrogen, Phosphorus, and Carbon

Both N (marginally significant, P = 0.054) and P

(P = 0.006) concentrations of B. nana leaves were

lower in warmed compared to control plots

(Figure 3; Table 4), but did not differ in the other

three shrub species between the treatments (Table 4;

online Appendices 1–4). Owing to the decreased N

and stable C concentrations (data not shown), C to N

(C:N) and C to P (C:P) ratios in B. nana were signif-

icantly higher in the warmed plots compared to the

controls (Table 4). Warming was associated with aT
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reduced N:P ratio in V. vitis-idaea, but had no effect on

the ratio in other species (Table 4).

Nitrogen concentrations decreased with increas-

ing latitudes in two of the dwarf-shrubs (E. her-

maphroditum and V. myrtillus, Figure 4A). Betula

nana, to the contrary, had high N concentrations at

all locations, whereas V. vitis-idaea had the lowest N

concentration in Abisko (Table 4; Figure 4A).

Accordingly, C:N ratios of E. hermaphroditum and

V. myrtillus increased with higher latitudes, whereas

there were no clear patterns for B. nana and V. vitis-

idaea. Phosphorus concentrations decreased with

increasing latitude in all the shrubs; in V. vitis-idaea,

there were, however, no differences between the

two northernmost locations (Figure 4B). This re-

sulted in rising C:P ratios for three out of four shrub

species, whereas the C:P ratio of V. vitis-idaea

remained unchanged in Abisko and Joatka.

Deciduous shrubs have greater nutritional value

(measured as N and P) compared to evergreen spe-

cies. V. vitis-idaea consistently had the lowest nutri-

ent concentrations at all locations (Figure 4A, B).

When species were present in both habitats, they

had higher concentrations of N and P, and conse-

quently lower C:N and C:P ratios, in forest than

tundra (Table 4). Generally, N:P ratios ranged

between 6.9 and 12.7 among species across

the latitudinal gradient. In E. hermaphroditum and

V. myrtillus N:P ratios were not affected by location or

habitat. In contrast, the significant habitat 9 location

interaction for V. vitis-idaea reveals that N:P ratios are

higher in tundra than in forest in the two northern

locations (Abisko and Joatka), but lower in tundra

than in forest in the southern one (Dovrefjell). Betula

nana had a significantly lower N:P ratio in Dovrefjell

compared to the other two locations (Table 4).

Defense Compounds

Condensed tannin concentrations increased toward

the north, across the latitudinal gradient, in

V. myrtillus, B. nana ,and V. vitis-idaea, but not in

E. hermaphroditum (Table 4; Figure 4C). Betula nana

had higher concentrations of both condensed tan-

nins and total phenolics compared to the other

shrub species, but there were substantial variations

between the locations and within the species. The

two evergreen species had higher tannin concen-

trations in the forest compared to tundra (Table 4;

Figure 4C) although the large differences in tannin

concentrations among species, locations, habitats,

and warming treatment appear idiosyncratic

(Table 4; Figure 4C). For example, the two decid-

uous shrubs responded in opposite ways to warm-

ing; tannin concentration decreased in V. myrtillus

and increased in B. nana in Dovrefjell and Abisko,

whereas it showed the opposite pattern in Joatka.

Total phenolic concentration of deciduous shrubs

Table 3. Summary of ANOVA Results for Shrub Abundance

E. hermaphroditum1 V. vitis-idaea1 B. nana2 V. myrtillus2

Fdf P Fdf P Fdf P Fdf P

Error: site

Location 13.632,5 0.009 4.672,5 0.071 8.792,2 0.102 0.202,3 0.830

Habitat 57.671,5 <0.001 1.491,5 0.276

Location*habitat 5.932,5 0.048 20.232,5 0.004

Error: site/plot

Treatment 37.841,101 <0.001 19.141,101 <0.001 13.071,50 <0.001 0.151,51 0.699

Location*treatment 19.452,101 <0.001 4.652,101 0.011 0.742,50 0.48 2.172,51 0.124

