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ABSTRACT

Despite efforts to understand the factors that

determine soil organic carbon (SOC) stocks in ter-

restrial ecosystems, there remains little information

on how SOC turnover time varies among ecosys-

tems, and how SOC turnover time and C input, via

plant production, differentially contribute to re-

gional patterns of SOC stocks. In this study, we

determined SOC stocks (gC m-2) and used soil

radiocarbon measurements to derive mean SOC

turnover time (years) for 0–10 cm mineral soil at

ten sites across North America that included arctic

tundra, northern boreal, northern and southern

hardwood, subtropical, and tropical forests, tall-

grass and shortgrass prairie, mountain grassland,

and desert. SOC turnover time ranged 36-fold

among ecosystems, and was much longer for cold

tundra and northern boreal forest and dry desert

(1277–2151 years) compared to other warmer and

wetter habitats (59–353 years). Two measures of C

input, net aboveground production (NAP), deter-

mined from the literature, and a radiocarbon-de-

rived measure of C flowing to the 0–10 cm mineral

pool, I, were positively and SOC turnover time was

negatively associated with mean annual evapo-

transpiration (ET) among ecosystems. The best fit

model generated from the independent variables

NAP, I, annual mean temperature and precipita-

tion, ET, and clay content revealed that SOC stock

was best explained by the single variable I. Overall,

these findings indicate the primary role that C in-

put and the secondary role that C stabilization play

in determining SOC stocks at large regional spatial

scales and highlight the large vulnerability of the

global SOC pool to climate change.

Key words: carbon turnover; climate change;

radiocarbon; soil carbon; terrestrial ecosystems;

terrestrial production.

INTRODUCTION

The response of the global soil organic carbon

(SOC) pool to increasing temperature and changing

moisture regimes will play a major role in deter-

mining how terrestrial systems will respond to cli-

mate change (IPCC 2007). Factors that control the

dynamics and size of the relatively small SOC pool

that turns over within a few years have been

extensively studied and are relatively well under-

stood (for example, Nadelhoffer 1990; Hart and

others 1994; Frank and Groffman 1998; Fissore and

others 2008; Craine and others 2010). Considerably

less is known about the dynamics of the much

larger pool of SOC that turns over at decadal to

millennial time scales (Trumbore 2009). Because

the dynamics of this older SOC pool largely deter-

mines soil carbon (C) stocks of ecosystems and will
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predominately dictate the direction and strength of

the terrestrial feedback on climate change, there is

great interest in documenting these long time-scale

SOC dynamics and understanding the factors that

control the size of this relatively old soil C pool.

Recently developed radiocarbon methods have

been used to examine long time-scale SOC pro-

cesses in temperate broadleaf and tropical forest,

temperate cropland, and arctic tundra (for exam-

ple, Trumbore and Harden 1997; Torn and others

1997; Paul and others 2001; Horwarth and others

2008; Trumbore 2009; Tipping and others 2010;

Posada and Schuur 2011). However, we are una-

ware of a radiocarbon study that has compared

pedologically similar soil C sampled at the same

depth from a wide range of ecosystem types. Such a

study would contribute to a general understanding

of how SOC processes, particularly turnover time,

vary among habitats and how SOC turnover rates

contribute to regional-scale patterns of soil SOC

stocks.

The SOC pool is primarily determined by the

long-term difference between the C assimilated by

plants and C lost in metabolism. At the regional

scale, plant production is principally a function of

climate (Rosenzweig 1968). The residence time of

soil C varies widely according to four inter-related

processes (Trumbore 2009): (1) climatic stabiliza-

tion, which is a function of thermal energy and/or

moisture control on decomposition (Meentemeyer

1978; Fissore and others 2008; Posada and Schuur

2011), (2) chemical stabilization (that is, recalci-

trance) that influences resistance to decomposition

(Krull and others 2006; Lützow and others 2006

2006), (3) physical stabilization, which is a result of

a diverse array of physical associations between

organic matter (OM) and clay surfaces and the

inhibiting effects of soil particle aggregation on

decomposition (Oades 1984; Jastrow 1996; Torn

and others 1997; Baldock and Skjemstad 2000;

Masiello and others 2004, Rasmussen and others

2005; Mikutta and others 2006), and (4) stabiliza-

tion due to the size, composition, and spatial dis-

tribution of the decomposer community (Ekschmitt

and others 2005; Briones and others 2010). Al-

though considerable attention has been paid to

different factors that control ecosystem C assimila-

tion and the stabilization of SOC, we are unaware

of any study that has explored the relative impor-

tance of C input versus soil C stability in controlling

soil C stocks that have accumulated under a wide

range of environmental conditions.

