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ABSTRACT

Ecohydrologic models are a key tool in under-

standing plant–water interactions and their vul-

nerability to environmental change. Although

implications of uncertainty in these models are

often assessed within a strictly hydrologic context

(for example, runoff modeling), the implications

of uncertainty for estimation of vegetation water

use are less frequently considered. We assess the

influence of commonly used model parameters

and inputs on predictions of catchment-scale

evapotranspiration (ET) and runoff. By clarifying

the implications of uncertainty, we identify strat-

egies for insuring that the quality of data used to

drive models is considered in interpretation of

model predictions. Our assessment also provides

insight into unique features of semi-arid, urban-

izing watersheds that shape ET patterns. We

consider four sources of uncertainty: soil param-

eters, irrigation inputs, and spatial extrapolation of

both point precipitation and air temperature for

an urbanizing, semi-arid coastal catchment in

Santa Barbara, CA. Our results highlight a sea-

sonal transition from soil parameters to irrigation

inputs as key controls on ET. Both ET and runoff

show substantial sensitivity to uncertainty in soil

parameters, even after parameters have been cal-

ibrated against observed streamflow. Sensitivity to

uncertainty in precipitation manifested primarily

in winter runoff predictions, whereas sensitivity to

irrigation manifested exclusively in modeled

summer ET. Neither ET nor runoff was highly

sensitive to uncertainty in spatial interpolation of

temperature. Results argue that efforts to improve

ecohydrologic modeling of vegetation water use

and associated water-limited ecological processes

in these semi-arid regions should focus on

improving estimates of anthropogenic outdoor

water use and explicit accounting of soil parameter

uncertainty.
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INTRODUCTION

Semi-arid ecosystems are subject to high inter-annual

variation in precipitation and regular water scarcity;

both of these characteristics place stress on vegeta-

tion. The intensity of storm event precipitation and

the length of drought periods in these regions may

also increase as atmospheric carbon levels rise (IPCC

2007). Simultaneously, urban populations in semi-

arid regions such as the southwestern US are

increasing (Mackun and Wilson 2011) and human

modifications to the landscape structure and the local

water cycle in urban catchments can be extensive

(White and Greer 2006; Paul and Meyer 2001). In

semi-arid regions, the impacts of urbanization in an

ecohydrologic context are of particular interest. Wa-

ter is often imported to semi-arid and arid urban

areas, and irrigation of landscaping vegetation can

constitute a significant portion of overall water use.

Urban outdoor water use is estimated to represent

approximately 20 % of total urban water use in

California (Gleick and others 2003); this additional

water source acts to boost vegetation growth and

productivity. At the same time, increases in impervi-

ous area can reduce precipitation infiltration, nega-

tively impacting the amount of water stored and

available to vegetation during dry periods.

Ecohydrologic models can serve as useful tools

for forecasting the effects of environmental change

on vegetation and runoff. Given the current and

expected stresses and changes described above,

urban catchments in semi-arid regions are a logical

setting for implementation of such models. Eco-

hydrologic models can be used to quantify both the

current impacts of urbanization and how the sen-

sitivity of semi-arid ecosystems to future change

might be altered by urbanization. We use a semi-

arid and urbanizing catchment, Mission Creek, to

investigate some of the challenges presented when

applying ecohydrologic models to these environ-

ments. Located in Santa Barbara, CA, this site

typifies the water-scarce and increasingly urban

nature of many semi-arid catchments.

A key challenge in hydrologic modeling is deter-

mining model sensitivity to uncertainty and devel-

oping strategies for reducing or accounting for

uncertainties that lead to substantial changes in

model predictions. Numerous papers and commen-

taries highlight the importance of assessing hydro-

logic model sensitivity to uncertainties in calibrated

soil parameters, precipitation uncertainty, and the

structure of the model itself (for example, Kirchner

2006; Sivapalan 2009). Although uncertainty is rec-

ognized as a challenge in ecological modeling, the

impact of input uncertainty has not been extensively

explored (Fuentes and others 2006). If model sensi-

tivity to parameter or input uncertainty is large rela-

tive to model predictions of ecosystem response to

expected changes in climate, land use, or other po-

tential stressors, those predictions are of limited value.

Applying lessons and methods from traditional

hydrologic modeling to a broader ecological modeling

context is one potential means of better understand-

ing the impacts of uncertainty in ecological modeling.

One of the largest sources of uncertainty in

hydrologic modeling is the nature of soil properties,

such as hydraulic conductivity and storage. These

properties cannot be measured across an entire

catchment and many studies have shown that

widely available soil maps are poor estimators of

these parameters (Zhu and others 2001; Band and

Moore 1995). Further, the presence of macropores

and preferential flowpaths often leads to higher

values of drainage parameters than would be

expected given soil classifications (Nieber and Sidle

2010; Holden 2009). Because these properties

control infiltration and storage capacities, they can

influence water availability during dry periods and

thus impact vegetation water use and productivity.

However, in urban environments, impervious sur-

faces limit infiltration and may reduce the impor-

tance of the underlying soils; uncertainty in soil

parameters may therefore impact model output less

in urban catchments than in comparable undevel-

oped catchments. A common approach to reducing

soil parameter uncertainty is calibration using

streamflow observations. Although calibration of

soil drainage parameters can reduce uncertainty,

there are often many parameter combinations that

yield equally acceptable reproductions of runoff, a

concept referred to as equifinality (Beven and

Binley 1992). Model behavior may differ consid-

erably between these equally acceptable parameter

sets.

A second source of uncertainty in hydrologic

models is that of water and temperature inputs

derived from empirical data. We focus our analysis

on three sources of input uncertainty: extrapola-

tion of point precipitation data across the catch-

ment, water inputs resulting from outdoor water

use (OWU) in urban areas, and the nonlinear

change in temperature with elevation that can

result from the presence of a marine fog layer and

other local controls. As explained below, these

sources of uncertainty are especially relevant in the

semi-arid, urbanizing, coastal catchments that are

found throughout central coastal California and

typified by the Mission Creek study catchment.