Habitat*treatment 0.001,101 0.991 1.871,101 0.175

Location*habitat*treatment 1.672,101 0.192 1.822,101 0.167

Error: within

Year 148.731,107 <0.001 47.411,107 <0.001 9.931,53 0.003 0.021,54 0.887

Location*year 49.472,107 <0.001 2.92,107 0.060 24.042,53 <0.001 0.322,54 0.727

Habitat*year 7.261,107 0.008 5.131,107 0.025

Treatment*year 55.541,107 <0.001 5.961,107 0.016 14.721,53 <0.001 0.231,54 0.630

Location*habitat*year 9.202,107 <0.001 0.322,107 0.729

Location*treatment*year 15.432,107 <0.001 0.142,107 0.868 1.712,53 0.192 0.202,54 0.822

Habitat*treatment*year 0.021,107 0.876 2.121,107 0.148

Location*habitat*treatment*year 0.822,107 0.445 0.152,107 0.858

Transformations prior to modeling: 1sqrt, 2log10(x + 1).
Values in bold indicate statistical significance at P < 0.05.
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Table 4. Summary of ANOVA Models for Foliar Chemistry of Shrubs

E. hermaphroditum V. vitis-idaea V. myrtillus1,2 B. nana1

F P F P F P F P

Nitrogen

Location 8.502,6 0.018 8.682,6 0.017 80.902,3 0.002 0.422,3 0.691

Habitat 69.691,6 <0.001 30.341,6 0.002

Location*habitat 3.012,6 0.124 2.002,6 0.216

Treatment 2.601,6 0.158 0.851,6 0.393 0.461,3 0.545 9.471,3 0.054

Location*treatment 0.742,6 0.517 1.052,6 0.406 3.662,3 0.157 0.022,3 0.982

Habitat*treatment 0.051,6 0.833 0.701,6 0.434

Location*habitat*treatment 1.692,6 0.261 0.732,6 0.520

Phosphorus

Location 7.662,6 0.022 19.692,6 0.002 12.872,3 0.034 9.062,3 0.054

Habitat 58.331,6 <0.001 49.001,6 <0.001

Location*habitat 1.082,6 0.397 1.082,6 0.397

Treatment 1.251,6 0.306 0.201,6 0.670 0.021,3 0.907 49.001,3 0.006

Location*treatment 0.242,6 0.796 1.742,6 0.254 0.532,3 0.633 1.002,3 0.465

Habitat*treatment 0.201,6 0.670 0.801,6 0.406

Location*habitat*treatment 0.392,6 0.695 0.912,6 0.451

N:P ratio

Location 1.472,6 0.302 4.192,6 0.073 1.152,3 0.427 47.822,3 0.005

Habitat 1.701,6 0.241 4.411,6 0.081

Location*habitat 0.922,6 0.447 11.272,6 0.009

Treatment 0.001,6 0.993 9.971,6 0.020 0.151,3 0.721 0.251,3 0.654

Location*treatment 1.152,6 0.377 2.482,6 0.164 0.012,3 0.993 0.042,3 0.957

Habitat*treatment 0.061,6 0.809 1.541,6 0.261

Location*habitat*treatment 0.382,6 0.701 1.982,6 0.218

C:N ratio

Location 5.522,6 0.044 5.242,6 0.048 110.062,3 0.002 0.602,3 0.603

Habitat 61.771,6 <0.001 30.401,6 0.001

Location*habitat 1.342,6 0.331 0.672,6 0.549

Treatment 3.631,6 0.105 1.131,6 0.329 0.551,3 0.511 18.971,3 0.022

Location*treatment 2.222,6 0.190 0.912,6 0.453 3.382,3 0.171 0.222,3 0.816

Habitat*treatment 0.201,6 0.669 0.121,6 0.743

Location*habitat*treatment 2.592,6 0.154 0.752,6 0.511

C:P ratio

Location 5.652,6 0.042 22.342,6 0.002 17.672,3 0.022 8.422,3 0.059

Habitat 39.961,6 <0.001 84.001,6 <0.001

Location*habitat 1.812,6 0.243 4.332,6 0.069

Treatment 2.351,6 0.177 0.091,6 0.780 0.041,3 0.862 24.161,3 0.016

Location*treatment 1.122,6 0.385 1.362,6 0.325 0.642,3 0.588 0.612,3 0.598

Habitat*treatment 0.131,6 0.727 0.541,6 0.491

Location*habitat*treatment 0.612,6 0.610 1.362,6 0.326

Condensed tannins

Location 0.002,6 1.000 18.882,6 0.003 108.502,3 0.002 6.532,3 0.081

Habitat 10.291,6 0.018 37.501,6 <0.001

Location*habitat 3.432,6 0.102 4.632,6 0.061

Treatment 0.671,6 0.445 0.331,6 0.585 8.001,3 0.066 1.001,3 0.391

Location*treatment 12.672,6 0.007 5.582,6 0.043 18.502,3 0.021 12.332,3 0.036

Habitat*treatment 2.671,6 0.154 0.331,6 0.585

Location*habitat*treatment 8.672,6 0.017 1.082,6 0.397

