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ABSTRACT

Strong inference is a powerful and rapid tool that
can be used to identify and explain patterns in
molecular biology, cell biology, and physiology. It is
effective where causes are single and separable and
where discrimination between pairwise alternative
hypotheses can be determined experimentally by a
simple yes or no answer. But causes in ecological
systems are multiple and overlapping and are not
entirely separable. Frequently, competing hypoth-
eses cannot be distinguished by a single unambig-
uous test, but only by a suite of tests of different
kinds, that produce a body of evidence to support
one line of argument and not others. We call this
process “adaptive inference”. Instead of pitting each

member of a pair of hypotheses against each other,
adaptive inference relies on the exuberant inven-
tion of multiple, competing hypotheses, after which
carefully structured comparative data are used to
explore the logical consequences of each. Herein we
present an example that demonstrates the at-
tributes of adaptive inference that have developed
out of a 30-year study of the resilience of ecosys-
tems.

Key words: adaptive inference; cross-scale dynam-
ics; ecosystem structure; hypothesis testing; lumps;
resilience; strong inference; textural discontinuity
hypothesis.

INTRODUCTION

This article is a review of the approach and methods
we have used in a continuing effort to develop and
test a novel theory for a particular class of ecological
systems—that is, ecosystems, or sets of ecosystems.
In this class, interactions occur across scales from
centimeters and days to 10s of kilometers and cen-
turies, so that opportunities for manipulative exper-
iments are limited and partial and causes are mul-
tiple and nonlinear. This is the class emphasized by
Pickett and others (1994) in their critique of eco-
logical theory, method, statistics, and practice. It is a
class that requires pluralistic scientific methods,
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several competing hypotheses, and multiple lines of
evidence that converge on a particular argument.

Understanding the complexity of structure and
function in ecosystems requires a sequence of cycles
of investigation where each cycle starts with the
general, moves to the specific, and returns to the
general again. At each phase in a given cycle, there
are different goals for acceptable evidence. Hence,
an investigation moves from general and suggestive
goals to specific and credible ones. For major studies
of complex systems, such as ecosystems, the se-
quence of cycles takes decades and a consistent and
persistent pattern of research that searches for nov-
elty, comparability, and credibility. We argue that
the goal is not to arrive at certain conclusions but to
develop credible lines of argument that include
some conclusions that might be certain, others that
are likely, and still others that are uncertain.
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This article was initially motivated by two specific
critiques (Manly 1996; Siemann and Brown 1999)
of one recent cycle of research on the “lumpy”
character of the body masses of organisms in eco-
systems (Holling 1992). But it has grown from that
inception and has been generalized to deal with the
fuller range of issues entailed by such investiga-
tions. The specific examples we present here con-
cern ecosystem dynamics and structure. However,
the profile is one that applies generally to studies of
global climate change, to analyses of the causes and
functions of biodiversity, to studies of ecosystem
trophic cascade dynamics, and to designs for restor-
ing and maintaining resilience in regional systems
where people and nature interact (Gunderson and
Holling 2002). Our examples are drawn from our
own work in the latter area.

The paper suggesting that ecosystem attributes
are distributed discontinuously (that is, they are
“lumpy”) (Holling 1992) arose from 30 years of
research aimed at understanding the dynamics and
structure of ecosystems. It triggered a strong reac-
tion from some of those active in statistical and
community ecology, because it seemed to fall
within those areas of inquiry. The critical responses
dealt only with the question of whether the distri-
butions considered were lumpy, arguing that either
there were at most two lumps in the distribution of
animal body masses (Manly 1996) or no lumps at
all (Siemann and Brown 1999) rather than the five
to 10 lumps originally proposed (Holling 1992). The
significant point we want to address here concerns
our belief that these two critiques are based on an
approach and methods appropriate for a different
tradition of science—one that does not place an
emphasis on the issues we dealt with and that,
taken alone, cannot readily identify properties of
such complex systems. As an example of complex
systems, ecosystems have causes that are nonlinear
and multiscalar. Interactions and self-organization
occur across scales; in particular, they involve self-
organization among both biotic and abiotic ele-
ments.

