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Abstract
Natural disasters, such as tornadoes, floods, and wildfire pose risks to life and prop-
erty, requiring the intervention of insurance corporations. One of the most visible 
consequences of changing climate is an increase in the intensity and frequency of 
extreme weather events. The relative strengths of these disasters are far beyond 
the habitual seasonal maxima, often resulting in subsequent increases in property 
losses. Thus, insurance policies should be modified to endure increasingly volatile 
catastrophic weather events. We propose a Natural Disasters Index (NDI) for the 
property losses caused by natural disasters in the United States based on the “Storm 
Data” published by the National Oceanic and Atmospheric Administration. The pro-
posed NDI is an attempt to construct a financial instrument for hedging the intrinsic 
risk. The NDI is intended to forecast the degree of future risk that could forewarn 
the insurers and corporations allowing them to transfer insurance risk to capital mar-
ket investors. This index could also be modified to other regions and countries.

Keywords  Natural Disasters Index (NDI) · Index-based Catastrophe Derivatives · 
Option Pricing · Risk Budgeting · Stress Testing

1  Introduction

The National Centers for Environmental Information reports the United States 
has experienced 69 natural disasters with losses exceeding one billion dollars 
between 2015 and 2019. The accumulated loss exceeds $535 billion at an average 
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of $107.1 billion/year. The trend of disaster frequency is expected to escalate 
over the years due to changes in climate which will result in catastrophic losses 
(Lyubchich and Gel 2017). These volatile weather patterns will result in an inevi-
table challenge to the U.S.’s ability to sustain human and economic development 
(Tabuchi 2018). As a result, weather risk markets need to be capable of offsetting 
the financial impacts of natural disasters (Varangis et al. 2003; Dilley et al. 2005).

Unequivocally, the catastrophe losses and related risks inherent create uncer-
tainty over the type of disaster event (Lewis and Murdock 1996; NCEI 2020a). 
For example, due to less coverage of insured assets and data latency in drought 
and flooding events, they tend to provide uncertain loss estimates compared to the 
losses of severe storm events in the United States (NCEI 2020a; Smith and Mat-
thews 2015). In consequence, prioritization for mitigating the risks can be diverse 
and complex.

The financial losses due to natural disasters exacerbate due to changes in popula-
tion and national wealth density (Van der Vink et al. 1998; Bell et al. 2018). If insur-
ers are to retain profitability and solvency in the event of a major catastrophe that 
insurers must increase their prices for catastrophe insurance and reduce their expo-
sure to risk (Roth  Sr and and Kunreuther 1998). Also, reinsurers undergo severe 
financial stress in facilitating catastrophe insurance by offering tenable reduction 
for risk in large catastrophic losses (Lewis and Murdock 1996; Liang et  al. 2010; 
Zangue and Poppo 2016). However, the substantial losses can be alleviated using 
protective measures such as preparedness, mitigation, and insurance (Kunreuther 
1996; Ganderton et  al. 2000). To better protect the clients, catastrophe insurance 
policies should ramp-up investments in cost-effective loss reduction mechanisms by 
better managing the risk.

The weather index insurance can effectively transfer spatially covariate weather 
risks as it pays indemnities based on realizations of a weather index that is highly 
correlated with actual losses (Barnett and Mahul 2007). The securitization of losses 
from natural disasters provides a valuable novel source of diversification for inves-
tors. Catastrophe risk bonds are a promising type of insurance-linked securities 
introduced to smooth transferring of catastrophic insurance risk from insurers and 
corporations to capital market investors by offering an alternative or complement 
of capital to the traditional reinsurance (Zangue and Poppo 2016). The three types 
of variables that pay off in insurance-linked securities (Cummins et  al. 2004) are 
insurer-specific catastrophe losses, insurance-industry catastrophe loss indices, and 
parametric indices based on the physical characteristics of catastrophic events.

The first index-based catastrophe derivatives, CAT-futures, introduced by the 
Chicago Board of Trade using the ISO-Index was ineffective due to a lack of real-
istic models in the market (Christensen and Schmidli 2000). Secondly, the Prop-
erty Claim Services (PCS) proposed the PCS-options based on the PCS-index and 
they slowed down due to market illiquidity (Biagini et  al. 2008). Then, the New 
York Mercantile Exchange (NYMEX) designed catastrophe futures and options to 
enhance the transparency and liquidity of the capital markets to the insurance sec-
tor (Biagini et  al. 2008). Kielholz and Durrer (1997) further explains alternative 
risk transfer mechanisms within the context of natural catastrophe problems in the 
United States.
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We propose Natural Disasters Index (NDI) to address these shortcomings by cre-
ating a financial instrument for hedging the intrinsic risk induced by the property 
losses caused by natural disasters in the United States. The vital objective of the 
NDI is to forecast the severity of future systemic risk attributed to natural disasters. 
This provides advance warnings to the insurers and corporations allowing them to 
transfer insurance risk to capital market investors. Therefore, the proposed NDI is 
intended to make up the shortfall between the capital and insurance markets. Fur-
thermore, the NDI could be modified to calculate the risk in other regions or coun-
tries using a data set comparable to NOAA Storm Data NCEI (2018).