The overall goal of this study was to examine

regional-scale controls on mineral SOC turnover

times and stocks among arctic tundra, grassland,

desert, and boreal, temperate, subtropical, and

tropical forest ecosystems across North America.

Soil C stocks and radiocarbon measurements were

used to model SOC turnover times and calculate C

input rates to the mineral soil C pool among habi-

tats. We had two specific objectives. The first was to

examine how SOC turnover time was associated

with mean annual temperature (MAT), moisture

(MAP), and evapotranspiration (ET), a climatically

derived water budget variable, and soil clay content

among ecosystem types. The second was to deter-

mine the relative contributions of SOC turnover

time and C input in determining mineral soil SOC

stocks among ecosystems across North America.

MATERIAL AND METHODS

Soil Collection

Soil was collected in ten different ecosystem types

across North America and Puerto Rico in 2005

(Table 1) to determine SOC turnover times and

stocks (gC m-2). The 0–10 cm depth interval of

mineral soil was collected at each site. At two sites,

where mineral soil was overlain by a well-devel-

oped organic layer (northern boreal forest, north-

ern hardwood forest), the organic layer also was

collected. An arctic tundra site (Toolik Lake) was an

exception, where the top approximately 20 cm of

organic soil was collected and separated into Oe

(dark brown, fibrous) and Oa (black, well decom-

posed) horizons by color. Three replicate samples of

soil were collected at each site using a soil corer,

shovel, or trowel. Each of the replicate soil samples

was examined separately, except at four of the sites

(shortgrass plains, tallgrass prairie, subtropical

hammock, southeastern hardwood forest), where

samples were combined and measurements were

made on the pooled sample.

Mineral soil samples were passed through a 2-

mm sieve to remove coarse stones and large roots.

Clumps of soil were broken apart to homogenize

the samples as much as possible. The soil was then

passed through a 250-lm sieve, which removed

most of the remaining detectable root material. All

remaining visible root fragments were removed

from an approximately 200 cm3 subsample that

was collected from the re-homogenized soil. Soil

texture was determined on the subsample using

standard methods (Elliot and others 1999) and bulk

density measurements were obtained from the lit-

erature (see Table 1 for references). All visible roots

were removed from the organic layers with forceps.

Mineral soil and organic layer percent C was

determined on a CE Instruments NC 2100 soil
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analyzer (CE Elantech Inc., Lakewood NJ, USA).

Mineral SOC stock (gC m-2) was calculated by

multiplying the proportion soil C by bulk density

(g soil cm-3), then scaling up to 1 m2.

Soil Radiocarbon

D14C (&) measurements were made on a 1 g

homogenized subsample of soil that had all visible

root material removed under a dissecting scope.

Soil organic radiocarbon values were derived as the

deviation from a 1950 standard representing iso-

topic composition in 1950, prior to bomb-generated

increases in atmospheric 14CO2, where

D14C ¼ F � 1½ � � 1000 ð1Þ

and where

F ¼
14C=12

C
� �

sample

14C=12
C

� �
standard

: ð2Þ

The more positive the soil D14C value, the greater

the proportion of the soil C was represented by

bomb-produced 14C. Negative D14C values repre-

sented C that was predominantly comprised of C

assimilated before 1950. A sample with a D14C

equal to zero has the same isotopic composition as

that of atmospheric CO2 in 1950. Radiocarbon

values were corrected for (1) isotopic fractionation

by adjusting D14C measurements to a common d13C

value of -25& and (2) radioactive decay of the

standard after 1950. All samples were acid pre-

treated to remove mineral C and radiocarbon

measurements were determined at the Arizona

AMS Laboratory (Tuscon, AZ).