Our purpose here is therefore not to establish
how lumpy animal body mass distributions are, but
rather to stand back and summarize the methods
that we, along with others, have developed for the
analysis of systems with complex dynamics. It hap-
pens that these approaches and methods were the
ones that led us to the conclusion that the world is
lumpy and that continue to guide our ongoing re-
search on these and related subjects. We will illus-
trate the features of the approach and methods by
reference to research on the resilience of ecosys-

tems, including more recent work on lumpiness
and cross-scale dynamics.

We will deal principally with the challenge such
studies present in terms of approach and method.
They pose the following problem: How can we
maintain a degree of skepticism about the existence
of patterns and causes while at the same time en-
couraging the innovation needed to stimulate cre-
ative discovery about those patterns and their
causes? Meeting this challenge is essential to studies
of complexity.

APPROACH AND METHODS

It is not useful to frame the approach as a battle that
pits a philosophy that insists upon avoiding type I
error and assumes the primacy of falsification
against one that argues for avoiding type II error
and sees value in confirmatory observational evi-
dence. The first position runs the risk of over-
restricting innovation for the sake of certainty; the
second, of an endless accumulation of anecdotes for
the sake of speculation. At their extremes, the first
erects premature stopping rules for inquiry;
whereas the second presents no clear stopping rule
at all.

But at their intersection is a cycle of inquiry that
we call “adaptive inference”. The cycle of investiga-
tion is initiated by speculation. Speculation is based
on untested but novel ideas that then can be ex-
plored using simple models, empirical observations,
and hard data. The ideas are then roughly tested in
as quick and effective a manner as possible, using
easily obtained data from any source. For example,
well before its publication, the original research on
lumps (Holling 1992) was submitted to just such a
process. This was done as an extension of earlier
resilience research (Holling 1986) that suggested
that there are a small number of structuring pro-
cesses that control dynamics in ecosystems, each
operating at its own scale. If so, one of the conse-
quences would be a lumpy distribution in the at-
tributes of ecosystems. One attribute that was easy
to obtain and measure was the body mass of ani-
mals living in an extensive landscape. Analysis was
first meant to be quick and to provide an approxi-
mate test of a large proposition. The first check of
the full distribution of body masses of a group of
animals did not reveal any obvious lumpiness. But
a further analysis of departures from a unimodal
representation did seem to show that body weights
were grouped into a small number of size classes —
at least five to eight, and perhaps more.

Thereafter, we made extensive efforts to devise
several competing hypotheses of causation, to ac-
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cumulate evidence from several systems and situa-
tions that would help to sift among hypotheses, to
develop and test specific predictive models, to form
generalizations, and finally to return to speculation.
Ultimately, through this well-articulated process,
the expanded study (Holling 1992) reconnected
with the full program of resilience studies first de-
scribed in 1973 (Holling 1973).

PERCEPTION OF ERROR

Adaptive inference is, in fact, not a completely
novel concept or practice for large and multiscale
ecosystem science. Although no single philosophi-
cal or conceptual approach to ecology has been
employed by all ecologists, many have been forced
to use strategies similar to adaptive inference when
focusing on ecosystemic or landscape scales (Laka-
tos 1978; Pickett and others 1994; Allen and Starr
1982; Carpenter forthcoming; Carpenter and
Leavitt 1991; Carpenter and others 1999; Walters
1986, 1997; Levin 1999). But the essential ap-
proach is rarely discussed. Here we will attempt to
give adaptive inference some formal identity.

One of the intrinsic features of adaptive inference
is a shifting concern for the two types of statistical
error when progressing through the examination of
new data. The desire to minimize type II error en-
courages the scientist to embrace a wide range of
possible hypotheses. Thus, speculation dominates
the initial phase of each cycle of inquiry. The goal
then shifts to identifying potentially interesting pat-
terns or causes. The need to minimize type I error
and winnow out false hypotheses dominates to-
ward the end of each cycle. At this point, the goal is
to either negate or build support for the existence of
specific and narrower patterns or causes. The initial
phase uses data visualization and liberal tests so that
a great deal of possible pattern is suggested in the
data. This process helps to stimulate the search for
novel attributes and novel explanations that other-
wise might be overlooked. Many variables and
scales are considered. Later phases use sequences of
more conservative tests to remove as much noise as
possible while retaining and testing what may be
real pattern. Overall, a set of evidence—some con-
firming, some weakly negating, some strongly ne-
gating—accumulates support for a particular line or
lines of argument.