We follow the methods applied in Trindade et al. (2020) on an ad hoc basis as 
a benchmark for NDI evaluation: (1) option pricing, (2) risk budgeting, and (3) 
stress testing. We provide an evaluation framework for the NDI using a discrete-
time generalized autoregressive conditional heteroskedasticity model to calculate 
the fair values of the NDI options. Then, we simulate call and put option prices 
using the Monte Carlo method. We distribute the cumulative risk attributed to our 
equally weighted portfolio into the risk contributions of each type of natural disaster. 
Flood and flash flood are the main risk contributors in our portfolio according to 
our assessments using standard deviation and expected tail loss risk budgets. Fur-
thermore, we evaluate the portfolio risk of the NDI to mitigate risks using monthly 
maximum temperature, the Palmer Drought Severity Index (PDSI), and the Global 
Warming Index (GWI) as stressors. We found the stress on maximum temperature 
significantly impacts the NDI compared to that of the PDSI at the highest stress 
level (1%).

The contents of the rest of this paper are as follows. We provide an exploratory 
data analysis in Sect. 2  and econometric analysis for NDI in Sect. 3. Section 4 pre-
sents the steps in option pricing and approximate call and put option prices for the 
NDI. In Sect. 5, we provide standard deviation and expected tail loss risk budgets 
for natural disasters in the United States. We assess the performance of the NDI via 
a stress testing analysis in Sect. 6. Finally, we make concluding remarks in Sect. 7.

2 � Construction of the natural disasters index (NDI)

This section provides an exploratory data analysis for constructing an index on 
financial losses caused by natural disasters. The National Oceanic and Atmospheric 
Administration (NOAA) has published information on severe weather events occur-
ring in the United States between 1950 and 2018 in their “Storm Data” database 
Murphy (2018). We utilize the property losses caused by the following 50 types of 
natural disasters from 1996-2018 to construct the index:

Avalanche, Blizzard, Coastal Flood, Cold/Wind Chill, Debris Flow, Dense 
Fog, Dense Smoke, Drought, Dust Devil, Dust Storm, Excessive Heat, 
Extreme Cold/Wind Chill, Flash Flood, Flood, Frost/Freeze, Funnel Cloud, 
Freezing Fog, Hail, Heat, Heavy Rain, Heavy Snow, High Surf, High Wind, 
Hurricane (Typhoon), Ice Storm, Lake-Effect Snow, Lakeshore Flood, Light-
ning, Marine Dense Fog, Marine Heavy Freezing Spray, Marine High Wind, 
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Marine Hurricane/Typhoon, Marine Lightning, Marine Strong Wind, Marine 
Thunderstorm Wind, Rip Current, Seiche, Sleet, Storm Surge/Tide, Strong 
Wind, Thunderstorm Wind, Tornado, Tropical Depression, Tropical Storm, 
Tsunami, Volcanic Ash, Waterspout, Wildfire, Winter Storm, Winter Weather.

The database reports the property losses incurred by natural disasters in U.S. dol-
lars of the given year Murphy (2018). For this study, we estimate them in U.S. dol-
lars adjusted for inflation in 2019. Figure 1 provides examples of natural disasters 
between 1996 and 2018 that exemplify eccentric property losses (adjusted for infla-
tion in 2019).

Natural Disasters Index (NDI): We construct a reliable and dynamic aggre-
gate index by utilizing the financial losses caused by natural disasters. To obtain 
an equally spaced time series, we examine the cumulative property losses for all 50 
types of natural disasters in 15-day increments between 1996 and 2018. We define 
Lt as the total property loss at the t th section 15-day period. Since there are some 
periods with no property losses (zero losses), we cannot employ the conventional 
log-returns model.

We take the first differences (lag-1 differences) of the exponents of Lt , i.e., 
ΔL�

t
 where � = 0.1, 0.2, ..., 1 , and check stationarity of these different models 

using Dickey-Fuller and KPSS tests (Hamilton 2020; Kwiatkowski et  al. 1992) 
. At the level of 5%, the tests indicate sufficient evidence to suggest that ΔL�

t
 for 

� = 0.1, 0.2, ..., 1 are not unit root non-stationary. Since the high values of � result in 
“fat-tailed” or “heavy-tailed” distributions, we focus on low values of �.

In particular, the minimum value of � (0.1) provides a proper Normal Inverse 
Gaussian (NIG) fit that has a heavy enough tail to capture the rare events using the 
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Fig. 1   The monthly property losses (in billions adjusted for inflation in 2019) caused by (a) drought, (b) 
flood, (c) winter storm, (d) thunderstorm wind, (e) hail, and (f) tornado events between 1996 and 2018 
generated using NOAA Storm Data NCEI (2018)
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model (which is beneficial for a GARCH-type option pricing model). Thus, we pro-
pose a Natural Disasters Index (NDI) as follows:

The NDI illustrated in Fig.  2 shows the stationarity of the process with � = 0.1 , 
which resulted in a higher predictability in our future analyses in Sect. 4-6.

For stress testing in Sect.  6, we utilize monthly maximum temperatures, the 
Palmer Drought Severity Index (PDSI) used in the U.S. Climate Extremes Index 
(NCEI 2019; Palmer 1965; Gleason et  al. 2008). In addition, we use the Global 
Warming Index proposed by Haustein et  al. (2017) that provides the combined 
impacts of the estimated contribution from human-induced warming and natural 
warming and cooling.