Stable C Turnover Rates

We calculated the turnover time (years) of the soil

C pool among ecosystems with a soil C stock

modeling approach described in detail elsewhere

(Trumbore 1993; Torn and others 2005; Frank and

others 2011). In brief, this method derived the

historic record of D14C content of two soil C pools,

active and stable, at an annual time step. We as-

sumed steady state dynamics, so that the size of the

two pools did not change over time, and that the

D14C value of the C assimilated by plants was

determined by the atmospheric D14C value of

CO2 for that year (http://www.radiocarbon.org/

IntCal04.htm; Levin and Kromer 2004; Graven

2008). The D14C value for C metabolized and lost

from the stable pool was equal to the radiocarbon

value of the C pool the previous year. For each

pool, the C input and output equaled the C pool

size divided by turnover time (years). The size of

the active pool was set at 3% of the total SOC pool,

similar to other studies (Parton and others 1987;

Torn and others 2005; Frank and others 2011), and

the D14C value of that pool was the atmospheric

value for the previous year. (Varying the size of the

labile pool from 1–5% was found not to change

derived stable turnover rates by more than

5 years). The stable C pool (soil C–active C) and the

turnover time of the active pool were known. To

determine the turnover time of the stable pool, we

found the value for stable C turnover time that

resulted in the correct soil D14C value for the soil

collected in 2005.

Other Site Measurements

We added a Greenland arctic site, for which

0–10 cm soil radiocarbon and soil property char-

acteristics were known (Horwarth and others 2008;

Czimczik and Welker 2010), to include arctic

mineral soil in our analyses. Monthly temperature

and precipitation values were gathered directly

from webpages of LTER sites (arctic tundra[Toolik

Lake], northern hardwood forest [Hubbard Brook],

shortgrass plains [Shortgrass Steppe], tallgrass

prairie [Konza Prairie], desert [Sevilleta], tropical

forest [Luquillo Experimental Forest]) or records

from municipal weather stations located 10–15 km

(mountain grassland, southern hardwood forest,

subtropical hammock), 30 km (northern boreal

forest), or approximately 120 km (tundra [Thule])

from the site using the National Climatic Data

Center climate records (http://www.ncdc.noaa.gov/

oa/ncdc.html). Thirty- to 40-year records were

used to calculate MAT and MAP for the sites; the

length of the record depended on the length of the

sequence of uninterrupted or nearly uninterrupted

data (mean monthly values were used for rare

missing values). The two exceptions were the

Greenland arctic and southern hardwood forest

sites, for which MAT and MAP values were calcu-

lated from 10-year nearly uninterrupted weather

records. Monthly temperature and precipitation

data were used to run a water-balance model

(McCabe and Markstrom 2007) to generate mean

ET rates at each site. This model estimated biolog-

ically available moisture accounting for precipita-

tion and temperature regimes and the rooting

depth and soil texture at each of the sites.

Annual net aboveground production (NAP) and

soil bulk density values were obtained from the

literature (see Table 1 for references). We derived I,

the annual rate of C flowing to the 0–10 cm min-

eral soil C pool, using the steady state relationship,

I = (sCS/t) + aCS, where sCS was the stable SOC
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pool (gC m-2), which equaled 0.97*SOC, t was the

stable SOC pool turnover time (years), and aCS was

the active SOC pool that turned over annually,

which equaled 0.03 *SOC.

Statistical Analyses

Values for the two topographic positions in

mountain grassland and tallgrass prairie were

averaged to provide a single sample for each of the

grassland types. Likelihood ratio tests (Burnham

and Anderson 2002) were used to select the best

bivariate linear or nonlinear relationship between

pairs of several variables: MAT, MAP, ET, C turn-

over time, percent clay (for mineral soils only), and

soil C stock. The one exception was the relationship

of stable SOC turnover time with MAP. In this case,

there was no significant difference between two

and three parameter decay functions, which would

have normally required the selection of the least

complex, two-parameter model. We chose the

more complex model, however, because the two-

parameter model yielded unrealistic negative SOC

turnover times for high MAP ecosystems.

We also built two separate models with the best

combination of variables to describe soil C turnover

times and SOC stocks. We performed these analy-

ses on standardized data to better assess the relative

importance of each independent parameter in-

cluded in the models (Sokal and Rohlf 1995). We

used the small sample Akaike information criterion

(c-AIC) for model selection (Burnham and Ander-

son 2002). All statistical analyses were performed

in R version 2.10.1.

RESULTS

Mean D14C values and turnover rates of 0–10 cm

mineral soil C varied widely among North American

ecosystem types (Table 2). Stable SOC turnover times

ranged from 59 years in subtropical hammock to

2151 years in Greenland high arctic tundra. For the

three sites where more than a single soil layer was

examined, the rate of SOC turnover declined with

depth (Table 2). The period required for stable SOC

turnover in the overlying organic soil layer was 895

and 233 years shorter than the mean turnover period

for SOC in the 0–10 cm mineral soil at the northern

boreal forest and northern hardwood forest, respec-

tively. At the Toolik Lake arctic tundra site, the stable

SOC turnover time for the surface Oe organic layer

was 686 years shorter than the subsurface Oa organic

layer (Table 2).

