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ABSTRACT

We compared regression tree analyses and multiple

linear regression models to explore the relative

importance of physical factors, land use, and water

quality in predicting phytoplankton production and

N2 fixation potentials at 85 locations along riverine

to lacustrine gradients within eight southern reser-

voirs. The regression tree model (r2 = 0.73) revealed

that differences in phytoplankton production were

primarily a function of water depth. The highest

rates of production (mg C m-3 h-1) occurred at

shallow sites (<0.9 m), where rates were also

related to total phosphorus (TP) levels. At deeper

sites, production rates were higher at sites with

relative drainage area (RDA, ratio of drainage area

to water surface area) below 45, potentially due to

longer hydraulic residence times. In contrast, mul-

tiple linear regression selected TP, RDA, dissolved

phosphorus, and percent developed land as signifi-

cant model variables (r2 = 0.63). The regression tree

model (r2 = 0.67) revealed that N2 fixation poten-

tials (mg N m-3 h-1) were substantially higher at

sites with relatively smaller drainage areas (RDA

< 45). Within this subgroup, fixation rates were

additionally related to TP values (threshold =

41 lg l-1). The multiple linear regression model

(r2 = 0.67) also selected RDA as the primary pre-

dictor of N2 fixation. Regression tree models suggest

that nutrient controls (phosphorus) were subordi-

nate to physical factors such as depth and RDA. We

concluded that regression tree analysis was well

suited to revealing nonlinear trends in data (for

example, depth), but yielded large uncertainty

estimates when applied to linear data (for example,

phosphorus).

Key words: N2 fixation; primary production; res-

ervoirs; regression trees; total phosphorus; relative

drainage area.

INTRODUCTION

The link between nutrient enrichment and in-

creases in planktonic productivity has been well

established; however, there is growing evidence

that physical factors associated with morphology
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and hydrology are the main regulatory controls on

phytoplankton (Cuevas and others 2006; Vanni

2006; Arhonditsis and others 2007; Jones and El-

liott 2007). The expression of nutrient limitation,

although temporally dynamic, may be subordinate

to physical factors and often varies along spatial

gradients (Smith and Shapiro 1981; Søballe and

Kimmel 1987). Additional factors influence rates of

primary productivity and N2 fixation such as tem-

perature (McQueen and Lean 1987; Scott and

others 2008), bioavailable nitrogen (Vanderhoef

and others 1974; Berman 2001; Scott and others

2008), depth of water column mixing (Levine and

Lewis 1987; Sterner 1994), turbulence (Paerl

1985), hydraulic residence time (Dickman 1969;

Søballe and Kimmel 1987), length of time of water-

column stratification (Paerl 1985), light intensity

(Smith and others 1980), sediment quantity and

quality (Kimmel and others 1990), sediment oxy-

gen demand (Parr and Mason 2004), and commu-

nity structure (Sterner 1989; Carpenter and others

2001). Factors affecting planktonic productivity

and N2 fixation have been well described in bio-

assays and single water bodies. Recent studies have

described interactions among variables across a

larger spatial scale (Sterner 1994; Patoine and

others 2006; Arhonditsis and others 2007; Howarth

and others 1988b). Our study examines interaction

and hierarchical structure among physical and

chemical predictors on a regional scale, which

may be the most appropriate scale for evaluating

hydrological and ecological processes that are

driven by geomorphological and climatological

factors (Cuevas and others 2006).

Reservoirs contain a variety of environmental

settings in which to examine patterns of carbon

and nitrogen fixation potential. Although systems

within smaller spatial scales (that is, region or wa-

tershed) typically share similar soils and morphol-

ogy, the hydrodynamics of riverine, transition, and

lacustrine zones in reservoirs lead to potentially

strong gradients in physical and biogeochemical

conditions (Pickett and Harvey 1988; Kimmel and

others 1990; Osidele and Beck 2004). Furthermore,

land-use patterns in reservoir catchments have

been linked to carbon and nitrogen fixation po-

tential through nutrient loadings associated with

anthropogenic activities (Arbuckle and Downing

2001; Scott and others 2008). Carbon and nitrogen

fixation processes have most often been analyzed

by traditional statistical approaches such as linear

regression-correlation (McQueen and Lean 1987),

multiple linear regression (Patoine and others

2006; Søballe and Kimmel 1987), and nonlinear

regression (Smith 1990). Recent studies have em-

ployed regression tree analyses (Scott and others

2008) or structural equation modeling (Arhonditsis

and others 2007) to evaluate these predominately

nonlinear processes. We used regression tree

analyses and multiple linear regression to explore

spatial patterns of production potential along riv-

erine to lacustrine transects within eight Texas

reservoirs. Production potential was obtained from

phytoplankton production and N2 fixation assays

on water collected along longitudinal gradients

within eight Texas reservoirs. Maximum fixation

rates were regressed against physical and limno-

logical predictors such as watershed land use, rel-

ative drainage area (RDA), depth, turbidity, and

water chemistry.

Classification and regression tree analyses

(CART) are often used in ecological studies to de-

fine habitat preferred by species or assemblages,

particularly in cases where alternative environ-

mental settings can support similar community

types (Rejwan and others 1999; Urban 2002; Qian

and others 2003; King and others 2005a; King and

others 2007). CART has also been used to construct

medical diagnosis decision trees because it can

handle a large number of diverse predictor vari-

ables (nominal or continuous) and the output is

relatively simple to interpret (Lewis 2000). The

analyses presented here are part of a larger study

that examines the relationship between reservoirs

zones and water quality. The goal of the study was

to provide criteria for delineating locations within

reservoirs where conventional ‘‘lake’’ water quality

standards may not be appropriate. Such locations

(for example, reservoir arms) may be fundamen-

tally more conducive to nuisance algal blooms due

to location, morphometry, watershed size, or other

site characteristics. To evaluate the usefulness of

CART in this context, we constructed models with

both regression tree analyses (all of our variables

were continuous) and conventional multiple linear

regression techniques.