We define the reported highest temperature for each month in the U.S. as the 
monthly maximum temperature (measured in Fahrenheit) Menne et al. (2009); Vose 
et  al. (2014). PDSI is a measurement of the severity of drought in a region for a 
given period Heim (2002); Alley (1984). We use the monthly PDSI in the U.S. that 
assigns a value in [-4,4] on a decreasing degree of dryness (i.e., the extremely dry 
condition and extremely wet condition provide -4 and 4, respectively) Heddinghaus 
and Sabol (1991). Figure 3 depicts that the first differences of the climate extreme 
indicators yield stationary time series.

3 � Econometric analysis for NDI volatility

This section examines the seasonality and volatility in our NDI using AutoRegres-
sive Moving Average (ARMA) and Generalized AutoRegressive Conditional Het-
eroskedasticity (GARCH) models. We assume the dynamic returns (1) follow the 
process:

(1)NDIt = L0.1
t

− L0.1
t−1

= ΔL0.1
t

, t = 1,⋯ , 552.

Fig. 2   Our proposed Natural 
Disasters Index (NDI) for the 
United States. This NDI (1) is 
constructed using the prop-
erty losses of natural disasters 
reported in NOAA Storm Data 
NCEI (2018) between 1996 and 
2018
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where r′
t
 and �t are the risk-less rate of return and standardized residual during the 

time period t, respectively. λ0 denotes the risk premium for the NDI, and at is the 
conditional variance of returns ( Rt ) given the information set consisting of all lin-
ear functions of the past returns available during the time period t − 1 ( Ft−1 ), i.e., 
at = VaR

(
Rt ∣ Ft−1

)
 . We examine at using different GARCH(m, n) models defined 

as follows:

where � (constant), (�i)mi=1 and (�j)nj=1 are non-negative parameters of the model; each 
of these variables is to be estimated using the data.

We find a proper GARCH model for the conditional variance of returns by 
comparing their performances as shown in Table 1, which reports their estimated 
parameters with significance and the information criteria (AIC, BIC1, Shibata2, and 
Hannan-Quinn3). According to the information criteria, GARCH(2,1) outperforms, 
but only �2 reports a statistically significant parameter. Since all the models pro-
duced results that are essentially the same, there is no benefit in selecting a model 
based solely on information criteria. In calibrating the parameters to option prices, 
the GARCH(m,n) models with m > 1 and n > 1 increase computational complexity 
and decrease estimation accuracy. Therefore, we choose the standard GARCH(1,1) 

(2)Rt = log
NDIt

NDIt−1
= r�

t
+ λ0

√
at −

1

2
at +

√
at�t,

(3)at = � +

m∑

i=1

�i at−i +

n∑

j=1

�j �
2

t−j
,
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Fig. 3   The first differences of the climate extreme indicators, (a) Maximum Temperature (Max Temp) 
and (b) Palmer Drought Severity Index (PDSI), yield stationary time series, generated using NCEI 
(2020b) between 1996 and 2018

1  See Aho et al. (2014).
2  See Shibata (1980).
3  See Hannan and Quinn (1979).
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model which provides statistically significant estimates for all model parameters. 
This model is expressed as:

where the standardized residuals ( �t ) are independent and identically distributed 
with a generalized hyperbolic distribution, GH(λ, �, �, �,�).

Although the seasonal GARCH, EGARCH, and APARCH models potentially 
outperform the standard GARCH model, they make the processes of obtaining the 
equivalent martingale measure and specifying the distribution of returns on risk-
neutral probability space more difficult. These concepts are explained further in 
Sect.  4. Moreover, EGARCH and APARCH models are used for deep-out-of-the-
money option prices, but we apply a discrete stochastic volatility based model for 
option pricing. This reasoning confirms the validity of using a GARCH(1,1) model 
for our study.

We test seasonality in mean and variance of monthly return volatility using the 
Kruskall Wallis and QS-tests included in the “seastests” package available in R soft-
ware (Webel and Ollech 2018). Based on the results of these two tests, the Webel-
Ollech overall seasonality test identifies annual seasonality in the mean of NDI 
index. However, the test does not classify seasonality in the absolute value of NDI, 
∣ ΔL0.1

t
∣ , or in the volatility of NDI.

We estimate three types of monthly volatilities for NDI: (1) historical volatility, (2) 
realized volatility, and (3) estimated volatility using ARMA(1,1)-GARCH(1,1) with 
Student’s t innovations based on historical data. We use rolling methods with a ten-year 
(120 months) window and each time period uses a sample of historical data for estimat-
ing the NDI volatility. According to the results of Dickey-Fuller and KPSS tests, three 
types of volatilities indicate unit root non-stationarity in time series. We also stabilize 
the variance of these three series by taking logarithmic transformation and compare the 

(4)at = � + � at−1 + � �2
t−1

,

Table 1   Fitting GARCH models for the conditional variance of returns

Fitted GARCH Models

GARCH(1,1) GARCH(2,1) GARCH(1,2) GARCH(2,2)
Estimate P Value Estimate P Value Estimate P Value Estimate P Value

� −0.010 0.555 −0.010 0.837 −0.021 0.320 −0.021 0.407
� 0.031 0.034 0.031 0.057 0.088 0.604 0.088 0.511
�
1

0.043 0.000 0.043 0.029 0.106 0.277 0.106 0.015
�
2

NA NA 0.000 1.000 NA NA 0.000 1.000
�
1

0.942 0.000 0.952 0.000 0.047 0.597 0.047 0.731
�
2

NA NA NA NA 0.834 0.000 0.834 0.000
Information Criteria
Akaike 4.3538 4.3549 4.3430 4.3442
Bayes 4.3767 4.3811 4.3691 4.3736
Shibata 4.3538 4.3549 4.3429 4.3441
H-Q 4.3623 4.3646 4.3527 4.3551
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descriptive statistics of volatility and log-volatility series in Table 2. ARMA-GARCH 
volatility model reports comparatively high values for statistics compared to the other 
models (historical and realized volatility models) that present similar values.