Stable SOC turnover time declined exponentially

with the three climatic parameters, MAT, MAP,

and ET (Figure 1A–C), indicating that the meta-

bolic loss of SOC sped up among warmer and

wetter climates. The relationships were predomi-

nantly or entirely determined by the much longer

SOC turnover times for arctic tundra, northern

boreal, and desert ecosystems that experienced

extreme cold or dry conditions. Remarkably,

SOC turnover times varied relatively little (59–

353 years) among the remaining ecosystems that

experienced a larger variation in climatic condi-

tions. An exception to the relationships was that

stable mineral SOC turnover time for desert soil

was significantly longer than predicted by the SOC

turnover–MAT relationship derived from other

ecosystems (Figure 1A), due to extreme moisture

limitation in that habitat. The qualitatively similar

functions of SOC turnover with the three climatic

variables, MAT, MAP, ET, was due to a positive

correlation between MAT and MAP among eco-

systems included in the study (r = 0.66, P = 0.036).

SOC turnover also exponentially declined with clay

content (Figure 1D); a counterintuitive result

considering reports of clay stabilizing SOC (for

example, Oades 1984; Mikutta and others 2006).

However, the relationship between SOC turnover

and clay content was due to both biological (that is,

decomposition) and geochemical (that is, chemical

weathering) processes increasing with warmer and

wetter conditions. The partial correlation coeffi-

cient between SOC turnover and ASIN percent clay

when the effect of ET was held constant was non-

significant (rp = 0.22). Thus, when the effect of

climate on the two processes was removed, SOC

turnover was unrelated to soil clay content among

our study sites. AIC comparisons of models

including all permutations of the independent

variables MAT, MAP, ET, and clay to describe stable

C turnover time yielded a model with just the

single variable ET.

The 0–10 cm mineral SOC stock (gC m-2) was

exponentially related to NAP (Figure 2A). The expo-

nential shape of the function was due to the relatively

low soil C stocks for three low productive ecosystems,

that is, desert, arctic, and shortgrass plains. There was a

positive, quadratic relationship between SOC stock

and the derived steady state rate of C flowing to the

mineral C pool (I), based on C stock and turnover time

measures (Figure 2B). The function reflected an

increasing SOC pool as I increased, but a declining

stabilization of C flowing to the mineral C pool among

the most productive, warm, and moist ecosystems.

There also was a weak, positive linear relationship

between soil SOC stock and soil clay content

(Figure 2C). SOC stock and stable SOC turnover time

were negatively related (Figure 2D), indicating, a bit

608 D. A. Frank and others



T
a
b

le
2
.

S
o
il

D
1
4
C

,
R

a
d
io

ca
rb

o
n

-d
e
ri

v
e
d

S
ta

b
le

S
O

C
T
u

rn
o
v
e
r

T
im

e
,

a
n

d
A

n
n

u
a
l

C
In

p
u

t
(I

)
V

a
lu

e
s

a
m

o
n

g
E

co
sy

st
e
m

s

E
co

sy
st

e
m

S
o
il

la
y
e
r

S
o
il

D
1
4
C

(&
)

S
ta

b
le

S
O

C

tu
rn

o
v
e
r

(y
e
a
rs

)

A
n

n
u

a
l

ca
rb

o
n

in
p
u

t
(I

)
(g

C
m

-
2

y
-

1
)

T
u

n
d
ra

(T
o
o
li

k
)

T
o
p

o
rg

a
n

ic
3
8

(1
4
)

1
8
5

(3
4
)

–

B
o
tt

o
m

o
rg

a
n

ic
-

1
0
1

(2
7
)

8
7
1

(3
1
5
)

–

T
u

n
d
ra

(T
h

u
le

)
M

in
e
ra

l
-

8
9
5

2
1
5
1

2
1

N
o
rt

h
e
rn

b
o
re

a
l

fo
re

st
O

rg
a
n

ic
-

8
(1

7
)

3
8
2

(9
8
)

–

M
in

e
ra

l
-

1
2
1

(1
0
)

1
2
7
7

(1
0
6
)