This strategy stands in contrast to the almost ex-
clusive concern for type I error that dominates
many biological fields of ecology. As Kaplan (1964)
notes, “The scientist usually attaches a greater loss
to accepting a falsehood than to failing to acknowl-
edge a truth. As a result, there is a certain conser-

vatism or inertia in the scientific enterprise, often
rationalized as the healthy skepticism characteristic
of the scientific temper.” But according to, Church-
man (1948), the best procedure is the one that
minimizes both types of error. A strategy that shifts
the emphasis between the two types of statistical
error as the investigation proceeds achieves that
balance.

But does the inherent complexity of ecosystems
make this more general approach ineffective? What
is the requisite simplicity needed to capture the
relevant complexity of that aspect of nature? We
argue that the answer for ecosystems lies neither in
the elegant simplicity of classical physics nor in the
fascination for detail of natural history. The search
for an appropriate level of simplicity is a Goldilocks
process of testing to see whether the porridge is too
hot, too cold, or just right. It is an adaptive, sequen-
tial process that ideally starts with several compet-
ing caricatures of hypotheses and models that are
rejected, expanded, or modified only when their
predictions clearly do not resonate with reality. Af-
ter 3 decades of investigation, we argue that there is
a minimal level of complexity that is suited to the
approach described here. It is also reviewed in a
recent book that synthesizes ecological, economic,
and social dimensions of renewable resource sys-
tems (Gunderson and Holling 2002).

THE PROCESS

We find it useful to distinguish among propositions,
hypotheses, and models. All are similar in that they
represent causal explanations, but each has a dif-
ferent level of abstraction, and each differs in its
degree of generality and testability. That is, good
propositions (both in courtship and science) are
ones that are extremely interesting, are untestable,
but invite ways of being tested. Concern for type II
error dominates. The goal of propositions is to sug-
gest interesting hypotheses that are derived from
the propositions, are testable, but are narrower.
Resilience, in its first expression (Holling 1973), was
based on one such proposition: that ecosystems had
more than one stable state. When hypotheses are
then tested, some hypotheses begin to receive more
support than others, and others are discouraged, so
that more specific models can be formed to test the
more likely explanations. The good models are
transparent, are more quantitatively specific than
hypotheses, and provide a more precise but nar-
rower test of arguments. That is where avoidance of
type I error tests becomes important, and a compar-
ative analysis of a number of specific examples is
then necessary. Together, propositions, sets of hy-
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potheses, and suites of models lead to generaliza-
tions. Each serves its own function in a balanced
approach to discovery.

To demonstrate, consider the sequence used over
the past 30 years to assess the resilience and (now)
the evolvability of sets of ecosystems. It started with
a synthesis of separate observations that suggested
that ecosystems could have more than one stable
state (Holling 1973). That notion emerged from
earlier work on population processes such as pre-
dation, parasitism, reproduction, and competition.
Studies of population processes provided explana-
tions that, contrary to traditional beliefs at the time,
covered a wider range of densities, particularly at
low levels, and that demonstrated empirically their
essential nonlinear nature (Holling 1965, 1966). It
was shown that these processes could interact
among themselves within larger systems to produce
multiple stable states. Moreover, published evi-
dence of the behavior of organisms at large scales in
space and time seemed to reflect just such a reality.

So the proposition was that ecosystems have
multiple stable states and that those properties have
profound, identifiable consequences for manage-
ment. Resilience was defined not as a near equilib-
rium response but rather as the maximum magni-
tude of a large perturbation that could be tolerated
without causing a flip into a new state—that is, one
that would just allow the system to persist with the
same controls. In short, resilience allows the system
to move somewhere within one of the stability
regions. This view therefore shifts the focus from an
equilibrium state to a stability region and its neigh-
bors.