Using the data illustrated in Fig.  4, we compare three volatility models to deter-
mine which model predicts the reported property losses more accurately. The time 
series behavior of the historical and realized volatility models are similar, and there is 
no significant difference between the two. Since the ARMA-GARCH volatility model 
captures huge losses in a relatively high frequency, it outperforms the other models in 
representing the volatility of property losses. In this section, we presented historical 
volatility that represents the ex-post return volatility. In Sect. 4, we will provide implied 
volatilities that represent ex-ante volatilities.

Table 2   Descriptive statistics for the volatility and log-volatility series

Statistics Historical 
volatility

Realized vola-
tility

ARMA-
GARCH 
volatility

Log 
historical 
volatility

Log 
realized 
volatility

Log ARMA-
GARCH 
volatility

Mean 1.2400 1.2350 1.2530 0.2151 0.2109 0.2256
Variance 0.0106 0.0106 0.0308 0.0052 0.0052 0.0119
Skewness −0.0233 −0.0233 1.0361 −0.1427 −0.1428 0.7953
Kurtosis −0.9083 −0.9084 0.5799 −0.8798 −0.8799 0.0703

Fig. 4   Estimated NDI historical volatility, realized volatility, and ARMA-GARCH model volatility with 
reference to the total property losses
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4 � Pricing NDI options

Standard insurance and reinsurance systems encounter difficulties in reimbursing the 
extremely high losses caused by natural disasters. Insurance companies seek more 
reliable approaches for hedging and transferring these types of intensive risks to 
capital market investors. Catastrophe risk bonds (CAT bonds) are one of the most 
important types of Insurance-Linked-Securities used to accomplish this. Our pro-
posed NDI is intended to assess the degree of future systemic risk caused by natural 
disasters. In this section, we determine a proper model for pricing the NDI options.

Options can be used for hedging, speculating, and gauging risk. The 
Black–Scholes model, binomial option pricing model, trinomial tree, Monte Carlo 
simulation, and finite difference model are the conventional methods in option pric-
ing. We do not implement the Black–Scholes model since we investigated the exist-
ence of heteroskedasticity in Sect. 3. The discrete stochastic volatility-based model 
was introduced to compute option prices4 and explain some well-known mispricing 
phenomena. In particular, Duan (1995a) proposes the application of discrete-time 
GARCH to price options. Considering the accuracy of pricing performance using a 
volatility-based model5, we implement the discrete-time GARCH model with NIG 
innovations to compute the fair values of the NDI options.

In the standard GARCH(1,1) model (4), Blaesild (1981) defines that the Rt for 
given Ft−1 is distributed on real world probability space ( ℙ) as follows:

The Esscher transformation given in Gerber and Shiu (1994) is the conventional 
method of identifying an equivalent martingale measure to obtain a consistent price 
for options. Since the moment generating function of the NIG distribution has expo-
nential form, the Esscher transform takes the probability density of Rt and trans-
forms it into the risk-neutral probability density. Using the Esscher transformation, 
Chorro (2012) found that Rt for given Ft−1 is distributed on the risk-neutral probabil-
ity ( ℚ ) as follows:

where �t is the solution to MGF
(
1 + �t

)
= MGF

(
�t
)
er

�
t , and MGF is the conditional 

moment generating function of Rt+1 given Ft.
We generate future values of the NDI to price its call and put options using the 

Monte Carlo simulations (Chorro 2012) as follows: 

(5)Rt ∼ NIG

�
λ,

�
√
at
,

�
√
at
, �
√
at, r

�
t
+ mt + �

√
at

�
,mt = λ0

√
at −

1

2
at.

(6)Rt ∼ NIG

�
λ,

�
√
at
,

�
√
at

+ �t, �
√
at, r

�
t
+ mt + �

√
at

�
,

4  See Black and Scholes (2019); Madan et  al. (1989); Hurst et  al. (1999); Carr and Wu (2004); Bell 
(2006); Klingler et al. (2013); Rachev et al. (2017); Shirvani et al. (2020) and Shirvani et al. (2020)
5  See e.g. Duan (1995b), Barone-Adesi et al. (2008), and Chorro et al. (2012).
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1.	 Fitting GARCH(1,1) with NIG innovations to L0.1
t

 and forecasting a2
1
 (we set t = 1).

2.	 Beginning from t = 2 , repeat the steps (a)-(c) for t = 3, 4, ..., T  , where T is time 
to maturity of the NDI call option. 

(a)	 Estimating the parameter �t using MGF
(
1 + �t

)
= MGF

(
�t
)
er

�
t , where 

MGF is the conditional moment generating function of Rt+1 given Ft on ℙ.
(b)	 Finding an equivalent distribution function for �t on ℚ and generate the 

value of �t+1 under the assumption �t ∼ NIG(λ, �, � +
√
at�t, �,�) on ℚ.