776 Shields and Tague



Accurate spatial extrapolation of precipitation

from point data is a long-standing challenge in

hydrologic modeling. Previous studies have found

that uncertainties in precipitation estimates can

significantly impact model estimates of runoff

(Moulin and others 2009; Bardossy and Das 2008;

Nandakumar and Mein 1997), however, the impact

on modeled ET is less studied. Precipitation inputs

are typically derived from one or more point

measurements and extrapolated across the catch-

ment or, in the case of models driven by global or

regional climate model inputs, coarse spatial-scale

estimates that must be downscaled by distributing

values within local catchments. Although spatially

continuous precipitation data (for example, radar)

are increasingly used to drive hydrologic models,

these data are typically not available for historical

periods or future climate scenarios. A variety of

methods may be used to extrapolate point data,

such as Thiessen polygons, kriging, and develop-

ment of precipitation isohyets or inverse distance

weighting. In this study, we extrapolate precipita-

tion as a function of elevation to calculate precipi-

tation isohyets and then assess the effect of

uncertainty in the scaling factor used to define the

isohyets. In catchments with significant relief,

precipitation is often strongly influenced by eleva-

tion (Mair and Fares 2011; Hevesi and others 1992)

and previous studies of the Mission Creek catch-

ment have used elevation as a primary variable in

extrapolating precipitation (Beighley and others

2005). Because the precipitation–elevation rela-

tionship may vary significantly from storm to storm

(Dettinger and others 2004), we specifically con-

sider the impact of uncertainty associated with an

event-based scaling factor.

In urbanizing catchments, another source of

uncertainty arises from estimates of outdoor water

use (OWU), which primarily goes to irrigating ur-

ban vegetation. In semi-arid areas, OWU can con-

stitute a significant portion of annual water inputs

and even contribute to elevated baseflow levels.

White and Greer (2006) estimated a 13% increase

in dry-season runoff resulting from outdoor water

use in a catchment near San Diego, CA. In south-

ern California cities, outdoor water use has been

estimated to range from 18 to 35% of total water

use (Metropolitan Water District 1996). Outdoor

water use peaks during the summer when precip-

itation levels are low, and the fate of this water (as

runoff or ET) is of interest both from a water

management standpoint and an ecological per-

spective. This additional water input likely

increases vegetation water use and productivity,

but the observation of elevated baseflow suggests

that it is not always efficiently applied and that

OWU may be impacting riparian and aquatic eco-

systems as well as upslope areas. However, muni-

cipal water use is rarely explicitly monitored as

indoor versus outdoor use. The modeler must

therefore estimate the fraction of total water use

that constitutes OWU.

The final source of input uncertainty considered

is air temperature. Many models use temperature

data directly in computation of evapotranspiration

(for example, Priestley and Taylor 1972) or to

estimate vapor-pressure deficit (VPD), (Jones 1992;

Ward and others 1994), which impacts ET rates

derived from the Penman–Monteith equation. In

small catchments, temperature can usually be

reliably extrapolated from point data using eleva-

tion-based temperature lapse rates (Running and

others 1987). However, in coastal catchments a

marine fog layer can dampen temperature fluctu-

ations and cause non-linear variations in temper-

ature across elevation, introducing error into

temperature inputs derived from standard lapse

rates. Because the fog layer can be highly variable

in space and time, it becomes a potentially major

source of uncertainty when estimating temperature

inputs in affected catchments.

We quantify the sensitivity of modeled runoff

and ET to these four uncertainties using the Re-

gional Hydro-Ecological Simulation System

(RHESSys; Tague and Band 2004) within the Mis-

sion Creek catchment, a semi-arid, urbanizing

catchment in Santa Barbara, CA. The model is run

across a series of scenarios designed to capture the

likely range of uncertainty in each source. Sensi-

tivity of modeled ET and runoff to each source of

uncertainty is then analyzed at monthly, annual,

and long-term (14-year) time scales. By comparing

the contribution of different uncertainty sources to

modeled hydrologic behavior within the same

analysis, we can assess the relative importance of

each. Analysis of both ET and runoff responses

highlights differences in the timing and magnitude

of sensitivity between these two outputs.

This assessment of model sensitivity provides

insight into how soil-drainage properties combine

with the timing and magnitude of water inputs to

control vegetation water use at different temporal

scales. We discuss how our assessment can be used

in the design of efficient strategies for reducing

parameter and input uncertainty and ultimately in

evaluating the utility of the model as a tool for

forecasting catchment response to projected envi-

ronmental change. We are particularly interested

in the effect of different sources of uncertainty on

vegetation water use, represented by ET. In an
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urbanizing catchment such as Mission Creek,

accurate modeling of ET is key to understanding

the likely effects of further urbanization on vege-

tation function, including the effects of vegetation

water use on streamflow as well as vegetation

productivity and biogeochemical cycling of key

nutrients such as nitrogen (N). In semi-arid envi-

ronments, water is a strong limiting factor on

vegetation growth (van Wijk 2011; Ochoa-Hueso

and Manrique 2010; Austin and others 2004);

accurately capturing hydrology is thus especially

important to understanding broader ecological and

biogeochemical processes.

STUDY SITE AND INPUT DATA

Study Site

The Mission Creek (MC) catchment is a 31-km2

catchment located in Santa Barbara, CA (Figure 1).

Catchment elevation ranges from 0 to 1,312 m.

Land cover is characterized by chaparral in the

steep (slopes >20o) headwater regions with sub-

urban and progressively more urban development

dominating the base of the catchment. Developed

land uses cover approximately 50% of the catch-

ment. Land use is inferred from 1: 42,000 scale

aerial photographs taken in 1998 and classified

based on Anderson Level III classifications

(Anderson and others 1976). According to this

classification, developed land use is broadly char-

acterized as areas with 30% or greater area covered

by constructed materials. The three dominant

developed land classes in the catchment are

‘‘developed, open space’’ (<20% impervious cov-

er), ‘‘developed, low intensity (20–49% impervious

cover), and ‘‘developed, medium intensity

(50–79% impervious cover). The local climate is

Mediterranean, with warm, dry summers and the

majority of annual precipitation delivered during

winter storms. Annual precipitation averages

470 mm y-1 (National Climate Data Center 2002).

Input Data

Basin topography, derived from a USGS 10 m-res-

olution DEM, is used to subdivide the catchment

into a hierarchy of patches, zones, and hillslopes.

Land cover, vegetation, and impervious surface

cover characteristics are derived from a set of 1998

aerial photographs as described in Beighley and

others (2005) and used to assign land surface

parameters (see Tague and others 2009; Tague and

Pohl 2008; White and others 1997 for details).

Daily temperature data for the water years (WY)

1993–2006 were obtained from a National Climate

Data Center (NCDC) monitoring station near the

base of the catchment (3 m elevation, Figure 1).