This early work led to a decade and a half of
research devoted to demonstrating causation
within several different ecosystems at the large and
multiple scales needed. The question necessarily
required us to leave behind the lab and quadrat for
a full region where experimental approaches are
partial and incomplete. Each system had key pro-
cesses and structures at spatial scales ranging from
centimeters to multisystem regions and time scales
from months to centuries. Our own work, with
other collaborators, culminated in some 23 exam-
ples of ecosystem dynamics, structure, and manage-
ment published separately and then synthesized
and reviewed in Holling (1986). Each of these sys-
tems was used as a test of hypotheses about causa-
tion and structure in forests, grasslands, and ocean
and lake systems. Others were doing similar work
in other systems at scales of lakes and watersheds
(Carpenter forthcoming). After 30 years, the review
of both lines of inquiry has led to the conclusions
that multible stable states are common, that Bayes-

ian and probabilistic explanations are necessary,
and that sustainability requires a strategy of adap-
tive management of ever-changing systems (Car-
penter forthcoming).

All of the systems were found to share two prop-
erties. All of them demonstrated the possibility of
more than one stability region, and each of them
could be explained by a handful of relationships
operating at very different scales. Specifically, the
essential properties of the systems could be ex-
plained by the interactions among three to four sets
of variables, each of which operated at a very dif-
ferent scale from the others. That observation
evolved into a “rule of hand” (Gunderson and
Holling forthcoming)—a designation of the mini-
mum complexity needed to understand ecosystem
structure and behavior. The observation was then
tested by specific hypotheses suggesting the lump-
ing of ecosystem attributes and using quantitative
models of the consequences (Allen and others
1999) of lumpy cross-scale organization in ecosys-
tems. These are discussed in more specific form in
the last section.

Hence, in one of the cycles of investigation, adap-
tive inference moves from propositions, to hypoth-
eses, and thence to models, with several competing
causal explanations being proposed and tested at
each step. The procedure is one that moves from
the most general to the most specific and back again
for another cycle (Figure 1). Progress is paced by
exclusive predictions and empirical tests to sift
among competing hypotheses, competing expecta-
tions, and competing predictions. It is therefore
based on repeated efforts to first imagine alternative
explanations and then deduce and test the logical
expectations of each explanation. Some of them
become less likely, others more so. Wherever pos-
sible, clear and apparently unambiguous evidence is
sought to negate hypotheses; but where that is not
possible, suggestive but consistently confirmatory
evidence is retained that at the least provides clues
for the direction to follow in search of understand-
ing. Confirmation constructs potential theory as it
builds support for one or more hypotheses; nega-
tion removes inappropriate theory by dismissing
the hypotheses that are distinctly unable to describe
reality (Pickett and others 1994). The two processes
of confirmation and disproof, acting together, take
each raw, naive proposition through maturation
toward theory.

The results at any stage can begin to explain a
diversity of separate issues. For example, this pro-
cess provided a way to assess, in eastern North
American forests, the role of bird predation in pro-
ducing surprising flips in conditions of insect out-
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Figure 1. The adaptive cycle of adaptive inference. An
intrinsic feature of adaptive inference is a shifting concern
for the two types of statistical error as progress is made
through the examination of new data. Avoidance of type
1II error dominates the initial phase of each cycle of in-
quiry; avoidance of type I error dominates toward the end
of each cycle.

break in spruce and balsam tree stands. It provided
an approach and models to assess the degree to
which migratory birds (predators of an insect defo-
liator) would have to decline to cause such sur-
prises. The crucial question was how great a change
in the populations of migratory birds the system
could tolerate before it changed from a state con-
trolled by trees, on a time dynamic of 45-60 years,
to a state controlled by foliage, on a dynamic of
12—15 years (Holling 1988). We concluded that bird
populations would have to decline by about 65%,
and there is in fact some evidence that this may be
happening due to habitat impacts from Canada to
South America (Gauthreaux 1992). In the course of
this study, we established, for the first time, that the
body masses of the 35 species of insectivorous birds
were distributed among three size groups, thus
making it possible to use empirical data from nature

to establish ranges of scales of effective budworm
control by the 35 species of insectivorous birds.
More importantly, this study offered a hint about
lumpiness that was later explored extensively when
theory suggested that it could be a more universal
property (Holling 1992).

Adaptive inference involves the accumulation of
multiple lines of mutually reinforcing evidence to
build a line of credible argument. Falsification, con-
firmation, deduction, and induction are all em-
ployed to evaluate the empirical evidence, which is
obtained by all manner of observations and tests for
the purpose of sorting among competing hypothe-
ses. This suite of methods provides the redundancy
and cross-checks that Pickett and others (1994) pre-
scribe for approaches to achieve ecological under-
standing and improve environmental policy and
practice. It depends on cycles of investigation, each
cycle starting with propositions and ending with
tested hypotheses and models. But the result is a
never-ending sequence in which credible argu-
ments and explanations are accompanied by less
credible ones. We identify likely, credible explana-
tions and practical needs for management, assess-
ment, and response, not many certainties and un-
ambiguities.