(c)	 Computing the values of Rt+1 and at+1 using (2) and (4).

3.	 Generating future values of L0.1
t

 for t = 1, ...., T  on ℚ where T is the time to matu-
rity. Recursively, future values of the NDI is obtained by 

4.	 Repeating steps 2 and 3 10,000 (N) times to simulate N paths to compute future 
values of the NDI.

Then, the Monte Carlo averages approximate future values of the NDI at time t 
for a given strike price K to price its call and put options ( ̂C and P̂ , respectively)

The call option prices ( ̂C ) help the investors to strategize buying the stocks in 
our NDI at a predefined price (strike price) within a specific time frame (time to 
maturity). In Fig.  5, we provide call option prices for the NDI based on a given 
strike price (K) with time to maturity (T). The NDI call option prices exponentially 
decrease as the strike price increases. When the strike price is up to two trillion, the 
call price is 15 trillion. In such cases, no insurance can afford this and also, reinsur-
ance fails to pay this large of an amount. Therefore, if the losses are above the strike 
of two trillion, only the world market can absorb this.

We provide selling prices of the shares in our index in Fig. 6 by demonstrating 
the relationship of put option prices ( ̂P ) to strike price (K), and time to maturity 
(T). As we expected, the put option price for NDI increases as the strike price 
increases, and there seems to be a potential linear dependence between them. The 
strike price, which starts at four trillion, is too high to be traded by investors on 
the market. Our put options seem to behave like short term insurance in which the 
investors will get paid only if the losses are below 17 trillion.

(7)NDIt = R10
t
+ NDIt−1.

(8)Ĉ(t, T ,K) =
1

N
e−r

�
t
(T−t)

N∑

i=1

max
(
NDI

(i)

T
− K, 0

)
,

(9)P̂(t, T ,K) =
1

N
e−r

�
t
(T−t)

N∑

i=1

max
(
K − NDI

(i)

T
, 0
)
.
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Implied volatility is known as an efficient forecast of future volatility over the 
option’s remaining lifetime6. In Fig.  7, we provide the implied volatility for NDI 
using the market price of the call option contracts to indicate the anticipation of 
an event in the near future. The implied volatility surface is constructed against the 

Fig. 5   The call option prices (8) for the Natural Disasters Index (NDI) at time t for a given strike price K 
using a GARCH(1,1) model with generalized hyperbolic innovations. The Monte Carlo simulations are 
generated using NOAA Storm Data NCEI (2018) between 1996 and 2018

Fig. 6   The put option prices (9) for the Natural Disasters Index (NDI) at time t for a given strike price K 
using a GARCH(1,1) model with generalized hyperbolic innovations. The Monte Carlo simulations are 
generated using NOAA Storm Data NCEI (2018) between 1996 and 2018

6  See Day and Lewis (1988), Poterba and Summers (1984), Sheikh (1989), and Harvey and Whaley 
(1992).
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time to maturity (T) and moneyness ( M = S∕K , where S and K are the stock and 
strike prices, respectively). The observed volatility surface has an inverted volatil-
ity smile which is usually seen in periods of high market stress. In particular, the 
highest implied volatilities of options are observed in the moneyness between 1.2 
and 1.4. The downward sloping (volatility skew) indicates the implied volatility for 
upside (high strike) equity options is typically lower than the implied volatility for 
at-the-money equity options. Options with lower strike prices have higher implied 
volatilities compared to those with higher strike prices. The implied volatilities tend 
to converge to a constant as the time to maturity converges to 120 weeks.

Without the index being marketed by financial institutions, together with the 
insurance instruments on the index, such as futures and put options, it will be impos-
sible to meet future extreme losses due to natural disasters. As in the stock market, 
long term investors need portfolio insurance to hedge the downturn risk (Mantilla-
García 2014). With the help of the financial market at large, the government should 
hedge the potential financial risk caused by natural disasters. Therefore, we provide 
NDI option prices with volatilities for investors to strategize buying call options and 
selling put options based on their risk tolerance levels in this section.

5 � Determining NDI risk budgets

Obviously, the risk created by each type of natural disaster is different. For example, 
floods and earthquakes cause a significantly high risk in the United States. There-
fore, the typical homeowners insurance policies do not cover the damages caused 
by floods and earthquakes. The federal government has introduced government 

Fig. 7   The Natural Disasters Index (NDI) implied volatilities against time to maturity (T) and moneyness 
( M = S∕K , where S and K are the stock and strike prices, respectively) using a GARCH(1,1) model with 
generalized hyperbolic innovations. The Monte Carlo simulations are generated using NOAA Storm 
Data NCEI (2018) between 1996 and 2018
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programs such as The Florida Hurricane Catastrophe Fund and The California 
Earthquake Authority to provide appropriate coverage to policyholders, individuals 
and companies.

Envisioning the amount of risk exposure from each type of natural disaster helps 
investors to determine the degree of variability in our portfolio. The risk budgets 
provide the risk contributions of each component in the portfolio to the aggregate 
portfolio risk. We provide the estimated risk allocation for each type of natural dis-
aster to potentially help investors with their financial planning in our portfolio.