Regression tree analyses partition data recur-

sively into subsets that are increasingly homoge-

neous, providing a tree-like classification that may

reveal relationships that are often difficult to rec-

oncile with conventional linear models (Urban

2002). The technique is particularly well suited for

resolving nonlinear, hierarchical, and high-order

interactions among variables (De’Ath and Fabricius

2000) and for detecting numerical values that lead

to ecological changes (Qian and others 2003).

General linear models such as analysis of variance

can include terms for specific interactions; how-

ever, in environmental data sets with many vari-

ables the number of potential interactions can
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become unmanageable. Regression tree analyses

can also reveal structure and hierarchy among

interacting variables that are not revealed by tra-

ditional linear regression. Regression tree analyses

rank continuous variables and therefore do not

require data that are normally distributed or that

are homoscadistic.

METHODS

We sampled 85 locations within eight reservoirs

located along an approximate north-south transect

in Texas, USA (Figure 1). To examine spatial vari-

ation in phytoplankton production and nitrogen

fixation, we selected within each reservoir one

generally western arm ‘‘A arm’’ and one eastern

arm or ‘‘B arm’’ (Figure 2). At most reservoirs we

sampled three to four sites within each arm, and

three or more sites within the main body of the

reservoir (C sites). All sampling occurred between

July and August 2006 (Table 1), providing a un-

ique opportunity to examine spatial trends on a

regional scale under similar climatic conditions.

Samples were collected at a depth of 0.3 m. Water

depth, temperature, pH, and conductivity were

measured in situ. Samples for chemical analyses

were stored on ice and transported immediately to

the laboratory. Samples for photosynthesis, respi-

ration, and N2 fixation measurements were stored

in lake water and darkness while transported to the

laboratory. Turbidity was measured in the labora-

tory with a Hach 2100N bench top turbidimeter.

Chlorophyll a was determined spectrophotometri-

cally after acetone extraction. Total and dissolved

nutrients were analyzed with a Lachat Quickchem

8500 Flow Injection Autoanalyzer using standard

colorometric techniques (EPA 365.3, 353.2, 365.1,

and 353.2).

We determined the phytoplankton production

potential of each site by measuring photosynthesis

and respiration in light–dark bottle incubations

(Fee 1973). Three subsamples were incubated un-

der saturating (375–425 lmol s-1 m-2) artificial

lighting (6700 K high intensity fluorescent); three

subsamples were incubated under low light

(33–45 lmol s-1 m-2); and three subsamples were

incubated in darkness (foil wrapped). Incuba-

tions lasted 6–12 h and were maintained at tem-

perature levels observed during reservoir sampling.

Respiration was calculated as the decrease in O2 in

dark bottles, whereas maximum gross planktonic

production was calculated as the sum of maximum

net production and respiration. The average dis-

solved oxygen change in three replicate clear

bottles was converted to carbon equivalents (mg

C m-3 h-1) based on an assumed photosynthetic

quotient of 1.2. Maximum phytoplankton produc-

tion potential was calculated as the average of the

three highest rates for each site.

Determination of planktonic N2 fixation poten-

tial was conducted using the acetylene reduction

method (Flett and others 1975). Nine 30-ml subs-

amples were drawn into 50-ml Popper� Micromate

glass syringes. Five milliliters of acetylene gas were

drawn into each syringe and dissolved with gentle

agitation. Incubations were conducted simulta-

neously with phytoplankton production assays,

under identical temperature and light conditions.

Deionized water was used in multiple syringes

under light and dark conditions to serve as method

blanks. Following incubations, 15 ml of air were

drawn into each syringe and the syringe agitated to

establish equilibrium between dissolved and vapor

phases. A 100-ll air sample was immediately ex-

tracted from each syringe and injected into a Carle�

AGC Series gas chromatograph (70�C, helium),

equipped with a flame ionization detector and a

1.8-m stainless steel column packed with 80%

Porapack N and 20% Porapack Q (80/100 mesh).

Multiple 10-ppm ethylene standards were used to

calibrate the instrument every 2–3 hours. The

acetylene reduction rate was calculated as the

average from three maximum replicate clear

syringes and converted into a N2 fixation rate

assuming the production of 3 lmols ethylene was

equivalent to the fixation of 1 lmol N2.

Watershed boundaries and land-cover type were

determined using ArcGIS v 9.2 with data classes

calculated by the 2001 National Land Cover Data-

base (30-m raster coverage). Percent land-cover

types were calculated for ‘‘A’’ and ‘‘B’’ subbasins of

reservoir arms sampled as well as for the entire

basin of whole reservoirs (‘‘C’’). Land covers clas-

sified as grassland scrub/shrub, forest, pasture/hay,

and barren were aggregated into one class repre-

senting undeveloped land. This was necessary due

to the tendency of studies encompassing a broad

geographic scale to exhibit spatial bias and patchi-

ness of cover types (King and others 2005b). For

example, in our study undeveloped areas in eastern

reservoirs tended to be dominated by forests

whereas undeveloped areas in western reservoirs

were dominated by grassland and scrub/shrub.

Relative drainage area was calculated as the

drainage area divided by the water surface area of

the arm or reservoir sampled. For each reservoir,

three RDAs were calculated; one for each arm and

a third for the entire reservoir. The RDA of an arm

was applied to all stations located in that arm

whereas the RDA of the entire reservoir was

Physical Factors Control Phytoplankton Production and Nitrogen Fixation 1183



applied to the main reservoir sites. We also calcu-

lated the hydraulic retention time (HRT) of each

cove and main reservoir based on the nearest gaged

streamflow from May 1 through August 29, 2006.