Hourly precipitation data collected over the WY

1993–2006 study period at a mid-elevation (700 m)

gauge operated by the Santa Barbara County (SBC)

Flood Control District were used as the point pre-

cipitation input for all model runs. Precipitation

data from this gauge and seven additional SBC

Flood Control gauges on the south (ocean-facing)

slopes of the Santa Ynez mountains (Figure 1) were

used to calculate the precipitation scaling factors

that extrapolate precipitation depths across the

catchment.

Monthly water use (WU) data were provided by

the City of Santa Barbara for 1990–2007. OWU

inputs were calculated following a method previ-

ously employed by Johnson (2005), modified to

accommodate the multi-year study period. Febru-

ary water use (typically the lowest water use

month of the year) was assumed to characterize

indoor water use; indoor water use across a year

was then derived by assuming a linear change in

use from one February to the next. OWU for a gi-

ven month was calculated as:

OWUm;n ¼ Total WUm;n � ðFeb WUn � ð1� ðm=12ÞÞ
� ðFeb WUnþ1 � ðm=12Þ ð1Þ

where n represents the year in question and m

represents month. Note that for these calculations

the year begins in February (m = 1). We assumed

that monthly OWU totals are distributed evenly

within each month to estimate daily OWU. OWU

estimates were applied uniformly across developed

areas (approximately 50% of catchment area) as an

additional daily precipitation input. This method of

Figure 1. The Mission Creek catchment, streamflow,

climate, and precipitation gauging stations used in the

study.
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OWU estimation resulted in OWU accounting for

26% of total water use over the 1990–2007 period,

within the 18–35% range for residential and com-

mercial areas estimated for southern California

(MWD 1996).

RHESSYS MODEL

All model outputs used in this analysis were gen-

erated using the RHESSys model (Tague and Band

2004). RHESSys is a spatially distributed model of

coupled hydro-biogeochemical cycling and has

been successfully used to model daily runoff and ET

in watersheds with similar climate and topography

to Mission Creek (Tague and others 2004, 2009;

Tague and Pohl 2008). RHESSys models intercep-

tion, soil and litter evaporation, canopy transpira-

tion, infiltration, and vertical drainage, as well as

lateral routing between terrestrial patches. A Pen-

man–Monteith approach is used to estimate evap-

oration and transpiration fluxes. A detailed

description of approaches used to estimate infil-

tration and lateral–vertical fluxes is provided in

Tague and Band (2004).

Model Calibration

In RHESSys, soil parameters that control flow rates

through soils and permeable bedrock layers are often

calibrated using measured streamflow. In the Mission

Creek catchment, we used a multi-step calibration

process utilizing data from a set of three runoff gauges

(RS, RN, and MC; Figure 1) nested within the

catchment. We calibrated two shallow subsurface soil

parameters: saturated hydraulic conductivity (k) and

decay of k with depth (m). We also calibrated three

parameters used to define bypass flow to deeper

groundwater stores and groundwater drainage rates:

GW1shallow and GW1steep, the fraction of precipitation

automatically routed to groundwater where slope

was less than 20o and more than 20o, respectively,

and GW2, which controls the drainage rate of deep

groundwater to the stream. The separation between

‘‘steep’’ and ‘‘shallow’’ regions of the catchment has

been used in previous hydrologic modeling of the

Santa Barbara region (Beighley and others 2005);

steep areas are assumed to generate more quickflow

and shallow regions are assumed to generate more

groundwater flow. Initially, 15,610 parameter sets

were randomly generated. The number of acceptable

parameter sets was first narrowed based on stream-

flow data collected over WY 2001–2007 at the RS

gauge. This step calibrates against streamflow from a

steep, undeveloped and relatively homogeneous

portion of the catchment, minimizing the likelihood

that non-soil surface characteristics, such as imper-

vious surface cover, will be unintentionally co-opted

into soil drainage properties. Because slopes in this

portion of the catchment are generally greater than

20o, this step also allowed us to focus specifically on

calibrating the GW1steep parameter and separate it

from the GW1shallow parameter. Parameter perfor-

mance was measured by evaluating the Nash–Sutc-

liffe efficiency of modeled daily streamflow (NSE)

(Nash and Sutcliffe 1970), NSE of the natural loga-

rithm of modeled daily streamflow, and meanpercent

error of modeled daily streamflow. In the second

calibration step, RN1, we took the top 25% of

parameter sets from the RS calibration and use them

to model streamflow in the RN catchment, calibrating

against flow from the WY 2003–2007 period. In this

round of calibration, we also randomly varied the

GW1shallow parameter associated with each parameter

set. Best parameter sets from this round of calibration

were selected and used for two final calibrations, RN2

and MC, which tested the model against a different

meteorological record than the RN1 calibration (RN2,

calibrating against data from WY 1997–2002) and

across a larger geographic area (MC, calibrating over

the WY 2001–2007 period).

SENSITIVITY ANALYSIS

We estimate sensitivity of modeled ET and runoff

to uncertainty by varying soil-drainage parameters,

precipitation scaling, OWU, and temperature in-

puts across the estimated range of uncertainty in

each of these parameters or inputs. We consider the

impact of uncertainty in each input or parameter

separately. Although varying all parameter or in-

puts simultaneously would account for parameter

interaction effects, the high-computation time of

the required number of model runs made this ap-

proach infeasible (run time for a single model run is

�30 min for the 14-year study period). We do test

sensitivity of precipitation scaling, OWU, and

temperature inputs for three different soil-drainage

parameter sets, providing some exploration of

parameter interaction. The soil parameter sets all

showed high levels of performance in comparisons

between observed and modeled streamflow. For

each source of uncertainty considered, model out-

put from the WY 1993–2006 time period is used to

evaluate sensitivity to uncertainty.

Uncertainty in Calibrated Soil Parameters

We focused our evaluation of soil parameter

uncertainty on the uncertainty remaining after

Assessing the Role of Parameter and Input Uncertainty in Ecohydrologic Modeling 779



calibration against daily runoff. Calibration effec-

tively reduces parameter uncertainty by eliminat-

ing ‘‘non-functional’’ parameters, following Beven

and Freer (2001). Without calibration, soil param-

eter uncertainty would be considerably higher.

Some form of calibration is typical in hydrologic

modeling, even in the case of ungauged catchments

where parameter selection may be based upon

calibration to nearby gauged catchments (Wagener

and Wheater 2006). We focus our analysis on post-

calibration uncertainty, using only parameter sets

that yield acceptable streamflow during calibration.

A total of 441 soil parameter sets remained fol-

lowing calibration against streamflow observations,

from an initial pool of 15,610 parameter sets. A

summary of model performance through the cali-

bration process is given in the results section of this

paper.