Adaptive Inference and Strong Inference

Strong inference, as described by Platt (1964),
shares some important features with adaptive infer-
ence. Both methods pose and test branch points on
a tree of logically alternative sets of hypotheses. As
the process proceeds, causal explanations are pro-
gressively refined, deepened, and generalized. But
strong inference relies on situations where causes
can be single and separable and where discrimina-
tion between pairwise alternative hypotheses can
be determined experimentally by a simple yes or no
answer. As Platt (1964) demonstrates, strong infer-
ence is a powerful and rapid way to deal with
questions in molecular biology, cell biology, and
physiology. But because ecosystems are more open
than organisms, causes in ecological systems are
multiple and overlapping and are not entirely sep-
arable (Hilborn and Stearns 1982; Pickett and oth-
ers 1994). Frequently, competing hypotheses can-
not be distinguished by a single unambiguous test
or set of controlled experiments, but only by a suite
of tests that accumulates a body of evidence that
supports one line of argument and not others. In-
stead of pitting each member of a pair of hypotheses
against each other, adaptive inference relies on the
exuberant invention of multiple, competing hy-
potheses followed by the assessment of carefully
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structured comparative data to explore the logical
consequences of each.

We further demonstrate the process of adaptive
inference in the following section by providing a
concrete example, based upon the proposition that
terrestrial ecosystems are controlled, or self-orga-
nized, by a small nested set of critical processes,
each operating over a particular scale range. The
world-is-lumpy proposition is centered on a hy-
pothesis that encompasses patterns not only across
ecosystems, but across scales as well. And this is the
class where standard statistical methodologies fail.
The type of system-level and cross-scale inquiry we
are undertaking disallows much manipulation, rep-
lication, and— often—simple hypothesis testing.

One View of the Structure of Ecosystems

Growing evidence from nature, models, and theory
suggests that ecosystem structure and dynamics are
dominated by the influence of a small set of plant,
animal, and abiotic processes (Holling 1986, 1992;
Carpenter and Leavitt 1991; Iwasa and others 1991;
Levin 1992). Each set of processes operates at char-
acteristic periodicities and spatial scales (Allen and
Starr 1982; O’Neill and others 1986; Holling 1992).
Small and fast scales are dominated by biophysical
processes that control plant morphology and func-
tion. At a larger and slower scale of patch dynamics,
interspecific plant competition for nutrients, light,
and water, interacting with climate, affects the
composition and regeneration of local species. At a
still larger scale of stands in a forest, mesoscale
processes of fire, storm, pathogen outbreak, and
large mammal herbivory determine structure and
successional dynamics from 10s of meters to kilo-
meters and years to decades. The largest landscape
scales have geomorphological and evolutionary
processes that affect structure and dynamics over
100s of kilometers and millennia.

Holling (1986, 1992) derived a version of the
world-is-lumpy proposition by identifying the com-
mon properties found in the suite of 23 studies of
the dynamics of regional scale ecosystems men-
tioned earlier. They included forest systems affected
by insect outbreak and fire, semi-arid systems af-
fected by grazing and fire, and marine systems
structured by trophic relationships. In every in-
stance, the essential behavior in space and time
could be captured by three sets of interacting vari-
ables whose generation times or speeds varied by an
order of magnitude from each other.

To use an example from one of the 23 ecosystems
studied, the dynamics of the birch/balsam fir/spruce
forest of east central North America can be ascribed
to a fast set of variables involving the defoliating

insect spruce budworm, its natural enemies, and
spruce needles (a generation time of 1 year); an
intermediate set involving the crown of foliage and
energy storage (a generation time of 8-12 years);
and a slow set involving the trees and their imme-
diate competitors (a generation time of 70-100
years). The consequence of the interactions among
these variables can be explored in full space/time
simulation models built from detailed knowledge of
processes, as described in Clark and others (1979).
It was subsequently shown that the essential prop-
erties in this example and several others could also
be represented with three coupled differential
equations, each one reflecting the dynamics of one
of the three sets of variables (see, for example,
Walker and others 1969; Ludwig and others 1978;
McNamee and Holling 1981).