Where necessary, gaged data were corrected for

differences between the drainage area of the gage

and the drainage area of the reservoir or reservoir

arm. No adjustments were made for precipitation

or evaporation.

Correlations and multiple linear regression (using

stepwise forward selection and a significance level

for each variable of P = 0.05) were conducted using

SAS 9.1.3 (SAS Institute, Inc., Cary, NC, USA). Prior

to correlation and multiple regression, variables

were transformed to meet assumptions of normality.

We investigated collinearity by calculating toler-

ances and variance inflation factors. CART analyses

were performed using the RPART library in S-Plus

2000 (Insightful Corp., Seattle, WA, USA). Obser-

vations consisted of individual sites (n = 85) from

eight reservoirs. We required that each split yield a

group of at least eight observations and each termi-

nal group of the tree contain at least six observations.

We reran both models with reservoir and reservoir

arms as a class variable to reveal whether an appar-

ent land use or morphometric effect was driven by

observations within a single watershed (King and

others 2005a). The recursive nature of regression

tree solutions tends to produce models that are sta-

tistically over-fitted to the data used to generate the

model, which can compromise the predictive power

of the model. To address this, trees are pruned to

produce a final model that balances accuracy within

the available dataset with robustness to novel data

(Urban 2002). Typically, no additional independent

dataset is available to test the model, therefore this is

accomplished by cross-validation, or V-fold cross-

validation, where V usually equals ten, thus yielding

ten subgroups of data of similar size (Breiman and

others 1984; De’Ath and Fabricius 2000). Cross-

validation assures that each variable in the model is

sufficiently robust so as to accurately predict obser-

vations not included in the model. As each new split

(that is, new variable) is added to the model, cross-

validation selects 90% of the data, creates the

regression tree model, and then uses that model to

predict the remaining 10% of the data; this process is

repeated using all ten subgroups. The relative error

associated with each new model is calculated. This

process is repeated, resulting in an over-large tree

with an associated overall minimum error (De’Ath

and Fabricius 2000). Trees are then pruned to pro-

duce the smallest tree with a relative error that also

preserves the predictive power of the model. Pruning

is at the user’s discretion, but typically occurs either

at the minimum error or at the smallest tree size that

is within one standard error of the minimum error

(Urban 2002; Breiman and others 1984). The

Figure 1. Location of

eight Texas reservoirs

where carbon and

nitrogen fixation were

determined for sites

located in the main

reservoir zone and in one

eastern and one western

arm (24 sites).
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resulting error associated with regression tree mod-

els is the proportion of total sum of squares

accounted for by the model compared to the sum of

squares of the whole group.

Parameter uncertainty estimates for regression

tree predictors were calculated by using an S-Plus

changepoint analyses routine on each split of the

tree models followed by a bootstrap function (Qian

and others 2003). Uncertainty about the value of

each split was determined by calculating a 90%

confidence interval (CI) from the 1000 bootstrap

simulation replicates. The uncertainty was ex-

pressed as the 5–95% range from these replicates

(Qian and others 2003). We used the approximate

v2-test to evaluate the statistical significance of

each split. The v2-test uses the ratio of the deviance

reduction to the total deviance prior to the split and

assumes that this ratio is approximately v2-test

distributed (d.f. = 1) (Venables and Ripley 1994).

RESULTS

Predictor and Response Variables

The observed range of values for response and pre-

dictor variables are listed in Table 2. Several variables

were strongly correlated (Table 3). For example,

water depth was inversely correlated to turbidity

(r = -0.668), temperatures (r = -0.568), and total

phosphorus (TP) (r = -0.549). Total phosphorus was

strongly correlated to N:P (r = -0.888); however,

total nitrogen was not well correlated to nitrate or

N:P. There was a strong association between total

nitrogen and chlorophyll (r = 0.809), which in turn

Figure 2. Reservoir (C)

and reservoir arm (A and

B) catchment delineations

and land use for eight

reservoirs. Land use

classifications are from

National Land Cover

Database, 2001.
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was well correlated to both production potential

(r = 0.918) and N2 fixation potential (r = 0.793).

Hydraulic retention time was inversely correlated to

RDA (r = -0.603). Some of these correlated vari-

ables, such as chlorophyll, total nitrogen, and tur-

bidity were eventually eliminated as predictors as

later discussed.

Land-use cover varied widely among the eight

reservoirs and between reservoir arms. Three res-

ervoirs, Buchanan, Canyon, and Stillhouse Hollow,

were largely undeveloped, with watershed land use

primarily comprised of grass/shrub and forest.

Proportions of developed land were highest in

Lewisville-B and Cedar Creek-B subbasins (0.57

and 0.43, respectively), which are both located in

large metropolitan areas. In addition, the tributary

for Lewisville-B receives up to 21 million gallons

per day of treated municipal wastewater, which is

discharged approximately 3 km upstream of this

study’s sampling locations. Cedar Creek-B is a small

cove with high-density residential development

along its shoreline. Moderately developed subba-

sins included Stillhouse-B (0.20) and Lewisville-A

(0.16). Proportion of cropped land was highest in

Texana-B (0.56) and Aquilla-B (0.43) subwater-

sheds. Western subbasins of Lewisville and Texana

also had considerable areas of cultivated crops, with

the result that Aquilla, Texana, and Lewisville

whole reservoir watersheds had the highest densi-

ties of cultivated crop areas.

Multiple Linear Regression Models

Linear regression models for both phytoplankton

production and N2 fixation potentials each con-

tained four parameters (Table 4). None of the

parameters had tolerance values less than 0.1 and

thus no eliminations were made based solely on

collinearity. Phytoplankton production potentials

were related to TP (Figure 3), dissolved (soluble

reactive) phosphorus, RDA, and percent of devel-

oped land. The overall r2 for the phytoplankton

production model was 0.63 (adjusted r2 = 0.62).