Uncertainty in Precipitation Scaling

A time series of point daily precipitation data was

interpolated to compute daily precipitation inputs

for each zone in the catchment, where zone is the

spatial unit within RHESSys that computes micro-

climate variables (we used �5,000 zones, with a

minimum area of 120 m2, in the study catchment).

Precipitation was interpolated from a single rain

gauge based on elevation and precipitation scaling

factors (s). Values for s were derived from rela-

tionships between pairs of precipitation gauges as:

s ¼ ½ðP2=P1Þ � 1�=ðE2 � E1 ð2Þ

where P1 and P2/are daily precipitation (in mm) at

two sites, and E1 and E2 are elevation (in meters) of

the same two sites.

We combined daily data from eight precipitation

gauges (Figure 1) collected over the 2000–2008

time period to develop a distribution of s values for

daily precipitation. Note that although these sta-

tions were used to estimate an event-based time-

scale distribution of precipitation scaling factors,

they were not complete enough to provide daily

time series inputs for simulations. All possible

pairings of gauges were considered to provide the

maximum possible information about elevation-

based differences in precipitation. The minimum

elevation between gauge pairings was 50 m. Scal-

ing factors were observed to vary across events,

with a slightly larger range in s observed for smaller

events (<40 mm at primary gauging station) than

for larger events (>40 mm) (Figure 2). In each

instance, the distribution of s was observed to be

roughly lognormal according to the Shapiro–Wilk

test of normality. To test model sensitivity to

topographic scaling of precipitation inputs, on each

day where precipitation was observed at the main

precipitation gauge, an s value was selected at

random from the distribution of observed s values

for either large or small storm events (depending

on the magnitude of observed precipitation). Al-

though the difference in distributions between

large and small events appears small, we chose to

use two separate distributions. Use of a single dis-

tribution would expand the tails of the scaling

factor distribution for larger storms and generate

the potential for larger than expected water inputs

and increasing the potential implications of pre-

cipitation uncertainty. We preferred to err on the

conservative side when determining the magnitude

of uncertainty. For each of the three high-perfor-

mance parameter sets used, 1,000 simulations were

run over the WY 1993–2006 period with s varying

on a daily basis (3,000 simulations total). The s

value was used to extrapolate daily precipitation for

a given elevation (PE) as:

PE ¼ Pbase � s E� Ebaseð Þ þ 1 ð3Þ

where Ebase is the elevation of the main gauge

(700 m), and Pbase is precipitation measured at the

main gauge for that day.

Uncertainty in Outdoor Water Use

We examined the effect of uncertainty in water

inputs resulting from OWU in urban areas by

varying the depth of OWU. First, we removed

OWU entirely from the model to determine the

contribution of OWU to runoff and ET. We then

Figure 2. Precipitation scaling factor, s, shown as a

function of precipitation falling at the main precipitation

gauging station (elevation 700 m). Smaller storm events

(<40 mm) show greater variation in s values than larger

storm events.
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explored the impact of varying the depth of OWU

to determine if there were critical thresholds at

which the fate of OWU within the water balance

(runoff vs. ET) displayed significant changes. Five

scenarios were considered, one with no OWU

inputs and four scenarios adjusting the monthly

OWU estimates by ±15% and ±30% of the ‘‘base’’

scenario derived from WU data as discussed above.

These changes resulted in a long-term average

OWU ranging from 18 to 34% of total water use,

consistent with the MWD estimated range of OWU

in Southern California.

Uncertainty in Temperature Across
Elevation

In RHESSys, temperature is interpolated using an

elevation-specific lapse rate. In the absence of direct

measurements, VPD is often estimated using the dif-

ference between maximum and minimum daily

temperature (Running and others 1987; Jones 1992).

We used a single NCDC meteorological station

located near the base of the catchment (3 m

elevation) for the baseline scenarios and uncer-

tainty analyses not focused on temperature. For the

temperature-input sensitivity analysis, additional

data from a California Irrigation Management

Information System (CIMIS) meteorological station

is incorporated to better capture potential fog cover

effects. This second station is located at 640 m

elevation, about 25 km west of the study catch-

ment (Figure 1). Temperature measurements from

the 3 m elevation station (used for baseline simu-

lations) were applied to elevations below 300 m,

whereas data from the 640 m elevation station

were applied to elevations above 300 m. The 300 m

cutoff was selected because the cloud base of most

summer fog events in this region is at or below this

elevation (Williams and others 2008).

RESULTS

Model Calibration

When compared against observed runoff data from

the full Mission Creek catchment for the WY 2001–

2006 period (Figure 3), the 441 best parameters

ultimately selected for the soil parameter uncer-

tainty analysis were found to have daily NSE values

of 0.45–0.56, NSE of the natural logarithm of

streamflow (considered an indicator of the model’s

ability to capture baseflow) of 0.22–0.41 and per-

cent error of 14–33%, performance comparable to

previously used models in the same catchment

(Beighley and others 2005). A monthly water

balance showing average water inputs and average

modeled streamflow and ET outputs over the

14-year study period (Figure 4) shows that the

majority of streamflow occurs in the winter

months, when the bulk of precipitation also occurs,

whereas ET rates reach a maximum in the early

spring. The steep soils of the catchment limit stor-

age capacity, and both ET and streamflow quickly

decline during the summer months. A summary of

model performance at each step of the calibration

process can be found in Table 1. A potential con-

cern with the calibrated model is the tendency to-

ward streamflow overprediction that is seen when

parameters calibrated against the nested RS and RN

subcatchments are applied to the full MC catch-

ment. In part, we believe some of this overpredic-

tion, especially of low flows, may be attributable to

Figure 3. Observed and modeled streamflow for the 441

best parameter sets used to evaluate model sensitivity to

calibrated soil parameter uncertainty, WY 2001–2007.

Each gray line represents modeled streamflow associated

with one of the best parameter sets.

Figure 4. Mean monthly inputs and modeled outputs

over the 14-year study period, averaged across the 441

best calibrated soil parameter sets.
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errors in observed baseflow measurements. Sum-

mer low flows are known to be difficult to measure

accurately in this watershed and lack of precision in

baseflow measurements can be observed during

low flow periods (Figure 3). Uncertainty in pre-

cipitation data is also a key source of model error as

discussed in more detail below. Overall, we believe

that for this analysis the level of model error is

acceptable, as our goal is to determine model sen-

sitivity to different sources of uncertainty rather

than to use the model in a predictive capacity.