6
9
*

M
o
u

n
ta

in
g
ra

ss
la

n
d
/

d
ry

,
u

p
la

n
d

M
in

e
ra

l
3
2

(2
0
)

2
3
5

(7
2
)

7
7

(7
)

M
o
u

n
ta

in
g
ra

ss
la

n
d

/
m

e
si

c,
sl

o
p
e
-b

o
tt

o
m

M
in

e
ra

l
4
2

(1
5
)

2
0
8

(2
7
)

1
0
9

(1
7
)

N
o
rt

h
e
rn

h
a
rd

w
o
o
d

fo
re

st
O

rg
a
n

ic
7
1

(6
)

1
2
0

(9
)

–

M
in

e
ra

l
-

5
(5

)
3
5
3

(2
5
)

7
6

(9
)

S
h

o
rt

g
ra

ss
p
la

in
s

M
in

e
ra

l
4
9

1
6
2

4
1

T
a
ll

g
ra

ss
p
ra

ir
ie

/u
p
la

n
d

M
in

e
ra

l
5
1

1
5
8

9
6

T
a
ll

g
ra

ss
p
ra

ir
ie

/b
o
tt

o
m

la
n

d
M

in
e
ra

l
1
6

2
6
0

1
0
6

S
o
u

th
e
rn

h
a
rd

w
o
o
d

fo
re

st
M

in
e
ra

l
9
2

(9
)

9
5

(1
0
)

1
7
4

(1
6
)

D
e
se

rt
M

in
e
ra

l
-

1
4
6

(1
9
)

1
3
8
8

(1
9
7
)

1
4

(3
)

S
u

b
tr

o
p
ic

a
l

h
a
m

m
o
ck

M
in

e
ra

l
1
3
0

5
9

1
5
9

T
ro

p
ic

a
l

fo
re

st
M

in
e
ra

l
8
7

9
9

1
6
3

S
ta

n
d
a
rd

er
ro

r
is

in
p
a
re

n
th

es
es

fo
r

ea
ch

si
te

th
a
t

re
p
li

ca
te

so
il

sa
m

p
le

s
w

er
e

a
n

a
ly

ze
d
.

*
S
ta

n
d
a
rd

er
ro

r
co

u
ld

n
ot

b
e

d
er

iv
ed

b
ec

a
u

se
of

th
e

si
n

gl
e

S
O

C
st

oc
k

va
lu

e
ob

ta
in

ed
fr

om
R

u
es

s
a
n

d
ot

h
er

s
(2

0
0
3
).

Controls on SOC Stocks and Turnover Rates 609



counterintuitively, that faster turnover of the large

stable pool equivalent to 97% of SOC was associated

with greater SOC stocks. The positive and negative

associations of the two measures of C input (NAP, I)

and SOC turnover with SOC stocks, respectively

(Figure 2), was a function of both plant growth and

SOC decomposition being primarily under climatic

control. Comparisons of all permutations of functions

describing the variation in SOC stocks among ecosys-

tems from the pool of independent variables examined

in this study (MAT, MAP, ET, clay content, NAP, I)

revealed that the best fit model was the polynomial

function with the single variable, I (Figure 2B).

DISCUSSION

There were two principal goals of this study. The

first was to determine the variation in stable SOC

turnover time among a wide range of North

American terrestrial ecosystems and environmental

conditions. SOC turnover ranged by 36-fold (59–

2151 years) among ecosystems, indicating the

markedly different periods of time that assimilated

C resided in the soil among terrestrial habitats. This

large variation in stable SOC turnover time was

closely associated with mean ET, an index of the

biologically available moisture in a system. Previ-

ous studies have reported associations of ET with

regional-level variation in NAP (Rosenzweig 1968;

Sala and others 1988; Knapp and Smith 2001), also

found in this study, and litter decomposition rate

(Meentemeyer 1978). There appeared to be a

threshold level of ET of about 300 mm, above

which turnover was relatively unresponsive to ET

and below which turnover time increased expo-

nentially (Figure 1B). Qualitatively similar func-

tions were found for the relationships of MAT and

MAP with stable SOC turnover time. The phase

MAP (mm)
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Figure 1. The relationships of stable SOC turnover times with three climatic variables: A mean annual temp (MAT), B mean

annual precipitation (MAP), C evapotranspiration (ET), and D arc sine-transformed percent clay for 0–10 mineral SOC

among 10 North American ecosystems. The filled circles are mineral SOC turnover times for which functions were derived and