Standard deviation (Std), Value at Risk (VaR), and Expected Tail Loss (ETL), 
also known as Conditional Value at Risk (CVaR),7 are conventional risk measures 
used in market risk assessment. As Std and ETL are coherent risk measures, we use 
them as the investment strategies for our portfolio8. We assess the center risk con-
tributions of our portfolio using Std as it measures the volatility in the market. ETL 
provides the chance of a loss occurring due to a rare event, i.e., tail risk contribu-
tions of the index.

ETL is a coherent risk measure used to evaluate a portfolio’s market risk, and 
it has properties such as convexity and monotonicity (Pflug 2000). At the level of 
q% = (1 − �)% , ETL evaluates the portfolio’s expected return in the worst q% of 
cases. ETL calculates the expected extreme losses in the tail of the return distribu-
tion, which are above the VaR cutoff point, as follows:

where X is the payoff of a portfolio and VaR� (X) is the value at risk given by

The VaR of the portfolio at the confidence level � is the minimum payoff such that 
the aggregate probability is not greater than (1 − �) . That is, the VaR provides the 
maximum possible loss after removing all worse outcomes whose cumulative prob-
ability is at most � (Artzner et al. 1999).

In finance, both equally weighted and capitalization based indices are used for 
risk budgeting. The capitalization-based index uses the current capitalization and 
synthetically creates the time series of the index based on historical data. However, 
when the capitalization structure is changed, another model should be replaced with 
synthetic historical values of the index. Thus, to avoid the uncertainty of change in 
capitalization, we use an equally-weighted index. Doing so accounts for potential 
variance in the future weights of the constituencies.

For a risk measure, R(.), we define the marginal risk and risk contribution of 
each asset in the portfolio with a weight vector, � = (w1,w2, ...,wn) where wi =

1

n
 

(10)ETL𝛼(X) =
1

𝛼 ∫
𝛼

0

VaR𝛾 (X) d𝛾 , 0 < 𝛼 < 1,

VaR� (X) = − inf{x ∈ ℝ ∶ F(x) ≤ �} = F−1
X
(1 − �).

7  See Rockafellar and Uryasev (2000).
8  See Chow and Kritzman (2001), Litterman (1996), Maillard et  al. (2010), Boudt et  al. (2013) and 
Peterson and Boudt (2008).
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( R(w) ∶ ℝn
→ ℝ ). The marginal contribution to risk (MCTR) of the ith asset to the 

total portfolio risk is given by

We define the MCTR of the k th subset as

where Mk ⊆ {1, 2, ..., n} denote s subsets of portfolio assets. The Percent Contribu-
tion to Risk (PCTR) of the i th asset to the total portfolio risk is given by

(11)MCTRi(�) = wi

�R(�)

�wi

.

(12)MCTRMk
(�) =

∑

i∈Mk

MCTRi(�),

(13)PCTRi(�) =
MCTRi(�)∑n

i=1
MCTRi(�)

.

Fig. 8   The percent contribution to risk (PCTR) of the expected tail loss (ETL) risk budgets for the Natu-
ral Disasters Index (NDI) at 95% level. The legend depicts the severe weather events in ascending order 
of their PCTR of ETL risk budgets at 95% level. The results are generated from NOAA Storm Data 
NCEI (2018) between 1996 and 2018
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Table 3   Percent contribution to 
risk for standard deviation (Std) 
and expected tail loss (ETL) 
(at 95% and 99% levels) risk 
budgets for the Natural Disasters 
Index (NDI)

Natural Disaster Std ETL(95) ETL(99)

Flash Flood 4.96 3.08 4.21
Flood 4.87 2.64 4.26
Wildfire 4.14 3.50 3.15
Tropical Storm 3.88 2.62 4.85
Drought 3.40 2.14 2.79
Hurricane 3.15 1.94 5.63
Debris Flow 3.15 2.93 1.88
Coastal Flood 2.95 4.52 3.21
Heavy Rain 2.84 1.24 3.39
High Wind 2.83 1.83 4.90
Cold Wind Chill 2.77 2.83 0.63
Tsunami 2.63 3.49 0.67
Lake Effect Snow 2.63 3.04 1.24
Frost Freeze 2.61 3.25 0.92
Storm Surge Tide 2.58 2.07 5.94
Tropical Depression 2.58 2.92 1.06
Winter Weather 2.49 2.85 1.15
Lightning 2.34 2.54 2.40
Lakeshore Flood 2.33 2.98 0.66
Extreme Cold Wind Chill 2.27 2.38 1.06
Dense Fog 2.19 1.54 1.81
Heat 2.11 2.20 0.95
Excessive Heat 2.11 2.51 0.62
Marine High Wind 2.08 2.26 0.92
Marine Thunderstorm Wind 1.89 1.54 1.32
Strong Wind 1.88 1.85 2.61
Waterspout 1.68 2.04 0.88
Dust Storm 1.66 1.45 1.72
Freezing Fog 1.66 2.25 0.67
Ice Storm 1.64 1.89 4.12
Thunderstorm Wind 1.63 0.95 2.96
Hail 1.58 0.99 3.36
Heavy Snow 1.58 2.86 2.59
Dust Devil 1.51 1.82 0.75
Avalanche 1.44 1.85 1.15
High Surf 1.33 2.11 3.05
Seiche 1.32 1.85 0.78
Funnel Cloud 1.31 1.64 0.40
Rip Current 1.21 1.55 0.55
Marine Strong Wind 1.08 1.57 0.62
Winter Storm 1.05 1.92 3.40
Marine Hail 0.80 1.16 0.37
Sleet 0.79 1.24 0.54
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Since a large number of observations are involved in our analysis, we use a rolling-
method for risk budgeting. We use the first 400 data (15-day loss returns) at each 
window as in-sample-data and the last 400 data as out-of-sample data. In Fig. 8, we 
provide a visual representation of ETL at the level of 95%. According to its color 
scale, red represents risk contributors and blue represents risk diversifiers.