Sensitivity of Model to Soil Parameter
Uncertainty

Over the 14-year study period, model estimates of

ET and runoff displayed considerable sensitivity to

calibrated soil parameter uncertainty. Long-term

mean ET across soil parameter sets ranged from 343

to 396 mm y-1, a range representing 14% of long-

term mean annual ET (Figure 5A). Long-term

mean runoff ranged from 222 to 253 mm y-1, a

range representing 13% of mean runoff (Fig-

ure 5B). We note that this sensitivity is only to

uncertainty in calibrated soil parameters that met

acceptability criteria. Sensitivity across the full

range of potential parameters would likely be

greater. For individual years, variation in annual

ET across soil parameter uncertainty ranged

between 4.1% (WY 2006) and 28% (WY 1998) of

mean annual ET. Sensitivity of annual ET estimates

to soil parameter uncertainty showed some rela-

tionship with precipitation; wetter years displayed

greater sensitivity to soil parameter uncertainty

(Figure 6A). This relationship with precipitation is

non-linear; ET sensitivity increases sharply when

annual precipitation exceeds 700 mm. This jump

suggests that in wetter years, soil conductivity, and

groundwater drainage rates play a greater role in

determining model output than they do under

drier conditions, when the limiting variable is

water supply (that is, precipitation).

Table 1. Summary of Performance Metrics of Selected Best Parameter Sets from Calibration and Validation

Number of

parameter sets

Area, time period NSE Log (NSE) PE

RS calibration 3,903 RS, WY 2001–2007 0.63

(0.46–0.78)

0.35

(0.22–0.59)

0.05

(-14.52–13.20)

RN calibration 1 1,667 RN, WY 2003–2007 0.44 (0.38–0.66) 0.52 (0.27–0.58) -3.26 (-9.92–4.95

RN calibration 2 441 RN, WY 1997–2002 0.58 (0.40–0.66) 0.56 (0.38–0.66) 34.68 (7.20–52.44)

MC calibration 1 441 MC, WY 2001–2007 0.51 (0.45–0.56) 0.33 (0.22–0.41) 27.77 (13.65–33.22)

Values are shown as mean (minimum, maximum).

Figure 5. A, B Range of long-term mean annual A ET and

B runoff across (left to right) soil parameters (first boxplot),

stochastically varied precipitation scaling scenarios (box-

plots 2–4, each plot representing results across one of three

parameter sets), and OWU scenarios (boxplots 5–7, not

shown for runoff as no sensitivity was observed). Black circles

represent mean annual ET and runoff estimated using the

same parameter set but static precipitation scaling. Sensi-

tivity to incorporation of a high-elevation climate station is

not shown as there are only two data points.
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Monthly ET showed the most sensitivity to soil

parameter uncertainty during the spring and

summer (Figure 7A). During the remainder of the

year, ET sensitivity to soil parameter uncertainty

was low. For individual months, ET sensitivity

rarely (6 out of 168 months) exceeded 100% of

mean ET; median sensitivity was 13%. In contrast

to ET, runoff showed more sensitivity to soil

parameter uncertainty during the fall and winter

(Figure 8A).

Precipitation Scaling

Over the 14-year study period, total precipitation

showed very little variation when precipitation

scaling was varied on an event-by-event basis, with

the long-term mean precipitation input ranging

Figure 6. A, B Sensitivity of annual ET to parameter

and input uncertainties as a function of annual precipi-

tation. Figures show variance or change in annual ET A

across calibrated soil parameter sets, B between a no

OWU and the baseline OWU scenario, and across five

possible OWU scenarios (baseline, ±15 and ±30% of

baseline). Results are not shown for analysis of ET sen-

sitivity to stochastic variation in precipitation or the

addition of a high-elevation climate station as they show

no relationship with annual precipitation.

Figure 7. A, B Sensitivity of long-term mean monthly

ET to parameter and input uncertainty. Ranges of

monthly ET are shown across A calibrated soil parame-

ters and B a range of OWU scenarios. In each case, ET

shows the greatest sensitivity to uncertainty during the

summer months, corresponding to the peak growing

season. Sensitivity to stochastic precipitation scaling and

incorporation of a high-elevation climate station are not

shown as the monthly sensitivities are extremely small.

Note that these graphs show only mean values for each

month across the 14-year study period; sensitivity of

individual months could in some cases be larger or

smaller.
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from 561 to 564 mm y-1. On a year-to-year basis,

variation in precipitation inputs was somewhat

higher, averaging 15 mm y-1 (3.2%), and ranged

from 3.3 (WY 2002) to 43 mm y-1 (WY 2006)

(Figure 9). Variation in annual precipitation depth

across the distribution of precipitation scaling

uncertainty was strongly tied to annual precipita-

tion observed at the main gauge: years with higher

precipitation showed a greater absolute range in

precipitation inputs when the stochastic scaling

factor was implemented. However, the most vari-

ability by far was seen at the event (daily) time

scale. For days when precipitation occurred, pre-

cipitation inputs varied by 12% of mean precipi-

tation for the day and were as high as 83% when a

stochastic scaling factor was implemented.

The sensitivity of runoff to uncertainty in precip-

itation scaling varies with the time scale considered.

As with precipitation, the long-term mean annual

runoff showed little sensitivity to precipitation scal-

ing uncertainty, varying by only 4.5–5 mm y-1,

considerably less than the range observed across soil

parameter uncertainty (Figure 5B). Implementa-

tion of a stochastic precipitation scaling factor did

result in a small (3–5 mm y-1) but consistent in-

crease in modeled mean runoff over runoff modeled

using a static scaling factor (Figure 5B). Sensitivity

for individual years was much larger (Figure 9);

sensitivity of annual runoff across precipitation

scaling scenarios averaged 30 mm y-1 (14%) and

ranged from 7.0–30% of mean modeled runoff for

the same year (5–60 mm y-1, Figure 9). Sensitivity

of mean monthly runoff across the entire study

period ranged from 0.14 (September) to

4.9 mm mo-1 (March) and averaged 1.7 mm mo-1

(8.3%, Figure 8B). For individual months, runoff

sensitivity averaged 5.4 mm mo-1 (26%), but was

as high as 260% in one instance (February 2006). In

terms of absolute sensitivity of runoff depths, most

Figure 8. A, B Range in mean monthly streamflow

across A calibrated soil parameters and B a range of

stochastically varied precipitation scenarios. Sensitivity to

OWU levels and incorporation of a second climate station

are not shown as the monthly sensitivities are nonexis-

tent or extremely small. Note that these graph show only

mean values for each month across the 14-year study

period; sensitivity of individual months could in some

cases be larger or smaller.