Total phenolics

Location 7.262,6 0.025 1.252,6 0.352 33.612,3 0.009 24.332,3 0.014

Habitat 2.711,6 0.151 0.261,6 0.630

Location*habitat 0.332,6 0.734 4.522,6 0.063

Treatment 0.811,6 0.404 1.151,6 0.326 1.061,3 0.379 4.121,3 0.135
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increased with higher latitudes, whereas it

decreased in E. hermaphroditum and showed no

significant differences for V. vitis-idaea (Table 4;

Figure 4D). Warming had no effect on total phen-

olics, except in E. hermaphroditum, which had

higher concentrations of total phenolics in OTCs

compared to controls in forest (16.3 ± 0.61 and

14.5 ± 1.05, mean ± SE, Table 4).

Weighted Average Community-Level
Traits

The effect of warming on community-level N

concentration depended on location and habitat,

but was either negative or neutral. In contrast to

the minor and mainly non-significant changes

within species, warming decreased P concentra-

tions of the whole community across the latitudinal

gradient (Table 5). N and P concentrations of shrub

communities were consistently higher in the forests

than in tundra (Figure 5A). There was also a trend

of decreasing N and P concentrations toward the

north for the whole shrub community, similar

to the trend found for the individual species

(Figure 5A; Table 5).

The level of condensed tannins in shrub com-

munities responded idiosyncratically to warming

and varied among habitats and locations (Table 5;

Figure 5B). The concentrations of condensed tan-

nins increased in both habitats in Dovrefjell,

decreased in the forest in Abisko, and increased in

forest in Joatka; they were unaffected by warming

in the tundra in Abisko and Joatka.

Figure 2. Proportional mean dwarf-shrub densities on the warmed plots (n = 10 per habitat in each location) in the

beginning of the experiment and after 10–11 years warming. Data for control plots are presented in Table 2. Area of the

pie describes the total dwarf-shrub density in number of hits per 100 pins.

Figure 3. Nitrogen and phosphorus concentrations in

B. nana leaves in control and warmed plots. The points

represent means of n = 6, and error bars are ±1 SE.

Table 4. Continued

E. hermaphroditum V. vitis-idaea V. myrtillus1,2 B. nana1

F P F P F P F P

Location*treatment 1.972,6 0.220 0.092,6 0.916 2.152,3 0.264 0.462,3 0.668

Habitat*treatment 9.321,6 0.022 0.921,6 0.375

Location*habitat*

treatment

2.942,6 0.129 0.662,6 0.551

Data log10(x + 1) transformed prior to modeling of 1nitrogen data, 2phosphorus and total phenolics data.
Values in italic indicate statistical significance at P < 0.1 and in bold significance at P < 0.05.
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Although total phenolic concentration of indi-

vidual shrub species was not significantly influenced

by warming (Table 3), we observed site-specific

community-level changes in phenolic concentra-

tions (Figure 5B; Table 5): Total phenolics of the

shrub community increased in the forest and

decreased in the tundra in Dovrefjell, showed no

significant effects in Abisko, and increased in both

habitats in Joatka (Figure 5B; Table 5).

Nitrogen and P concentrations (r = 0.92), as

well as condensed tannins and total phenolics

(r = 0.51), were positively correlated, whereas C

and N (r = -0.38), C and P (r = -0.28), C and

tannins (r = -0.39), and N and phenols (r =

-0.26) were negatively correlated.