The multiple regression model for N2 fixation also

included RDA (Figure 3) and dissolved phospho-

rus, with RDA providing the greatest contribution

to the model (r2 = 0.43). N2 fixation was also

associated with total nitrogen and percent of

undeveloped land. The overall adjusted r2 for the

N2 fixation model was 0.67 (adjusted r2 = 0.65).

Regression Tree Models

The pruned regression tree model for phytoplankton

production (Figure 4) included three variables:

depth, RDA, and TP. Depth and RDA accounted forT
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the largest share of variability in phytoplankton

production among sampling sites (partial r2 = 0.43

and 0.16, respectively). Parameter values, uncer-

tainty estimates, and statistical significance P-values

are summarized in Table 5. The depth threshold was

0.9 m (90% CI = 0.9–1.7, P < 0.001). Shallow sites

(<0.9 m) had higher production rates than deeper

sites and these shallow sites were further split into

two groups based on a TP threshold (206 lg l-1,

partial r2 = 0.14). The uncertainty range for the TP

threshold was large (90% CI = 65–452 lg l-1). The

highest mean (±SD) production rates (581 ±

144 mg C m-3 h-1) occurred in this group of shallow

sites with high TP concentrations. At this split, the

regression tree model listed dissolved phosphorus

(split threshold of 21 lg PL-1) as an alternative

variable with identical model improvement. In the

group of 73 sites deeper than 0.9 m, a further split

occurred at RDA of 45 (CI = 42–56, partial

r2 = 0.16). At sites with larger RDAs, phytoplankton

production rates were the lowest observed in the

study (mean 86 ± 49 mg C m-3 h-1), whereas the

group with RDA below 45 had mean primary pro-

ductivity that was nearly three times higher. Thus,

production rates were lowest at deeper reservoir sites

with larger RDAs, and nutrient controls could be

validated only at shallow sites. The regression tree

model implied a hierarchical structure among vari-

ables where depth separates the sites into different

‘‘habitats.’’ Primary production at very shallow sites

was further influenced by phosphorus, whereas

production at deep sites was associated with relative

watershed size (RDA). The relative error (r2) ex-

plained by the regression tree was 0.73. Splits that

were pruned from the tree included two additional

TP splits (r2 = 0.06 and 0.02) and percent crop land

(r2 = 0.02).

Examination and subsequent elimination of

competing explanatory variables can lead to a more

complete understanding of the predictor variables

and better, simpler models (De’Ath and Fabricius

2000). To address competing (correlated) variables,

we eliminated two predictors from the initial

regression tree analysis for phytoplankton produc-

tion: total nitrogen and turbidity. When included in

the model, total nitrogen controlled most of the

splits. The strong association between phytoplank-

ton production rates, chlorophyll, and total nitro-

gen (Figure 5A) suggests that total nitrogen may be

largely derived from phytoplankton. Following

elimination of total nitrogen, turbidity was initially

selected over depth for the first split. However,

turbidity and depth were closely correlated (r =

-0.668). Furthermore, the positive correlation be-

tween turbidity and phytoplankton production

(and chlorophyll, Figure 5B) suggests that a size-

able portion of the turbidity may also be associated

with algal cells. Turbidity is also associated with

light limitation, which inhibits phytoplankton

production rates. We therefore eliminated turbidity

Table 2. Predictor and Response Variables, Minima, Maxima, and Medians of Values

Minima–maxima Median

Response variables

Nitrogen fixation potential (mg N m-3 h-1) 0–11.7 0.7

Phytoplankton production potential (mg C m-3 h-1) 6–688 134

Predictor variables

Land use (percent cover)

Developed 0–58 5

Undeveloped 38–99 86

Cultivated crop 0–57 3

Depth (m) 0.3–23 4.0

Relative drainage area (unitless) 4–556 76

Hydraulic retention time (year) 0.1–69 1.6

Temperature (C) 24–36 30a

Turbidity (NTU) 0.5–416 8.3

Total phosphorus (lg l-1) 3.6–901 38

Dissolved phosphorus (lg l-1) 1.4–270 10

Total nitrogen (lg l-1) 117–2030 570

Nitrate+nitrite nitrogen (lg l-1) 2.1–145 4.5

Total nitrogen:Total phosphorus (molar) 3.8–340 31

Chlorophyll (lg l-1) 1.2–150 24

aMean and median temperature.
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as a predictor because we could not resolve its

interdependence on depth and algal cell density, or

its effect on light attenuation.

RDA was the most important predictor in the N2

fixation tree model (partial r2 = 0.44, Figure 6).

The mean RDA threshold (45) was the same for

both N2 fixation and phytoplankton production.

Sites with RDA above 45 had the lowest fixation

rates (mean 0.299 ± 0.47 mg N m-3 h-1) and this

group could not be split further. Sites with RDA

below 45 had the highest mean N2 fixation rates

(3.94 ± 3.22 mg N m-3 h-1) and were further split

according to their TP concentrations (thresh-

old = 40 lg l-1). Uncertainty analysis indi-

cated that the 90% CI for TP ranged from 39 to

156 lg l-1. Sites with higher TP levels had mean N2

fixation rates over three times higher than sites

with lower TP (partial r2 = 0.23). Two additional

splits on the high TP branch were pruned from the

model. The first was based on N:P (threshold

value = 28 molar, partial r2 = 0.04) and an addi-

tional split of the low N:P group by nitrate-nitrogen

(threshold value of 4 lg l-1, partial r2 = 0.01). The

relative error explained by the pruned regression

tree was 0.67.