Figure 9. Boxplot of inter-annual variation in the range

of annual precipitation (boxplots 1–3), streamflow

(boxplots 4–6), and ET (boxplots 7–9) across stochastic

precipitation scaling scenarios for each year in the 14-

year study period when a stochastic precipitation scaling

factor is implemented. Each of the three plots represents

results across one of three parameter sets used for the

precipitation uncertainty analysis. Streamflow is highly

sensitive to precipitation variation, whereas ET shows

only moderate sensitivity.
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sensitivity was observed in January–March

(Figure 8B). The impact of precipitation uncertainty

on rainy season runoff is greatest at the event scale.

In the 14-year study period, daily runoff on days

with precipitation (549 days) averaged 3.4 mm d-1,

whereas runoff sensitivity on these days averaged

1.4 mm d-1 (43% of the mean) and was as high as

35 mm d-1 in one instance. In percentage terms,

daily runoff sensitivity to precipitation scaling

uncertainty peaked at 570%.

ET showed much less sensitivity than runoff to

uncertainty in precipitation scaling. The sensitivity

of long-term mean ET was low, only 2.6 mm y-1

(0.7%). Within individual years, sensitivity of an-

nual ET averaged 9 mm y-1 (2.5%), and ranged

from 3.2 (1.8%, WY 2002) to 20 mm y-1 (5.4%,

WY 2000) (Figure 9). Sensitivity of ET to precipi-

tation scaling uncertainty increased at finer time

scales, but was consistently less than runoff sensi-

tivity. Sensitivity in mean monthly ET averaged

only 0.4 mm mo-1 (1.2%), ranging from 0.15

(September) to 0.9 mm mo-1 (May). Within indi-

vidual months, mean sensitivity of monthly ET

across precipitation scenarios was 1.2 mm mo-1

(5.4%). In some individual months, ET sensitivity

was as high as 18%, but in over 75% of months

sensitivity was less than 10%. We note that annual

ET is sensitive to annual precipitation (Figure 10),

particularly below a precipitation threshold of

700 mm y-1. This threshold likely reflects the

amount of seasonal precipitation generally required

to insure that soils are saturated at the end of the

rainy season.

Outdoor Water Use

All scenarios with OWU inputs showed increases in

ET, with increases between the no OWU and mean

OWU scenarios averaging 40 mm y-1 (13%). No

appreciable changes in runoff were observed. The

sensitivity of ET estimates to uncertainty in OWU

was similar in magnitude to sensitivity associated

with soil parameters (Figure 5A).

Unlike sensitivity to uncertainty in calibrated soil

parameters or precipitation scaling, sensitivity of ET

to OWU uncertainty showed no relationship with

annual precipitation (Figure 6B). On a monthly

basis, maximum changes in ET were observed dur-

ing the summer (Figure 7B), coinciding with peak

OWU. Between the zero OWU and mean OWU

scenarios, mean ET increases of 5–7 mm mo-1 were

observed over June–September. These increases

represented a 20–75% change in mean monthly ET,

depending on the month in question. The general

seasonal patterns of ET are not sensitive to OWU

uncertainty. Increases in ET were relatively linear

with change in OWU over the range of uncertainty

in OWU estimates. We might expect that at higher

levels of OWU, a threshold would be reached at

which increasing OWU would no longer increase

ET. However, the current range of OWU rates ap-

pears to be below that threshold.

Nonlinear Effects of Elevation on
Temperature

The impact of temperature estimates on modeled

eco-hydrologic fluxes is predominately expressed

through VPD. VPD estimated from temperature

data observed at 640 m is typically lower than VPD

estimated using temperatures extrapolated from

the 3 m elevation station using a linear tempera-

ture lapse rate. The differences in VPD estimates

also change on a seasonal basis, with differences in

VPD near zero in the summer but growing

throughout the fall and winter.

A comparison of output generated with one

versus two climate stations showed small long-term

differences in modeled ET. Over the study period,

mean ET decreased by 7.9 mm y-1 (1.7%) when

the 640 m temperature inputs were incorporated

and runoff increased by a corresponding amount

(2.6% increase in mean runoff). Absolute change

Figure 10. Mean ET with static precipitation scaling

versus annual precipitation. The steep soils in the head-

waters of the catchment strongly limit storage capacity,

whereas the concentration of precipitation in the winter

months limits opportunities to replenish water stores.

These two factors combined create the leveling-off in

annual ET seen when annual precipitation exceeds

600 mm.
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in annual ET or runoff for individual years ranged

from below 1 to 22 mm y-1, whereas the percent

changes ranged from below 1 to 4.5% (ET) and

below 1 to 8.1% (runoff). ET in wetter years ap-

peared to exhibit slightly more sensitivity, but the

increase was not consistent.

At a monthly time scale, ET exhibited low sen-

sitivity to temperature uncertainty. Mean monthly

ET increased from May to August when data from

the 640 m station were added, and decreased dur-

ing the remainder of the year. Absolute differences

in mean monthly ET, however, were small, ranging

from less than 0.01 (September) to 2.7 mm mo-1

(February). Percent difference in mean monthly ET

between the two scenarios reached a maximum of

8.9% in January. The pattern of increasing summer

ET and declining ET in other months with the

addition of the 640 m climate station corresponds

to the observed differences in estimated VPD. Over

the study period, monthly differences in ET were

small, with a median increase or decrease of

4.4 mm mo-1 (3.8%). None of the 168 months in

the study period displayed changes in ET above

20%.

DISCUSSION

The impact of input and parameter uncertainty

varies with the output (ET vs. runoff), time scale

and season of interest. Periods of ‘‘peak sensitivity’’

reflect changes in the dominant control on catch-

ment eco-hydrology and the timing of peak inputs

(Figure 11). In this semi-arid coastal catchment,

there is a seasonal shift from a period of low veg-

etation growth and water demand, and high pre-

cipitation inputs (winter) to a period of low

precipitation inputs, high vegetation growth, and

high vegetation water demand (summer). Key

transitions occur during rewetting of soils as winter

rains begin and during the gradual drying of soils in

the spring and summer. Corresponding to this

seasonal bioclimatic pattern, model estimates shift

from a phase of high sensitivity to soil parameters

early in the water year as soils wet up to a phase of

high sensitivity to precipitation uncertainty in the

winter (both manifested primarily as sensitivity in

modeled runoff), return to a phase of high sensi-

tivity to soil parameters in the spring (manifesting

as sensitivity in both runoff and ET), and finally

shift to a phase of high sensitivity to OWU in the

summer (manifesting exclusively as sensitivity in

ET).