The significant point is not that there were ex-
actly three sets of critical variables. Presumably, the
three identified were drawn from a larger hierar-
chical set that includes variables involved in smaller
and faster processes, as well as larger and slower
ones. Rather, the key point is that their temporal
and geometric properties were distributed in a
lumpy, or discontinuous, manner. That is, the fre-
quency of occurrence of attributes in time and space
were clustered into a small number of categories
along an axis of increasing magnitude of scale in
space and time.

The result therefore implies a nested set of cycles,
each of a distinct scale in time and space and each
controlled by one of the sets of controlling vari-
ables. Each set is characterized not only by its
unique speed but also by its unique spatial scale.
Fast variables are small; slow variables are large.
This, therefore, is a hierarchical representation of a
nested set of variables (Allen and Starr 1982;
O’Neill and others 1986) where each set is con-
trolled by processes sufficiently different in speed
and size to introduce discontinuities or lumpiness in
the distribution of ecosystem attributes. Each set
controls or self-organizes a persistent pattern over a
particular range of time and space scales.

Because the resulting ecosystem patterns at dif-
ferent scales on landscapes are persistent and repet-
itive between successional stages, they should have
the tendency to entrain attributes of other variables
that are not directly involved in producing this self-
organized structure. And that realization identifies
a new cycle of inquiry and a new proposition. If
those landscape patterns are persistent enough,
then biological processes unrelated to the original
structuring processes will become entrained by and
adapted to the pattern. They could well amplify the
originating pattern to create an enhanced signature
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of ecosystem and landscape structure. Hence, the
life history and behavioral and morphological at-
tributes of plants and animals could all become
adapted to the lumpy landscape pattern and am-
plify its signal.

To test this hypothesis, two features are then
sought—indications of lumpiness beyond that ex-
pected to be generated from random processes and
evidence that such lumpiness is common. For ex-
ample, time series data should show a small num-
ber of significant frequencies around which differ-
ent data sets cluster. Spatial vegetation data should
show a distribution of object sizes, distances, and
fractal dimensions that all cluster around a few
significant categories.

Time series analysis of charcoal in cores from
stable lake sediments in the transition boreal forest
zone in Minnesota shows four dominant periodici-
ties (3-5 years, 10-15 years, 35-40 years, and over
80 years) (Clark 1988) that are the same periodici-
ties predicted by models of the boreal forest (Clark
and others 1979; Holling 1988). Analysis of remote
imagery similarly shows spatial structures whose
geometric attributes cluster around a few values
across scales (O’Neill and others 1991). In addition,
a variety of attributes of the animal communities
living in a particular landscape (for example, body
masses, home ranges, or geographic ranges) should
cluster around a small number of size categories.
The world-is-lumpy proposition proposes that body
mass distributions of animals are discontinuous be-
cause they become entrained and reflect the discon-
tinuous landscape structure that results from the
signatures, in terms of structural patterns, of key
processes. If this proposition is true, we should be
able to detect discontinuous patterns in animal
body mass distributions.

Detecting lumpy, or discontinuous, patterns in
body mass distributions is far from elementary. Sta-
tistics for this type of pattern detection simply do
not exist. So, early in the cycle of inquiry, the bias
is to detect pattern, if it exists at all. That is, a
premium is placed on avoiding type II error because
clues to guide intuition are critically important early
in the process. At this stage, the cost of discarding
propositions that potentially reap great rewards is
high, whereas the cost of pursuing new ideas that
may ultimately fail is relatively low.

In comparison tests of the bird and mammal
fauna of boreal forests and prairies, Holling (1992)
originally used visualization to conclude that the
lumpy proposition was the only one that seemed to
be consistent with the evidence. Subsequent tests
using different organisms and wet and dry systems
led to the weakening of some explanatory hypoth-

eses (phenologogical, founding effects, locomotory,
trophic) and the strengthening of others (entrain-
ment by landscape patterns). Multiple causes might
have a role, but the initiation seems to involve
patterns established by the small number of critical
processes, each operating at its own scale.