We provide estimated risk allocations, the Std and ETL for risk contributions, in 
our portfolio in Table 3. Since the table provides positive values, all types of natu-
ral disasters contribute risk to the NDI and none of them are risk diversifiers in our 
portfolio. We determine the main center risk contributors in our index based on the 
Std budgets in Table 3. Since Std measures the volatility in the market, higher the 
Std riskier the investment. Then, the main center risk contributors in our portfolio 
seem to be tornado, tropical storm, flood, ice storm, and flash flood as they demon-
strate high volatility compared to the other types of disasters.

We calculate the tail risk budgets at the 95% and 99% levels using Eq (10) to 
find the main tail risk contributors in our portfolio. According to the estimated ETL 
budgets at the 95% level, ETL(95%), flash flood, wildfire, and flood provide a rel-
atively higher tail risk than the other factors. However, hurricane, tropical storm, 
flood and flash flood seem to be the main tail risk contributors at the 99% level.

We take the main tail and center risk contributors into account to find the main 
risk contributors of our portfolio. Since flash flood and flood are both main tail and 
center risk contributors, they are the potential main risk contributors in our port-
folio. In conclusion, identifying the main risk contributors and estimating the risk 
budgets will help investors to envision the amount of risk exposure when consider-
ing investing in our portfolio.

6 � Evaluating the impact of climate extreme indicators on the NDI 
performance

In this section, we evaluate how well our index would perform if an adverse weather 
event happened. That is, we investigate the impact of extreme weather factors on 
higher financial losses caused by natural disasters in the United States. Our find-
ings will help investors to hedge strategies against possible future adverse weather 
events. For the climate extreme indicators, we utilize the monthly maximum 

Table 3   (continued) Natural Disaster Std ETL(95) ETL(99)

Marine Hurricane Typhoon 0.78 1.24 0.61
Volcanic Ash 0.68 1.10 0.36
Dense Smoke 0.57 0.94 0.33
Blizzard 0.49 1.96 3.53
Tornado 0.49 1.13 4.49
Marine Dense Fog 0.02 0.03 0.32
Marine Lightning 0.01 0.02 0.21
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temperature and the Palmer Drought Severity Index that are provided in the U.S. 
Climate Extremes Index proposed by NOAA and the Global Warming Index pro-
posed by Haustein et al. (2017) (refer to Sect. 2).

In finance, stress testing is a form of scenario analysis used by regulators to 
investigate the robustness of a financial instrument in inevitable crashes. We imple-
ment stress testing to determine the strength of NDI and its resilience to the climate 
extreme indicators. This helps investors to gauge investment risk in our portfolio 
and also serves as a tool for hedging strategies required to mitigate potential losses 
caused by climate extreme indicators.

In this section, we assess the performance of NDI via stress testing using monthly 
maximum temperature (Max Temp), the Palmer Drought Severity Index (PDSI), and 
Global Warming Index (GWI) as stress factors. Instead of working with raw climate 
extreme factors, we use their lag-1 differences (returns) as they yield stationary time 
series, see Figure 3. According to the results of the Ljung-Box test, the three series 
of returns inherit serial correlation and dependence. To capture linear and nonlinear 
dependencies in returns, we put the series through the ARMA(1,1)-GARCH(1,1) fil-
ter with Student-t innovations and consider the sample innovations for our analysis.

We fit bivariate NIG models to the joint distributions of independent and identi-
cally distributed standardized innovations of each climate extreme indicator returns 
and NDI: Max Temp vs NDI, PDSI vs NDI, and GWI vs NDI. Then, we generate 
10,000 scenarios from these bivariate NIGs to perform the scenario analysis and to 
compute the systemic risk measures. Figure 9 shows the fitted contour plots in each 
bivariate density, overlaid with the 10,000 simulated values. The empirical corre-
lation coefficients based on the observed data suggest a weak positive relationship 
between the factors and the NDI. We quantify the market risk of our portfolio to 
assess the impact of negative events on the climate extreme indicators. In order to 
do that, we calculate three systemic risk measures induced from VaR for each joint 
NIG density.