DISCUSSION

In this study, we evaluated physical and biochem-

ical factors that potentially support the growth of

phytoplankton and N-fixing cyanobacteria at a re-

gional spatial scale. We focused on identifying

variables associated with longitudinal gradients

(that is, riverine to lacustrine) that predict spatial

patterns of phytoplankton blooms within and

among eight reservoirs. We found that regression

tree analyses predicted production potential as a

function of depth, with TP acting as a secondary

Table 4. Multiple Linear Regression Statistics Describing Dependence of Phytoplankton Production and
Nitrogen Fixation Potentials on Predictor Variables

Variable Parameter estimate

(standard error)

P > F Partial r2 (Adjusted r2)

Phytoplankton production model

Log TP 0.55 (0.07) <0.0001 0.356

Log RDA -0.23 (0.05) <0.0001 0.192

Log DP -0.24 (0.06) 0.0005 0.064

DEV 0.83 (0.39) 0.0356 0.022

Model summary <0.0001 0.634 (0.615)

Nitrogen fixation model

Log RDA -0.84 (0.15) <0.0001 0.428

Log TN 2.09 (0.36) <0.0001 0.122

Log DP -0.78 (0.16) 0.0006 0.072

UNDEV -2.54 (0.86) 0.0043 0.044

Model summary <0.0001 0.666 (0.646)

Variables that did not meet the 0.05 significance level were not included in the model.

Figure 3. Data of best single predictors from multiple

linear regression of (A) phytoplankton production

potential and (B) nitrogen fixation.
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control at shallow sites and RDA acting as a sec-

ondary control at deeper sites. However multiple

linear regression did not identify depth as an

important factor, most likely due to the strong

nonlinear relationship between depth and phyto-

plankton production (Figure 4). Instead, multiple

linear regression identified TP as its most significant

predictor. It has been well established that

increased levels of phosphorus increase freshwater

phytoplankton production in more or less linear

trends (Schindler 1978; Smith and Shapiro 1981;

Carpenter and others 1998a). At the same time,

temporal (Huppert and others 2002) and spatial

(Smith and Shapiro 1981) studies have indicated

that there are threshold levels of phosphorus below

which blooms do not generally occur, and that

Figure 4. Results from CART analysis of phytoplankton production potential (mg C m-3 h-1). Scatterplots illustrate the

relationship between production potential and selected parameters at each level of the tree. The vertical dashed line in each

plot identifies the value of the predictor (x) that best explained variation in phytoplankton production (y). Threshold

values of predictors are shown to the left and right of each split above each scatterplot. Variance explained (r2) for

predictors is shown above each split. Means, standard deviation (SD), and number of samples (n) for each subset of data

are shown to the left and right of each split. The total variability explained by this CART model was 73%.

Table 5. Regression Tree Threshold Values, Uncertainty Estimates, and P-Values for Phytoplankton Pro-
duction and Nitrogen Fixation Models

Variable Threshold (90% CI) P > v2 Partial r2

Phytoplankton production model

Depth (m) 0.9 (0.9–1.7) <0.0001 0.43

RDA 45 (42–56) <0.0001 0.16

TP (lg l-1) 172 (65–457) <0.0001 0.14

Model summary 0.73

Nitrogen fixation model

RDA 45 (38–45) <0.0001 0.44

TP (lg l-1) 40.5 (39–156) <0.0001 0.23

Model summary 0.67

Uncertainty estimates were calculated using a bootstrap method (Qian and others 2003) and P values were based on deviance reduction assuming a v2 distribution.
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combinations of light limitation, temperature, and

nutrient limitation simultaneously control actual

primary production (Sterner 1994).

Results of our study are only partially consistent

with trends predicted by heuristic theories of res-

ervoir zonation. These theories, developed by

Kimmel and others (1990), Thornton, Kennedy

and Walker (1990), and others (see Thornton and

others 1990) state that reservoirs can be divided

into riverine, transitional, and lacustrine zones.

Although the boundaries between these zones are

poorly defined and temporally dynamic, riverine

areas are generally characterized by shallow, nar-

row, well-mixed water columns, with velocities

sufficient to transport significant quantities of finer

suspended particles such as silts, clays, and organic

particles (Gordon and Behel 1985). Increased sed-

imentation occurs in the transition zone with cor-

responding increases in light levels (Kimmel and

others 1990). The deepest sites occur in the lacus-

trine zone which is most similar to natural lake

systems with low inorganic particulates, higher

light penetration, stratification, and increased

nutrient limitation (Thornton 1990). Volumetric

phytoplankton biomass and primary productivity

per unit volume is predicted to be high in the riv-

erine zone, higher still in the transitional zone, and

lowest in the lacustrine zone (Kimmel and others

1990). Note that these trends are not necessarily

true for integrated areal production rates.

In contrast, we found that volumetric rates were

highest in very shallow waters, followed by tran-

sitional zone sites and lacustrine sites. Shallow sites

were more turbid, had higher phosphorus levels,

and warmer temperatures than deeper sites, which

is generally consistent with reservoir zonation

theory (Kimmel and others 1990). Thus, despite

potential light limitation associated with higher

turbidities, our production rates were highest at

shallow (riverine) sites. Factors contributing to

higher phosphorus levels in shallow areas include

proximity to nutrient sources (Kimmel and others

1990) and phosphorus releases associated with

sediment resuspension processes such as wind-in-

duced, turbulent mixing, and molecular diffusion

(Thomas and Schallenberg 2007). Interactions be-

tween depth and TP levels in reservoir systems

have been observed by others. For example, Ster-

ner (1994) documented higher incidences of

nutrient limitation in shallow (for example, river-

ine and transitional) areas of a Texas reservoir.