DISCUSSION

The composition of vascular plant communities in

the locations investigated responded strongly to the

warming experiment with large increases in plant

biomass and shifts in community composition,

whereas the changes in plant chemistry of the indi-

vidual study species were more modest. This is in

agreement with the results from previous studies

(Welker and others 2005; Walker and others 2006;

Aerts and others 2009; Elmendorf and others 2012).

However, because our study combined measure-

ments of plant abundance and chemistry, it provides

novel information about the ecosystem-level con-

sequences of these changes. In particular, the large

differences in nutrient and secondary metabolite

concentrations among species imply that the chan-

ges in community composition rather than plant

chemistry will drive the impacts of climate change

on nutrient cycling and food availability for herbi-

vores. Our experimental design also allowed us to

address, for the first time, the effects of global

warming on plant abundance and chemistry simul-

taneously in contrasting habitats across a latitudinal

transect. In contrast to our hypothesis, and patterns

arising from previous meta-analyses from tundra

have documented (Walker and others 2006;

Elmendorf and others 2012), deciduous shrubs did

not consistently gain more from warming than

evergreens. Moreover, also in contrast to our

hypothesis, foliar N and P decreased, if they

responded at all, to the warming treatment. Finally,

Figure 4. Foliar A

nitrogen, B phosphorus,

C condensed tannins, and

D total phenolic

concentrations in shrub

species along the

latitudinal gradient from

Dovrefjell to Joatka. Only

statistically significant

differences are shown in

this figure; a detailed

presentation is available

in online Appendices 1–4.

For nitrogen and

phosphorus, the points

represent mean values of

n = 4; for tannins, mean

values of n = 2; and for

the phenolics mean

values of n = 4 for B. nana

and V. myrtillus and

of n = 8 for

E. hermaphroditum and

V. vitis-idaea. Error bars

represent ±1 SE. Tannin

concentrations are

expressed as tannic acid

and phenols as catechin

equivalents.
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our results highlight the idiosyncratic nature of

CBSCs varying greatly within and among species and

habitats and responding inconsistently to warming; a

result in line with (Graglia and others (2001)).

Plant Community Composition

The field layer vegetation responded differently to

warming in forest and tundra, as well as at the

locations across the latitudinal gradient. The

boundary between the closed forest and the tundra is

a distinct ecotone, influencing the physical condi-

tions as well as the distribution of species, including

the field layer vegetation (Hofgaard and Wilmann

2002). Because tundra-growing B. nana increased

dramatically, whereas V. myrtillus, occurring only in

the forests, did not respond to warming, the initial

differences in community composition led to

opposing effects of warming on community struc-

ture with increased dominance of E. hermaphroditum

in the forest and decreased dominance in the tundra.

The responsiveness of B. nana has also been docu-

mented in earlier studies (Wahren and others 2005;

Walker and others 2006), probably due to its ability

to promote long shoot production from axillary buds

in benign conditions (Bret-Harte and others 2001).

Although deciduous shrubs, including V. myrtillus,

are generally reported to increase in warming

experiments (Walker and others 2006; Elmendorf

and others 2012), there are good reasons why

V. myrtillus should respond more slowly to warming

than B. nana. V. myrtillus lacks the ability to produce

long shoots from axillary buds and it is dependent on

a permanent snow cover during winter because it is

more sensitive to frost damage and winter warming

events than other shrubs (Havas 1971; Bokhorst and

others 2011a). The positive effect of increased sum-

mer temperatures on the growth of V. myrtillus can

thus be offset by a negative effect of earlier snow-

melt in the warming treatment. Only very modest

Table 5. Summary of ANOVA Models for Weighted Average Traits for the Whole Dwarf-Shrub Community