open circles represent turnover times for organic layers at northern hardwood, northern boreal, and arctic tundra sites.
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change from liquid to ice that occurs at 0�C is a

threshold at which microbial activity declines by

several orders of magnitude (Monson and others

2006; Schuur and others 2008). This effect of ice

formation on decomposition is likely responsible

for the relatively steep increase in SOC turnover

time below zero MAT (Figure 1A) among high

northern latitude habitats. SOC turnover time

exhibited an even steeper increase among sites

receiving less than 330 mm precipitation in the

relationship between SOC turnover time and MAP

(Figure 1B), suggesting a particularly sharp mois-

ture limitation threshold on SOC turnover that

occurs in very dry habitat.

Although focusing on the properties of mineral

SOC was the primary objective of this study, C turn-

over time also was measured for organic soil layers at

three of the ecosystem sites. The shorter SOC turn-

over times for the organic layer versus mineral soil

(northern hardwood, northernboreal forests) and the

top versus bottom organic layer (Toolik arctic site)

were likely due to the (1) deposition of recently

assimilated, relatively labile C on the soil surface

compared to lower layers that received older inputs

from above, and (2) lack of physical stabilization

forces between OM and clay surfaces in the organic

layers. Turnover times for the organic layer C also

were faster than the predicted mineral soil values

when controlling for ambient temperate (Figure 1A).

In contrast, organic layer SOC turnover times did not

seem to differ from the functions describing rela-

tionships of mineral SOC turnover with MAP (Fig-

ure 1B) and ET (Figure 1C), suggesting that moisture

limitation operated on the decomposition of labile

(organic layer) and more stable (mineral soil) C in the

same manner.

The second goal of this study was to examine

factors associated with 0–10 cm mineral SOC

stocks. Previous meta-analyses of global datasets

have found that SOC stocks increased with MAP

and clay content and declined with MAT (Post and

others 1982; Jobbágy and Jackson 2000). One dif-

ference between previous studies and this one is

that we also were able to examine how SOC stocks

(y )SOC turnover rs
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Figure 2. The relationships of SOC stock (gC m-2) with A NAP, B the derived C input to the 0–10 mineral SOC pool (I),

C arc sine-transformed percent clay, and D SOC turnover.
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were associated with the flow of C directly into the

mineral SOC pool (I) versus factors such as harsh

climatic conditions and soil clay content that can

stabilize SOC. We found that differences in SOC

stocks at this very large continental scale were best

described by a model that included the single

variable, C input (I), which explained 97% of the

variation in SOC stocks among ecosystems.

Lengthening the SOC turnover time, that is,

increasing stabilization, would be expected to in-

crease SOC stocks. However, we found that SOC

stock declined with increasing stabilization among

the widely variable ecosystems we examined (Fig-

ure 2D). This latter rather counterintuitive finding

was due to the opposite effects that ET had on C

input versus SOC turnover, increasing the former

and reducing the latter. The positive relationship

between SOC stock and I (Figure 2B) reflects

warmer and wetter climatic conditions increasing I

more than they reduce SOC stabilization.

We found that the derived annual C input (I) was

much lower than annual NAP. If one assumes that

55% of aboveground tissue is C (Sterner and Elser

2002), C input to the 0–10 cm mineral soil (I) aver-

aged only 54% (SE 38%) of the C in NAP (CNAP)

among ecosystems. Considering that CNAP does not

include root C that also flows to the mineral soil C

pool, the actual percentage of the relevant pool of

plant-assimilated C that makes its way via leaf and

rootpathways to the mineral soil ismarkedly less than

54%. Such results indicate the importance of her-

bivory and leaf and root litter decomposition, in

addition to plant production, in determining the flow

of C to the soil and the size of SOC stocks.

Clay was defined in this study on the basis of

particle size and, given the wide range of climatic

conditions and thus chemical weathering condi-

tions, the study systems included a diverse array of

morphological types of clay. Weathered clays usu-

ally have a plate morphology and can render OM

unavailable when organic material penetrates the

pores between stacks of plates and forms bonds with

the negatively charged mineral surfaces (Oades

1988). The stabilizing effects of secondary minerals

on SOC stabilization has been demonstrated in a

number of studies. In controlled laboratory experi-

ments, slower decomposition has been observed in

soils with higher clay content (Ladd and others 1977,

1981) and for OM associated with mineral surfaces

(Miltner and Zech 1998; Van Hees and others 2003;

Kalbitz and others 2005; Mikutta and others 2006).