A key finding was the difference in sensitivity of

ET and runoff to parameter uncertainty. This dis-

tinction is important given that a model’s ability to

reproduce observed runoff is often a primary

measure of performance. Thus, use of these models

to provide insight into ecological processes such as

ET may tend to overlook biases attributable to the

specific effect of parameter uncertainty on ET. ET

and runoff show interesting differences in sensi-

tivity to uncertainty in calibrated soil parameters,

Figure 11. Controls on

vegetation water use shift

through the water year.

In the fall, the system is

initially water-limited. It

becomes saturated

through the winter rainy

season and vegetation

water use is then limited

by demand. Vegetative

demand for water rises

through the growing

season and water stores

deplete, returning the

system to a water-limited

state at the end of the

water year.
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which reflect the episodic, winter-dominated pre-

cipitation regimes of semi-arid systems in a Medi-

terranean climate. Despite the presence of

impervious surfaces reducing potential infiltration

in developed areas, high sensitivities to calibrated

soil parameters were observed for both runoff and

ET. However, the timing of peak sensitivity to cal-

ibrated soil parameters differed between the two.

At the beginning of the water year when soils are

dry, runoff production is largely controlled by soil

storage capacity; early season runoff is thus highly

sensitive to soil parameters. However, after storage

capacities are exceeded during the early rainy sea-

son, runoff is controlled primarily by the amount of

precipitation available and thus transitions to a

period of higher sensitivity to event-scale uncer-

tainty in precipitation scaling but lowered sensi-

tivity to calibrated soil parameters. In contrast, ET

depends on water stored during the growing sea-

son, and thus sensitivity to drainage parameters is

expressed during the spring and summer. If soils

drain slowly and storage rates are high, more water

is available during the growing season.

ET and runoff also differ in their sensitivity to

uncertainty in precipitation inputs. ET sensitivity to

uncertainty in event-scale precipitation was rela-

tively low. Unlike runoff, ET is insensitive to the

amount by which soil moisture storage capacity is

exceeded and shows little sensitivity to event-scale

uncertainty in precipitation scaling. In contrast,

uncertainty in spatial scaling of precipitation at an

event scale did significantly alter runoff estimates.

For studies focused on response of runoff or ripar-

ian and stream ecosystems to environmental

change, there is a greater need to account for this

type of uncertainty, as these investigations are most

dependent on accurately capturing runoff. We do

note that ET is sensitive to total seasonal rainfall,

especially in years where annual rainfall is below

700 mm (Figure 10). If we had considered the

possibility of a long-term bias in scaling factor, ET

likely would have shown greater sensitivity to

precipitation uncertainty, as we would have then

considered uncertainty in seasonal precipitation

totals. A correction for long-term bias in annual

precipitation can be estimated from bias in annual

streamflow whereas event-scale uncertainty is

more difficult to account for. Fortunately, the low

sensitivity of ET to event-scale precipitation scaling

suggests that, for ecological studies that focus on ET

and vegetation response to climate variability in

areas similar to our study region, this source of

uncertainty is not critical. A key implication of this

finding is that for these semi-arid coastal water-

sheds, vegetation water use responses to small

changes in storm spatial patterns and, in particular,

changing storm intensity potentially associated

with a changing climate in this region (Cayan and

others 2008) are likely to be small. Given that

predicting fine-scale (<km) changes in storm pat-

terns associated with climate change remains a key

challenge for regional climate models, this finding

is encouraging. It is important to note that because

the insensitivity of ET to precipitation scaling

uncertainty is largely attributable to the seasonal

timing of precipitation, ET might become much

more sensitive to scaling uncertainty if the seasonal

timing of precipitation was to change. However,

efforts to predict changes in seasonal precipitation

timing for California (Cayan and others 2008) have

suggested that these changes in timing will likely be

quite minor for the region around Mission Creek.

ET will also likely be sensitive to other effects of

climate change, such as increased temperature or

increased CO2 availability; fortunately these chan-

ges are less difficult to forecast.

A finding with particular implications for urban

environments was that, at annual and monthly

time scales, the sensitivity of ET for the entire

Mission Creek catchment to uncertainty in OWU

inputs was comparable to uncertainty in soil

parameters (Figure 7A), despite the fact that OWU

inputs are only applied to developed portions of the

catchment (�50% of total catchment area). These

comparable levels of sensitivity are likely attribut-

able to the water-stressed nature of the catchment

and seasonal timing of precipitation. When soil

water stores have been exhausted, as is consistently

the case during the summer months, calibrated soil

parameters can no longer exert a strong influence

on ET. In a catchment where precipitation is more

evenly distributed throughout the growing season,

we would expect the sensitivity to uncertainty in

calibrated soil parameters to exceed the model’s

sensitivity to OWU uncertainty.

Long-term mean ET was also substantially more

sensitive to uncertainty in OWU than in precipita-

tion scaling. Although OWU inputs are much lower

than precipitation, the timing of peak OWU appli-

cation coincides with peak vegetation demand. The

impact of OWU inputs is also insensitive to prior

wet season conditions, reflecting the temporal

separation between peak periods of OWU and

precipitation. In a climate where precipitation

coincides more closely with the peak growing sea-

son, OWU might display greater sensitivity to pre-

cipitation, as watering rates would decline during a

wet summer or increase during a dry one. In water-

scarce areas such as the study site, it might be

expected that watering restrictions could cause an
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occasional precipitation-OWU connection if such

restrictions were only implemented during very dry

years. However, municipal water supplies in semi-

arid areas are rarely dependent solely on local

supplies. In Santa Barbara, for example, water can

also be obtained via the California State Water

Project. Thus, a drought would need to extend

across a large region and last over multiple years

before watering restrictions are implemented. In

Mission Creek, the most recent watering restric-

tions occurred during the 1986–1991 period

(County of Santa Barbara 2007). It was also inter-

esting that our analysis found no sensitivity of

runoff to OWU uncertainty. This finding was sur-

prising as a study of another Southern California

catchment found that baseflow levels had increased

as a result of urbanization (White and Greer 2006).

In this instance, our estimates of OWU show peak

inputs occurring in the summer, when vegetative

water demand is highest, meaning that OWU may

be quickly taken up by vegetation before it can

significantly impact baseflow. Finally, although

OWU inputs are significant, they are still small

compared to annual precipitation, and are inputted

over only half of the catchment. We suspect that

other water inputs resulting from urbanization,

such as leaking sewer lines (which we do not cur-

rently model), would have a greater impact on

runoff levels given their typically close proximity to

stream networks.