Nitrogen Phosphorus Tannins Phenolics

df F P df F P df F P df F P

Error: site

Location 2 8.36 0.025 2 7.87 0.029 2 8.27 0.026 2 0.179 0.841

Habitat 1 34.88 0.002 1 27.76 0.003 1 12.42 0.017 1 0.007 0.935

Treatment 1 0.02 0.902 1 0.19 0.678 1 4.8 0.08 1 0.816 0.408

Location*habitat 2 0.92 0.456 2 0.11 0.895 2 5.54 0.054 2 0.44 0.667

Error: within

Treatment 1 11.1 0.001 1 14.03 <0.001 1 8.09 0.005 1 4.135 0.045

Location*treatment 2 1.82 0.167 2 2.57 0.082 2 28.08 <0.001 2 6.812 0.002

Habitat*treatment 1 0.85 0.359 1 0.61 0.436 1 1.22 0.272 1 9.685 0.002

Location*habitat*treatment 2 4.89 0.009 2 1.41 0.25 2 19.89 <0.001 2 15.557 <0.001

Values in bold indicate statistical significance at P < 0.05.

Figure 5. Abundance-

weighted shrub commu-

nity nitrogen and

phosphorus concentra-

tions (A) and condensed

tannin and total phenolic

concentrations (B) along

the latitudinal gradient.

The points represent the

means of five plot-scale

communities and error bars

are ±1 SE. Note In figure

(A) phosphorus values

were multiplied by 10. The

data is presented in bar

graph form in the online

Appendix 5.
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increases of V. myrtillus have indeed been reported

from earlier studies (Rinnan and others 2009). The

effect of warming on the plant community compo-

sition decreased with increasing latitude, with the

largest growth increments in Dovrefjell, which is

characterized by thick organic soil horizons and a

relatively long growing season. By contrast, in Joa-

tka, vegetation responsiveness to warming was

probably hindered by the short and warm growing

season and dry soils due to a thin organic layer on top

of the well-drained gravely sandy soils. The positive

relationship between the responsiveness of the

vegetation and the moisture regime (Arft and others

1999; Walker and others 2006; Elmendorf and oth-

ers 2012), as well as the more rapid increase in cover

of shrubs in alpine than in low arctic sites (Walker

and others 2006), are consistent with patterns

revealed in meta-analyses and shows that differ-

ences across our relatively dry environmental gra-

dients within the Scandinavian tundra follow the

same patterns expected from larger global gradients

(Walker and others 2006).

Plant Chemistry

Plant nutrient concentrations vary greatly among

species. Deciduous species V. myrtillus and B. nana

had consistently higher foliar N and P concentra-

tions than evergreens E. hermaphroditum and

V. vitis-idaea. By contrast, effects of warming were

small, mostly insignificant, and predominantly

negative. The net effect of warming on plant

nutrient concentration should be a result of a

positive impact via increased soil nutrient avail-

ability (Welker and others 2005) and a negative

impact via dilution from accelerated growth (Aerts

and others 2009) and advanced phenology (Torp

and others 2010). These processes seemed broadly

to balance each other out in three of the study

species, whereas the negative effects seem to be

more important for B. nana. The consistently higher

nutrient concentration in the forest than in the

tundra is probably an effect of shading from the

trees (Hansen and others 2005) although higher

soil nutrient availability in the forest cannot be

ruled out; indeed, there is evidence for substan-

tially higher N mineralization (and NH4
+-N avail-

ability) in forests at Abisko and Dovrefjell

compared with tundra heaths (Sjögersten and

Wookey 2005). On a global scale, plant leaf N and P

concentrations increase from the equator toward

the poles, level off at latitudes around 60� north,

and sparse northern data points suggest a decrease

at higher latitudes (Reich and Oleksyn 2004). Our

results support this suggestion of a decreasing trend

in foliar nutrient concentrations above 60� north.

Also, results of foliar P concentrations for the same

evergreen species along a subarctic elevational

gradient in Abisko show a decreasing pattern

toward higher altitudes, but this trend was not

found for N along that gradient (Sundqvist and

others 2011). Despite the large differences in phe-

nol and tannin concentrations among species,

locations, and habitats, the responses to warming

treatment and environmental gradients seem to be

idiosyncratic. This confirms the results from previ-

ous studies from the subarctic tundra (Graglia and

others 2001; Hansen and others 2005; Torp and

others 2010). It also shows that the plant allocation

of C to phenols and tannins may vary as much

among different sites in the Scandinavian tundra as

previously reported between the Scandinavian and

North American tundra (Graglia and others 2001).