Søballe and Kimmel (1987) found TP levels in

rivers (mean depth 3.2 m) were over twice those

found in impoundments (mean depth 8.9 m);

however, algal abundance in rivers, impound-

ments, and natural lakes had similar responses to

TP and TN. In fact, their parameter estimate for log

TP was 0.55 for rivers, and 0.48 for both natural

lakes and impoundments. This is nearly identical to

the parameter estimate from our linear regression

model for phytoplankton production (0.55 ±

0.07). Thus our sites exhibited good linear response

to TP (partial r2 = 0.359) along the longitudinal

gradient from riverine to lacustrine sites. However,

Søballe and Kimmel found that both depth and

Figure 5. Correlated water quality data from 85 sites in 8

reservoirs. (A) Relationship between phytoplankton

production potential and total nitrogen (solid circles) and

chlorophyll and total nitrogen (open circles). (B) Rela-

tionship between phytoplankton production potential

and turbidity (solid circles) and chlorophyll and turbidity

(open circles).

Figure 6. Results from CART analyses of nitrogen fixa-

tion (mg N m-3 h-1). See Figure 4 for details. The total

variability explained by this CART model was 67%.
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residence times were important copredictors in

their multiple linear regression models. Further-

more, nonlinear responses to residence time were

observed that led the authors to group systems by

residence times (<75 and >120 days) and con-

clude that physical controls of depth and residence

time had an hierarchical effect on nutrient rela-

tionships across broad spatial scales. Furthermore,

the relative importance of these factors may change

along environmental gradients such as depth or

riverine–lacustrine transects. Thus, we concluded

that the regression tree analyses, which empha-

sized the role of phosphorus at shallow sites, pro-

vides a more useful model for identifying where in

these reservoirs algal blooms are likely to occur.

Although higher phosphorus levels and temper-

atures positively affect production rates, turbidity is

generally associated with lower growth rates due to

reduced illumination (Søballe and Kimmel 1987;

Grobbelaar 1989). Smayda (1970) argued that

higher turbidity may reduce sinking losses, en-

hance nutrient acquisition, and increase light

exposure of suspended algae. In shallow lakes with

clay turbidities, the relative importance of these

factors is not completely understood (Lind and

others 1992). For example, in Lake Chapalla,

Mexico, phytoplankton was most productive per

unit volume at the shallowest and most turbid

station, whereas the least turbid station, with a

deeper circulating water column, had the lowest

volume-based production (Lind and others 1992).

Lind found that clay turbidity differentially affected

vertical attenuation coefficients for different spectra

(red light was 4.6 m-l whereas green light was

6.2 m-l) and thus may reduce photoinhibition in

shallow waters. Clay turbidity has also been asso-

ciated with reduced effectiveness of fish predation

and weakening of the link between zooplankton

and phytoplankton in Scandinavian lakes (Horpilla

and Liljendahl-Nurminen 2005). Clays and similar

suspended sediments have large surface areas that

often carry sorbed phosphates and other com-

pounds. In fact, reservoir food web models identi-

fied the tight coupling between suspended

sediments and phosphorus loading as one of the

most important factors affecting attainment of tro-

phic goals (Osidele and Beck 2004). Reservoirs in

our study were primarily located within the

Blackland Prairie Ecoregion which is characterized

by iron- and aluminum-rich clays. Turbidity-depth

gradients in these types of reservoirs may be

reversed in other regions (for example, Scandina-

via) where turbidities are derived primary from

autochthonous sources and reach maxima in

deeper waters (Horpilla and Liljendahl-Nurminen

2005). Thus, the relationships between depth,

turbidity, phosphorus, and phytoplankton produc-

tion rates observed in our study may not be valid

for other ecoregions. Although these trends vary

for areal-based production, poor water quality

associated with nuisance blooms are based on vol-

umetric measurements (for example, low dissolved

oxygen concentrations). Thus, depth appears to be

an effective aggregate variable for identifying res-

ervoir zones where elevated algal production and

related poor water quality are most likely to occur.

At deeper (>1 m) sites, phytoplankton produc-

tion potentials were best predicted by RDA. Rela-

tive watershed size has been used by wetland

scientists as a correlate of sediment and nutrient

retention, flushing, upstream erosion, and other

hydrological processes (Adamus and others 1983).

In hydrogeomorphic (HGM) wetland functional

assessment, normalized watershed:wetland ratios

have been used to estimate runoff processes within

regional wetland types, and to make inferences

about ecological and hydrological functions. For

example, in the HGM model for U.S. prairie pot-

holes (Gilbert and others 2006), ratios of catch-

ment:wetland area are used to predict whether a

wetland is likely to have groundwater recharge. An

important aspect of HGM is that all variables are

normalized to reference wetlands of the regional

type; thus, what is important is the relative value of

the predictor. Thus, the threshold value selected by

regression tree analyses would likely be different in

regions with different geomorphology and climate.

In limnological studies, several authors have

evaluated drainage area (that is, watershed size) as

a predictor of ecological processes. In an analyses of

hundreds of sites across the United States, drainage

area and water residence time were correlated to

algal biomass (r = 0.7 for both) in rivers, lakes, and

reservoirs (Søballe and Kimmel 1987). Relative

watershed sizes are larger for reservoirs than for

natural lakes (Thornton and others 1981), thus

potentially enhancing the role of physical processes

such as nutrient, sediment, and hydrologic loading

(Vanni and others 2006; Maberly and others 2002).

Furthermore, there is evidence that, on a regional

scale, watershed size is a good predictor of peak

runoff volumes. Harmel and others (2006) found a

strong linear relationship between log of watershed

area and peak discharge data for 17 watersheds in

the Blackland Prairie Ecoregion with little scatter

for 2, 5, 10, 25, 50, and 100-year return intervals.

Others have concluded that faster flushing times

tend to reduce phosphorus levels and thus reduce

phytoplankton levels (Vollenveider and Kerekes

1980; Maberly and others 2002). Despite these
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findings, the use of RDA as a proxy for hydrologic

forcing is experimental and would be expected to

vary geographically. In addition, relationships

between RDA and processes such as reservoir

nutrient loading and flushing rates are largely

theoretical.