Finally, sensitivity to uncertainty in temperature

lapse rates was small despite the difference in VPD

estimates derived from high- and low-elevation

climate stations. These results suggest that for semi-

arid systems, ET is rarely limited by VPD, unlike

more humid systems or sites with different pre-

cipitation regimes where ET is more sensitive to

fine-scale differences in temperature and VPD (Ir-

mak and others 2006). Given that capturing spatial

patterns of temperature lapse rates with dynamics

of coastal fog is challenging, the finding that model

predictions of ET and runoff are not sensitive to

these small changes in temperature is reassuring.

However, studies have shown that fog interception

and direct uptake of fog water can be an important

water source in semi-arid coastal ecosystems (Fi-

scher and others 2009); this effect was not included

in this model. Future work will investigate the

potential magnitude of this effect.

In summary, we demonstrate that, for this semi-

arid urbanizing catchment, key sources of uncer-

tainty for ET estimates include soil parameters and

outdoor water use. For these parameters, the sen-

sitivity of ET estimates to uncertainty leads to biases

in predictions that are on the same order of mag-

nitude as estimates of climate change impacts on

vegetation water use in semi-arid environments

(Tague and others 2009; Serat-Capdevila and oth-

ers 2011). For example, Tague and others (2009)

used the RHESSys model to estimate that a 4�C
temperature increase would result in an average

10% change in mean annual ET for a semi-arid

chaparral ecosystem. Sensitivity of long-term mean

annual ET to soil parameter and OWU uncertain-

ties in this study were 10 and 13%, respectively.

Reducing uncertainty in OWU is likely to be more

tractable than reducing uncertainty in soil param-

eters. In addition, its importance suggests that ef-

forts to accurately quantify anthropogenic water

inputs may be as or more important than accu-

rately quantifying precipitation inputs. OWU esti-

mates for developed areas could be improved with

additional measurements, such as monitoring in-

door/outdoor water use separately for a random

sampling of households and using this data to re-

fine estimates.

Given the high sensitivity observed for both ET

and runoff, soil parameter uncertainty is also

clearly a concern. However, as discussed earlier,

soil properties are difficult to measure directly and

are highly heterogeneous across most catchments.

Significant reduction of uncertainty through im-

proved soil data is therefore an unrealistic goal.

Given this limitation, techniques such as the gen-

eralized likelihood uncertainty estimator (GLUE)

approach (Beven and Binley 1992) can be used to

provide upper and lower bounds on model pre-

dictions across a range of likely parameter/input

uncertainty. The GLUE approach is widely used in

hydrology to quantify the impact of parameter

uncertainty on runoff estimates (for example, Choi

and Beven 2007; Kumar and others 2010; Win-

semius and others 2009), but has not had the same

level of use in studies focused on using models to

quantify vegetation response to environmental

change.

Although ET showed relatively low sensitivity to

event-scale precipitation uncertainty, the high

sensitivity of runoff to precipitation uncertainty

also has implications for calibrating soil-storage and

-drainage parameters and thus indirectly for ET

estimates. Because runoff estimates are highly

sensitive to the precipitation scaling factor, cali-

bration against daily streamflow will be sensitive to

this uncertainty. Inaccurate estimates of precipita-

tion scaling can bias the selection of soil parameters

during calibration. This finding suggests that cali-

bration focused only on matching observed runoff,

particularly storm events, may not be ideal for

selecting soil-drainage parameters in systems with
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intense and episodic precipitation. For studies fo-

cused on ET, the highest sensitivity to soil drainage

occurs during spring and early summer, suggesting

that calibration of soil-drainage parameters should

focus specifically on ET during this period. Ideally,

estimates of ET derived from remote sensing data

(Winsemius and others 2008) or eddy flux mea-

surements could be used to calibrate the model,

further reducing soil parameter uncertainty. In

addition, using baseflow alone as an additional

calibration metric (Cao and others 2006; Spruill

and others 2000) could reduce soil parameter

uncertainty, as baseflow will be less sensitive to

uncertainty in individual storm events and more

sensitive to soil properties and uptake of water by

vegetation.

CONCLUSIONS

As water availability in semi-arid systems can

strongly influence both vegetation growth (van

Wijk 2011; Ochoa-Hueso and Manrique 2010;

Austin and others 2004) and biogeochemical cy-

cling (Xiang and others 2008; Miller and others

2005), accurately modeling ET is important in a

broader ecological context. Our findings highlight

the sensitivity of catchment-scale estimates of ET to

uncertainty that is directly attributable to the

strong seasonality and water-limited characteristics

of coastal, semi-arid systems. As the catchment

transitioned from a wet rainy season to a dry

growing season and summer, sensitivity to sources

of uncertainty also transitioned. Runoff shifts be-

tween high sensitivity to soil-drainage parameters

and high sensitivity to precipitation uncertainty as

the catchment wets up, whereas ET is most sensi-

tive to calibrated soil parameters in the spring and

shifts to high OWU sensitivity in the summer. The

temporal disconnect between rainy and growing

seasons limits the importance of storm-event pre-

cipitation uncertainty in modeling ET. However,

precipitation uncertainty may influence selection

of soil parameters and exert an indirect influence

on modeled ET. The sensitivities of model output to

soil parameter and precipitation uncertainty in

particular highlight the utility of a GLUE-type ap-

proach, which allows the modeler to capture a

spectrum of likely responses across a range of

uncertainty and better quantify confidence in

model predictions.

Our analysis highlights some of the characteristics

of semi-arid, coastal, and urbanizing catchments that

can impact eco-hydrologic modeling efforts. Sources

of uncertainty not traditionally considered in hydro-

logic modeling, such as OWU, can exert a strong

control on vegetation water use in developed catch-

ments. At the same time, precipitation uncertainty, a

major source of uncertainty in runoff modeling, ex-

erts a less direct influence on ET due to a combination

of climate characteristics and anthropogenic man-

agement. However, some traditionally recognized

sources of uncertainty, such as calibrated soil

parameters, still exert a strong control on modeled ET,

showing that despite the many structural differences

in developed and undeveloped landscapes, there are

areas of common challenge. Given the importance of

hydrology to vegetation productivity and biogeo-

chemical cycling in semi-arid ecosystems, reducing,

and accounting for uncertainties that impact catch-

ment hydrology are key to successfully capturing the

broader ecological response that can be expected from

these environments as they experience change.
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