Visualization may be as valid as probabilistic in-
ference (Cleveland 1993), and graphic display may
well reveal significant relationships and patterns as
well as formal statistics and provide deep insight
into the structure of data (Chambers and others
1983). However, it is a weakness of the original
lump paper (Holling 1992) that the visualization
techniques used to identify gaps and lumps appear
to be subjective, even when independent observers
come to the same conclusions. In formal statistical
tests, although the choice of a level of significance is
equally subjective, it is a familiar type of subjectivity
and therefore more comfortable to accept. For this
reason, after the first visual discovery of interesting
pattern, it is useful to add more formal statistical
tests to the visualization procedures to develop the
multiple methods useful in evaluating similarity
and differences in pattern. However, there are cur-
rently few methods available that have the gener-
ality and levels of resolution appropriate to the
question.

We agree with Wiens (1984) that confirmation of
a predicted pattern may lend little credence to the
arguments that generate the prediction. Similar
patterns can easily be generated by a variety of
causes. Therefore, alternative, competing hypothe-
ses to explain lumpiness are needed, followed by
efforts to negate them wherever possible. Where
falsification of any of a few remaining hypotheses
eludes us, relative degrees of corroboration are ob-
tained through tests designed to sort among them.
But before that step, some idea is needed whether it
is worthwhile to proceed. That is where the first
decision for relevant statistical tests is made.

Holling followed visualization tests by using an
index of body mass difference (Holling 1992) to
confirm what the eye readily perceives. An example
is shown in Figure 2. Holling (1992) defined signif-
icant gaps using a body mass difference index (a
type of split moving window) with the placement of
a criterion line at one standard error above the
mean and found that the data were lumpy.

In an attempt to test whether the lumpy pattern
generated was exceptional compared to what one
would expect from samples from a unimodal distri-
bution, Holling (1992) simulated data sets from a
fitted log normal, unimodal, null distribution. How-
ever, Manly (1996) clearly shows that unimodal
kernel density estimates yield null distributions that
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Species body mass
BMDI and GRI Indices

Figure 2. Are body mass patterns discontinuous? The
body mass distribution of the mammals of the (Canadian)
boreal forest (Holling 1992) in this graphic shows species
rank versus body mass (left y-axis, circles) and split mov-
ing window (Mn/Mn+1; vertical bars, right y-axis) and
gap rarity indexes (triangles, range 0 to 1, axis not
shown). Where the body masses of adjacent animals are
very similar, the line represented by the circles is nearly
flat. Large differences in body masses are indicated by
jumps. Similarly, high values for both indexes indicate
“gaps,” or unusually large size differences between adja-
cent species. More familiar statistical procedures, cluster
analysis, and CART analysis provide the same results
qualitatively. The divergent methodologies converge on
the same interpretation of lumpy structure, and all of
them confirm what the eye readily tells us.

are notably superior and more general. Manly
(1996) went on to apply a conservative test of
lumpiness using Silverman’s “bump” hunting
method (Silverman 1981, 1986). This process re-
quires a test of each data set independently to de-
termine the number of significant modes that are
needed to describe each distribution. The test is
designed to minimize the chance of accepting a false
lump or mode (type I error). As a consequence,
Manly found weak evidence for no more than two
lumps and in fact identified only one mode for our
example data (Figure 2). In contrast, Holling (1992)
identified up to eight lumps in the same data sets,
including eight identified for the data displayed in
Figure 2. As Manly (1996) stated, however, using
Silverman’s method, “The probability of estimating
the correct number of modes may be quite small.”

And that is the point. The cycle of inquiry in
adaptive inference is a process of screening possi-
bilities—initially with a coarse screen, and then
with progressively finer ones. Hence it is essential
not to reject possibilities too soon by applying fine
screens prematurely. Several years after the first
substantial challenge to the world-is-lumpy propo-

sition (Manly 1996), we note with some satisfaction
that a recent paper coauthored by Manly conclud-
ed: “This conservation gives considerable weight to
Holling’s (1992) proposition that body size distribu-
tions in nature may indeed reflect abrupt disconti-
nuities in habitat texture” (Raffaelli and others
2000). Yet if we had used conservative tests early in
our investigations, we would have concluded that
the world is continuous.