The impacts of increased flushing rates on phy-

toplankton production remain complex and often

contradictory. Hydrological forcing has been asso-

ciated with altered water residence times, stratifi-

cation patterns, and chemical and nutrients loads

that differentially affect phytoplankton growth

(Arhonditsis and others 2007). Theoretically, high

flushing rates would be expected to result in higher

nutrient levels because sites are more closely linked

to terrestrial nutrient sources (Søballe and Kimmel

1987). However, high flushing rates are also linked

to higher turbidities and cell wash-out (Dickman

1969), both of which may decrease phytoplankton

abundance. Combined effects of these interacting

processes are probably dependent on location

(Vanni and others 2006; Cuevas and others 2006)

and other factors. For example, when flushing rates

do not exceed the mean doubling time of the

phytoplankton assemblage, increased inflows may

enhance phytoplankton productivity by increasing

nutrient availability (Kimmel and others 1990).

Arhonditsis and others (2007) found that along a

freshwater-estuarine gradient, phytoplankton

growth and community structure were strongly

affected by river flow fluctuations. The direction of

the effect was dependent upon location along the

river to estuary gradient, with negative effects

during high flow rates at river sites (indicating

advective losses) to positive regulation closer to the

estuary. Similarly, discharge rates in small lakes

have been shown to be more important in pre-

dicting phytoplankton than nutrients, light and

temperature (Dickman 1969).

In our study, RDA and short-term HRT was

moderately correlated (r = -0.60); however, HRT

was not identified by either model as a significant

predictor of production or N2 fixation. Although

our measure of HRT may best describe aquatic

conditions immediately preceding and during the

sampling, it did not have predictive power on a

spatial scale. Other studies concerned with broad

spatial patterns of phytoplankton production have

used average annual HRTs (Jones and Elliott 2007;

Søballe and Kimmel 1987). The latter study found

that both the strength and direction of correlations

between HRT and drainage area (both log trans-

formed) were fundamentally different for rivers

(r = 0.98), impoundments (r = -0.19) or natural

lakes (r = -0.34), suggesting that in reservoirs, the

relationship between drainage area and HRT would

be expected to change from positive to negative

along the longitudinal gradient from riverine to

lacustrine zones. In our CART model for phyto-

plankton production, smaller RDAs (longer HRTs

and reduced flushing) were associated with higher

production rates. Although these results underline

the interaction between hydrodynamics and loca-

tion within the reservoir, the usefulness of RDA as

a proxy for hydrologically driven processes needs

further investigation.

Nitrogen Fixation Models

Prediction of nitrogen fixation in lakes and reser-

voirs is considerably more complex than predic-

tions of phytoplankton production because

nitrogen fixation depends both on succession of

specific cyanobacteria, and factors that initiate the

formation of heterocysts (Howarth and others

1988a). Two broad trends that have emerged are

(1) rates of fixation are reasonably correlated with

the biomass of N-fixing cyanobacteria (Wetzel

1983; Goldman and Horne 1983); and (2) rates

tend to be higher in enriched lakes (Howarth and

others 1988a). Additional factors that have been

proposed, but whose roles are less clear, include

both biogeochemical controls such as nutrients and

bioavailable nitrogen, and physical controls such as

turbulence, light intensity, and hydraulic residence

time (Howarth and others 1988b).

In our study, the most important predictor of

potential N2 fixation in both linear and regression

tree models was RDA. As previously discussed, sites

with small RDAs would presumably experience

more frequent periods of stagnation, which has

been found to override nutrient levels as a con-

trolling factor of N2 fixing cyanobacteria (Paerl

1985). Theoretically, higher flushing associated

with larger RDAs could result in negative effects

such as higher turbidities and turbulence. Paerl

(1985) found that turbulence was associated with

reductions in nitrogen fixation because it ham-

pered the development of cyanobacteria-bacterial

aggregates. Patoine and others (2006) measured

nitrogen fixation in six Canadian prairie lakes

connected along a hydrologic gradient and found

that N2 fixation was significantly correlated to both

landscape position and effective drainage area

(defined as the region supplying water to a lake

during years of median river flow). However,

catchment:lake area ratios and mean flushing rates

(y-1) were not statistically significant predictors.
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Arhonditsis and others (2007) found that along a

freshwater-estuarine gradient, cyanobacteria

growth was higher in areas with longer HRTs

which also had relaxed phosphorus limitation.

Thus, longer retention times may favor N2 fixing

cyanobacteria because they are slower growing and

thus may be at a disadvantage in faster flushing

systems (Maberly and others 2002).

The role of bioavailable nitrogen such as dis-

solved inorganic nitrogen and some organic nitro-

gen forms has been documented in seasonal

initiation and suppression of nitrogen fixation

(Scott and others 2008; Zevenboom and Mur

1980). In our study, neither multiple linear

regression nor the pruned regression tree analyses

detected a significant relationship between bio-

available nitrogen (that is, nitrate) and N2 fixation

potentials. This is not entirely surprising, however,

as the roles of bioavailable nitrogen, as well as

temperature, are normally revealed in the seasonal

onset of N2 fixation (for example, Scott and others

2008). However, we did detect higher nitrate levels

at both Lewisville and Texana reservoirs which

may also have contributed to low fixation rates at

these sites. In fact, Lewisville and Texana had mean

nitrate levels (31 and 34 lg l-1, respectively) at

least six times higher than the remaining reservoirs

(2.7–5.1 lg l-1) which may have contributed to

suppression of nitrogen fixation. This is slightly

below the threshold levels of below 50–100 lg N l-

1 dissolved inorganic nitrogen proposed by Horne

and Commins (1987), but consistent with thresh-

old of 25 lg N l-1 in a nearby central Texas reser-

voir identified by Scott and others (2008).

Conversely, other lake studies have documented

nitrogen fixation in the presence of substantial

quantities of ammonium, and found that strong

relationships between dissolved inorganic nitrogen

and rates of N2 fixation have been lacking (Paerl

and others 1981).