In addition, field studies have found the amount and

the mineral properties of a weathered clay (for

example, the crystalline phase) (Torn and others

1997; Masiello and others 2004; Kleber and others

2005) can influence SOC sequestration. In northern

latitude habitats included in this study, clay particles

likely were represented by finely ground primary

minerals, and thus likely had negligible effects on

SOC stabilization. The combination of the relatively

unweathered clay material in arctic tundra and

northern boreal forest and the low amount of clay in

the arctic (8%) and desert (9%) soils suggests that

the very long SOC turnover times for those three

habitats (Table 2) were not due to clays stabilizing

SOC, but instead a function of climatic SOC stabil-

ization.

Global warming is expected to increase the net

flow of soil-stored SOC to the atmosphere. The

response of high latitude soils to climate change has

received considerable attention because of the rel-

atively large 7–8�C increase in MAT forecasted for

high latitudes by the end of the twenty-first cen-

tury (IPCC 2007) and the large vulnerable pool of C

stored in permafrost soil, estimated to be as much

as 50% of terrestrial C (Schuur and others 2008;

Tarnocai and others 2009). Using the function be-

tween stable SOC turnover time and MAT of Fig-

ure 1A, an 8�C increase for arctic tundra from -10

to -2�C would result in mean stable SOC turnover

time declining from 1969 to 863 years. It is still

unclear how increasing thermal energy will dif-

ferentially influence OM that ranges in age and

recalcitrance (Briones 2009). However, there is

some empirical evidence that climatic warming

may stimulate decomposition of recalcitrant SOC

more than labile SOC (Frierer and others 2005;

Conant and others 2008). If correct, warming

would result in a marked increase in stable SOC

turnover rates, particularly across high latitude

habitats that possesses old C that has been up to

now stabilized by extreme cold conditions. Of

course, the resulting SOC stock for a habitat will

not be singularly determined by the effects of

increasing temperatures on decomposition, but also

on the influence that climate warming will have on

ecosystem production (Luo and others 2011). A

recent lowering of Alaskan forest production due to

warmer and drier conditions (Beck and others

2011) suggests that climate change is also reducing

C input among northern ecosystems. Thus, global

climate change may have a two-pronged effect on

SOC stocks at northern latitudes by reducing C

inputs and releasing old, previously stabilized SOC.

We can think of three important caveats for

interpreting the results of this study. First, we only

examined the SOC down to 10 cm in the soil.

Although that SOC pool receives all of the above-

ground C and is an interval that supports dense

root growth and turnover in the majority of habitat
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types (Nadelhoffer and Raich 1992), most SOC

is found below 10 cm among ecosystems, with

properties differing markedly from surface OM

(Jobbágy and Jackson 2000). Consequently, fur-

ther work is required to determine how closely the

results of this study for 0–10 cm mineral SOC may

reflect the dynamics of deeper and whole-soil C.

Second, turnover times and C inputs reported here

were derived for steady state conditions. Modeling

studies suggest that even in harsh climates, SOC

stocks will reach equilibrium during primary suc-

cession within 2000 years (Horwarth and others

2008). Nevertheless, it is unclear how fire (Tho-

nicke and others 2008), forest harvesting practices

(Whittaker and others 1974), fluctuating grazing at

the grassland sites (Houston 1982; Knapp and

others 1998; Hart and Ashby 1998), and recent

disruption in climate may have produced non-

equilibrium dynamics and confounded our analy-

ses. Third, the relationships of stable SOC turnover

time and 0–10 cm mineral SOC stocks with envi-

ronmental conditions and C input estimates were

derived from a single sample per habitat type.

Clearly, additional samples will be required to flesh

out the variation around these climatically driven

regional-scale relationships.

The results of this study include several impor-

tant conclusions. Variation in C residence time in

the top 10 cm of mineral soil ranges by as much as

36-fold and is largely a function of climatic stabil-

ization that occurs in extreme cold and dry habi-

tats. SOC stocks were best explained by C inputs,

and not by the stabilization of soil C among eco-

systems across North America. These findings

indicating how climate plays the preeminent role in

controlling SOC stocks, by determining both C in-

puts, through controlling plant production, and

stabilization, through inhibiting decomposition in

harsh climates, highlight the probable large chan-

ges in SOC dynamics and stocks that will occur in

response to climate change.
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