Therefore, at early stages in the process of adap-
tive inference, it is better to obtain an approximate
answer to the right question (for example, Is there
significant lumpiness?) rather than a precise answer
to the wrong question (How many significant
lumps are there?). The issue at this stage is not how
many lumps there are, nor where they are, but
whether there is unexpected pattern that occurs
often enough to deserve more rigorous subsequent
exploration. A conservative test at this stage is in-
appropriate because it is likely to prematurely fore-
close opportunities for discovery.

The qualitative pattern generated in these animal
body mass data sets were not particular to the body
mass difference index (BMDI), since they also result
from application of the gap rarity index (Restrepo
and others 1997), split moving window indexes
(Cornelius and Reynolds 1991), classification and
regression tree analyses (Clark and Pregibon 1992),
or hierarchical clustering analysis (SAS Institute
1989; Allen and others 1999). In fact, for data in
Figure 2, all of these methods indicate multiple
aggregations, ranging from eight using Holling’s
BMDI (Holling 1992) to as few as five using cluster
analysis (cluster analysis actually supports two in-
terpretations—five lumps or eight lumps). How-
ever, only the gap rarity index was specifically de-
signed to detect discontinuities in body mass
distributions. Although all methods do seem to gen-
erally provide the same results, each particular
methodology has its inherent biases.

Sendzimir (personal communication) has com-
piled data sets for mammals and birds from 75
ecosystem sites located in forests, savannas, and
prairies from boreal, temperate, and tropical regions
of the Western Hemisphere. He used kernel density
estimates, as described by Silverman (1981, 1986)
and Manly (1996), to obtain a unimodal null dis-
tribution for each data set. From the unimodal dis-
tribution were drawn 1000 simulated data sets to
which the body mass difference index criterion was
applied to define lumps and gaps. The frequency
distribution of lumps for the real data set differed
from, and was much greater than, that generated in
the simulated data sets. We interpret those results
as a strong indication that lumpiness in body mass
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distributions in nature is overwhelmingly the rule,
not the exception.

The landscape pattern hypothesis has been sup-
ported while other competing hypotheses have
been inconsistent with the evidence, although they
could describe causes that reinforce a pattern orig-
inated by landscape pattern. Assuming for the mo-
ment that those results are solid, a step of still finer
screening of possibilities can be pursued by design-
ing specific models of causation and testing them
with independent data sets.

Each competing hypothesis generates different
predictions for the degree of match and mismatch
of patterns in these comparisons. They therefore
provide a way to sift among the competing hypoth-
eses in a process that can gradually build a case for
one cause or a specific combination of causes. At
that point, a specific model can be constructed
whose parameter values define specific relation-
ships. Modeling then leads to a third phase, where
each model is tested using data sets chosen to be as
independent as possible from the ones that defined
the model.

Adaptive inference balances potential options
against potential costs, in an iterative manner that
first emphasizes maintaining future options by not
falsely supporting null hypotheses, and then fo-
cuses upon shifting among competing hypotheses.
In the example used, the textural discontinuity hy-
pothesis, we are still in the fairly early stages of
inference. However, there is a growing body of
evidence that suggests the validity of the first prop-
osition and continues to generate further hypothe-
ses and some quantitative models. Some of this
evidence supports the existence of lumpiness in
numerous systems (see, for example, Restrepo and
others 1997; Allen and others 1999; Raffaelli and
others 2000; Havlicek and Carpenter 2001); it in-
cludes the discovery that independent attributes of
species are associated with lumpy body mass pat-
terns (Allen and others 1999; Allen and Saunders
2002).

Lumpiness in ecosystems is merely the specific
issue that occupies us at present and that we have
therefore chosen to use as an example of the pro-
cess of adaptive inference. Although it is not yet
formalized, adaptive inference has been the ap-
proach and guide throughout many journeys of
ecological discovery. Other ecological examples that
have, in our opinion, by necessity employed adap-
tive inference to uncover ecosystem properties in-
clude the description of trophic cascades and eco-
logical resilience. In cases where the level of inquiry
is the system, replicated field studies are not possi-
ble and the options for understanding are severely

limited. It is not possible to identify single scales of
investigation when the level of interest includes
interactions both within and across scales. Without
the adaptive inference approach, investigation into
the lumpy nature of ecosystems would have been
halted long ago, rather than continuing as a
healthy, albeit controversial, research effort.
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