This pattern is obvious both at species and shrub

community levels. Decreasing N:P ratios with

increasing latitude may imply stronger N limitation

in the north, which is in line with the general

pattern shown in the meta-analysis by Elser and

others (2007). The range of N:P ratios in our study

species indicates that N and P are co-limiting the

growth of shrubs in the Scandinavian forest–tundra

ecotone.

Community-Weighted Average Traits and
Possible Consequences for Ecosystem
Processes

Nitrogen and P concentrations in the shrub com-

munities were higher in the forest than in the

tundra and decreased with higher latitudes. The

weighted average trait approach reveals important

and consistent changes that could not be detected

at the species level. Stoichiometrical theory and

empirical studies suggest that the nutritional qual-

ity of the primary producers should control the

trophic structure of the ecosystems (Schmitz 2008;

Cebrian and others 2009). The higher N and P

concentration in forest, lower latitudes, and war-

mer plots could thus result in a higher efficiency of

trophic transfer, resulting in higher consumer

productivity and faster recycling of resources

(Cebrian and others 2009). Moreover, the higher

nutrient concentration of the living plants should

also result in higher nutrient concentrations in

plant litter (Soudzilovskaia and others 2007), and

thus influence the nutrient cycling and carbon

storage in the soil (Cornelissen and others 2007).

However, the higher condensed tannin concen-

trations in evergreen dwarf-shrubs in the forest

may counteract the positive effects of increased

1230 E. Kaarlejärvi and others



nutrient concentration, at least for herbivores for-

aging on these plants. Increased evergreen domi-

nance also suggests CBSC-rich litter inputs, and

therefore slow nutrient turnover in forests. Other

factors being equal, this should further favor

evergreen shrubs over deciduous, and enhance C

accumulation in recalcitrant litter in treeline forest

soils. The differences in plant abundance-weighted

traits are much larger than the relatively small

differences in plant chemistry within species, and

are driven primarily by the large changes in plant

community composition and the substantial dif-

ferences in plant chemistry among species. More

specifically, the proportion of nutrient-rich

deciduous shrubs is the major factor behind the

variations in community-weighted N and P con-

centrations. Interestingly, however, the highly

contrasting responses of the nutrient-rich decidu-

ous shrubs do not transfer into the changes in the

community-weighted traits. The only significant

changes in chemistry due to warming, the negative

effect on N and P concentrations in B. nana, at least

partly explain this. The importance of these chan-

ges for herbivores and further in the trophic chain

will depend on herbivores’ reliance on high quality

plants. Reindeer have been shown to be dependent

on high quality forage, and the changes recorded

here could potentially have large effects on their

body weight gain (White 1983; Cebrian and others

2009). However, because reindeer forage selec-

tively on preferred food items changes in plant

phenology or spatial variation may be as important

as the average nutritional quality of the vegetation

(Mårell and others 2006; Post and others 2009).

Furthermore, future vegetation changes will be an

interactive effect of future climate and grazing

regimes (Post and Pedersen 2008; Olofsson and

others 2009). Grazing could both hamper the

advance of the forest–tundra zone (Aune and

others 2011) and reduce the increase of deciduous

shrubs in a warmer climate (Post and Pedersen

2008; Olofsson and others 2009; Hofgaard and

others 2010) and thus reinforce the negative effect

of future climate changes on average food quality.

CONCLUSIONS

The results from this experimental multisite study

suggest that global warming will considerably re-

shape tundra vegetation leading to increased plant

abundance, but reduced nutrient concentrations.

These alterations indicate more, but lower quality,

plant litter, which potentially decelerates nutrient

turnover and could thus mitigate climate warming

in the longer term (Cornelissen and others 2007).

Moreover, our results also show that if treeline

forests will advance in the future, the indirect effect

of this rise could have greater effects on the eco-

system processes than the direct effect of warming

by increasing the nutrient concentrations in the

understory and by changes in community compo-

sition and within-species chemistry. Both these

results are important for understanding the cas-

cading effect of changes in the tundra plant com-

munity on herbivores and decomposers in the

future.
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