Conditional Value at Risk (CoVaR) proposed by Adrian and Brunnermeier (2011) 
provides the change in the VaR of the financial system under the condition of an 

Fig. 9   The generated joint densities of the returns of (a) monthly maximum temperature (Max Temp) 
and the Natural Disasters Index (NDI), (b) the Palmer Drought Severity Index (PDSI) and the NDI, and 
(c) the Global Warming Index (GWI) and the NDI using the fitted bivariate NIG models of the joint dis-
tributions of independent and identically distributed standardized residuals. The figures depict the simu-
lated values, the contour plots, and empirical correlation coefficients (R) of the joint densities
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institution being under distress relative to its median state. As CoVaR is a coherent 
risk measure (Acerbi and Tasche 2002), changing VaR to CoVaR allows us to con-
sider more severe distress events, back-test CoVaR, and improve its monotonicity 
concerning the dependence parameter. Girardi and Ergun (2013) improved the defi-
nition of financial distress from an institution being exactly at its VaR, X = VaR�(X) , 
to being less than or equal to its VaR, X ≤ VaR�(X) . We use an alternative CoVaR in 
terms of copulas defined in Mainik and Schaanning (2014) and denote Y as NDI and 
X as a climate extreme indicator. CoVaR at the level of q, CoVaRq (or �q ), is defined 
as

where FY and FX denote the cumulative distributions of Y and X, respectively, and 
FY|X is the cumulative conditional distribution of Y given X.

Conditional Expected Shortfall (CoES) is an extension of CoVaR which meas-
ures the tail mean beyond VaR (Mainik and Schaanning 2014). We denote CoES at 
level q as

Conditional Expected Tail Loss (CoETL) is the average of the NDI losses when the 
NDI and the climate extreme indicators are in distress (Biglova et al. 2014). CoETL 
quantifies the portfolio downside risk in the presence of systemic risk. We define 
CoETL at level q as follows:

Table  4 reports the market risk of our portfolio using the left-tail systemic risk 
measures on NDI based on climate extreme indicators (Max Temp, PDSI, and GWI) 
at different stress levels. We address how a drastic increase in the Max Temp, PDSI, 

(14)�q ∶= CoVaRq ∶= F−1

Y|X≤F−1
X
(q)
(q) = −VaRq

(
Y|X ≤ −VaRq(X)

)
,

(15)CoESq ∶= �
(
Y|Y ≤ �q,X ≤ −VaRq(X)

)
.

(16)CoETLq ∶= �
(
Y|Y ≤ −VaRq(Y),X ≤ −VaRq(X)

)
.

Table 4   The left-tail systemic risk measures (CoVaR, CoES, and CoETL) of the joint densities of the 
Natural Disasters Index (NDI) and climate extreme indicators (monthly maximum temperature, the 
Palmer Drought Severity Index, and the Global Warming Index) at different stress levels

Climate Extreme Indicator Stress Levels Systemic Risk Measure

CoVaR CoES CoETL

Monthly Maximum Temperature 10% −1.78 −2.41 −1.96
5% −2.55 −3.13 −2.43
1% −3.71 −4.20 −3.23

Palmer Drought Severity Index 10% −1.53 −2.46 −1.64
5% −2.47 −3.69 −2.11
1% −5.24 −8.92 −3.75

Global Warming Index 10% −1.44 −2.29 −1.53
5% −2.31 −3.34 −2.02
1% −5.45 −6.04 −3.47
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and GWI impact our index. At the 10% stress level, CoVaR provides the expected 
return on our portfolio in the highest 10% of climate extreme indicators. Since 
CoVaR10%(Max Temp)=-1.78, max temperature impacts our index by -1.78 degrees 
at the 10% stress level. This is an enormous loss as NDI varies between -4 and 4, see 
Figure 2.

We compare the impacts of climate extreme indicators on our index using 
Table 4. At the 10% and 5% levels, the stress on maximum temperature has a greater 
impact on NDI compared to PDSI and GWI. However, at the highest stress level 
(1%), which is the worst case, PDSI shows a higher impact than maximum tempera-
ture and GWI. These findings will help investors gauge the market risk of NDI for 
hedging strategies to alleviate potential losses due to climate extreme indicators.

7 � Discussion and conclusion

We proposed the Natural Disasters Index, NDI (1), using the United States as a 
model with property losses reported in NOAA Storm Data (NCEI 2018) between 
1996 and 2018. In order to establish the NDI, we provided an evaluation frame-
work using three promising approaches: (1) option pricing, (2) risk budgeting, and 
(3) stress testing.

We determined the fair values of the NDI options using a discrete-time GARCH 
model with NIG innovations and then simulated Monte Carlo averages to approxi-
mate call and put option prices (8),(9). The relationships among time to maturity, 
strike price, and option prices help to construct and valuate insurance-type financial 
instruments. Then, we disaggregated the cumulative risk attributed to natural dis-
asters to our equally-weighted portfolio (i.e., we investigated the risk contribution 
of each type of natural disaster). The Std and ETL risk budgets for the NDI yield 
that flood and flash flood are the main risk contributors in our portfolio. Finally, we 
assessed the performance of the NDI via a stress testing analysis using Max Temp, 
PDSI, and GWI as stressors. We found the stress on Max Temp significantly impacts 
the NDI compared to that of the PDSI and GWI at the highest stress level (1%).

The proposed NDI is an attempt to address a financial instrument for hedging 
the intrinsic risk induced by the property losses caused by natural disasters in the 
United States. The main objective of the NDI is to forecast the degree of future sys-
temic risk caused by natural disasters. This information could forewarn the insurers 
and corporations allowing them to transfer insurance risk to capital market investors. 
Hence the issuance of the NDI will conspicuously help to bridge the gap between 
the capital and insurance markets. While the NDI is specifically constructed for the 
United States, it could be modified to calculate the risk in other regions or countries 
using a data set comparable to NOAA Storm Data NCEI (2018).
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