Many studies have reported a positive relation-

ship between phosphorus concentrations and N2

fixation (Vanderhoef and others 1974; Sterner

1994; Arhonditsis and others 2007). Smith (1983)

examined N2 fixation data from 17 freshwater lakes

and reservoirs spanning a large geographic area and

found that there was a highly significant

(P < 0.001) unimodal relationship between an-

nual rates of nitrogen fixation and mean growing

season TP, with peak rates of nitrogen fixation

occurring at intermediate concentrations of TP. Our

N2 fixation potentials also exhibited a unimodal

relationship with TP (data not shown). For exam-

ple, Lewisville-B, which had the study’s highest TP

(mean 719 lg l-1), and Lake Texana, which had

TPs greater than 100 lg l-1, exhibited minimal N2

fixation potentials. Our CART model found that N2

fixation potential was positively related to TP only

at sites with smaller RDA, suggesting that nutrient

controls are spatially distributed and subordinate to

physical factors such as hydrological flushing. This

is consistent with observations along a riverine–

estuarine where cyanobacteria growth was higher

in downstream areas (estuarine and transitional

zone) due to longer residence times, transport from

up-river, lower dissolved inorganic nitrogen, and

relaxed phosphorus limitation (Arhonditsis and

others 2007).

The ratio of N:P has been considered an impor-

tant predictor of dominance by N2-fixing cyano-

bacteria in lakes. The N:P that facilitates dominance

by N2-fixers has been reported to vary from values

below the Redfield Ratio of 15.5 (molar) to values

of 20–40 (44–88 molar) in shallow Estonian lakes

(Nõges and others 2008). In a central Texas reser-

voir, Scott and others (2008) used CART analyses

to identify a threshold N:P (from watershed loads)

of 32, below which N2 fixation rates were higher,

but only at sites located in one arm of the reservoir.

The effect was minimal at sites located in a different

arm or near the dam. Furthermore, the partial r2

was small (0.16) compared to the variability that

was explained by temperature (0.31). The N:P

(molar TN:TP) in our study ranged from 4 to 340.

Neither correlation nor linear regression identified

N:P as the optimal predictor for where N2 fixation

rates would be high. However, N:P ratio (thresh-

old = 28.5) was selected by CART as an alternative

predictor for TP, which is consistent with the strong

correlation between Log TP and Log N:P in our data

(r = -0.888). N:P was also selected at a lower node

(threshold = 28.7), but this split was pruned

according to the one standard error rule as well as a

low partial r2 of 0.05. The N:P split occurred on the

branch with RDAs below 45 and TP values above

40 lg l-1. Additionally, N2 fixation rates were only

slightly higher at sites with N:P below 28.7.

Land use played a minor role in predicting phy-

toplankton production potential and no significant

role in predicting N2 fixation potential. However, it

has been well established that increased develop-

ment in watersheds is correlated with increased TP

(Weibel 1969; Carpenter and others 1998b) and

decreased N:P of hydraulic loads (Downing and

McCauley 1992). In this study, proportion of

undeveloped land and TP were related; however,

TP levels were highly variable at sites with the

largest proportions of undeveloped land (data not

shown, r2 = 0.26). This may be a function of

insufficient replication, because our 85 sites were
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actually represented by only 24 land-use distribu-

tions (Figure 2). Other factors such as effluent re-

leases, proximity to degradation (King and others

2005a), and watershed differences in slope, water

yield, and soils were not accounted for in our land

use analyses. Thus, our results do not rule out po-

tential effects associated with land use.

Another important limitation of our study was

the lack of temporal replication. Nitrogen fixation

as well as bioavailable nutrient levels are known to

vary considerably even during summer months

and it is possible that we failed to sample during

periods of N2 fixation in water bodies where N2

fixation occurs. In addition, our study occurred

during relatively low flow conditions and our re-

sults cannot address interannual variability associ-

ated with meterological processes.

Despite these limitations, our analyses indicate

that regression tree modeling can be a valuable tool

for predicting algal production and nitrogen fixa-

tion potentials along riverine to lacustrine gradi-

ents. We also found substantial differences between

regression tree models and those developed by

traditional linear regression. For example, our

regression tree models revealed threshold values

for predictor variables, which can be interpreted as

decision nodes for predicting response values. Thus,

CART may be more useful in evaluating where in

the study area water quality problems are likely to

occur. In contrast, multiple linear regression uses a

single equation to predict responses regardless of

location. In addition, multiple linear regression

must fit all predictors simultaneously, and thus did

not reveal the hierarchical structure among pre-

dictors in our data. Tree analyses work best when

predictor–response relationships are nonlinear or

heteroscedastic, properties that are inherent in

many ecological data (Qian and others 2003). This

was evidenced in the selection of depth by regres-

sion tree analyses as the most important predictor

for phytoplankton production, whereas that pre-

dictor was overlooked by multiple linear regres-

sion. However, for strong linear relationships,

threshold values will have higher uncertainty in

tree type models (King and Richardson 2003). This

was reflected in the high uncertainty estimates for

TP in both regression tree models, which had a

more linear relationship to the response variables

in the tree models.

We also found that physical factors exhibited

hierarchical control over nutrient effects, which is

generally consistent with recent spatial scale stud-

ies of phytoplankton production (Søballe and

Kimmel 1987; Cuevas and others 2006; Arhonditsis

and others 2007) and N2 fixation processes (Patoine

and others 2006; Scott and others 2008; Arhon-

ditsis and others 2007). Furthermore, we con-

cluded that these relationships changed along

environmental gradients associated with reservoir

zones. Although the usefulness of large-scale pre-

dictors such as RDA require further examination,

we found that this proxy for hydrologic processes

was well correlated to N2 fixation potential, and

moderately correlated to phytoplankton produc-

tion.
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